Creating the Essential Tools VSDemo Sample

The ‘Featured Samples’ section of Essential Tools contains samples of a comprehensive nature that were developed to showcase the vast power and flexibility of the Essential Suite product.

The VSDemo sample is modeled after the Microsoft Visual Studio.NET IDE, and reproduces all of the core UI aspects used in the VS.NET IDE. The Essential Suite products used in the sample are Essential Tools and Essential Edit. Essential Tools provides all the cool User-Interface components such as the XP style customizable menus, the VS.NET type docking windows, the GroupBar & GroupView controls, the Tabbed MDI Manager, etc., The C# and VB.NET syntax editors were implemented using Essential Edit.

This document provides a walkthrough of the steps involved in creating the Essential Tools VSDemo sample. Though both Essential Tools and Essential Edit have been used in the VSDemo sample, this document will address only the following Essential Tools components that implement the core aspects of the User Interface,

· Docking Windows

· XP style Menus & Toolbars

· XPToolBar

· GroupBar & GroupView controls

· Tabbed MDI Manager

For detailed information and usage guidelines on the Essential Suite components, please refer to the Essential Suite Class Reference and the Essential Suite User’s Guide documentation. The Essential Suite Knowledge Base, http://www.syncfusion.com/kb/, lists and clarifies some of the commonly encountered usage questions.

The starting point for the VSDemo sample is a regular Windows Forms MDI type application with one or more child form types. A sample MDI application is provided in the Visual Studio.NET samples section.

Docking Windows

1. Open the sample's main form (VSMainForm) within the Windows Forms designer.

2. Create the various controls that constitute the dockable windows. This includes controls such as the GroupBar (which is discussed in a later section) for the Toolbox window, TextBoxes for the Find windows, ListBoxes, ListView for the TaskList window, a Panel containing a ComboBox and a TextBox for the Output Window, a Panel containing a ComboBox, an instance of the Essential Tools XPToolBar control and the PropertyGrid control for the ‘Properties’ window, two Panels composed of an XPToolbar and a TreeView for the ‘Solution Explorer’ and ‘Class View’ windows, and finally, a Panel composed of the XPToolBar and a sub-panel with TreeViews and a LinkLabel for the ‘Object Browser’ window. Please refer to the XPToolBars section of this document for details on creating the XPToolBar controls used in several of the Panels.

3. Select the Essential Tools DockingManager from the Syncfusion tab of the VS.NET Toolbox and add an instance of the component to the form.

4. Add an ImageList instance to the Form and populate it with 16 x 16 icons that represent each of the dockable windows that were created earlier. Now select the DockingManager component, open up the VS.NET Properties window and assign the ImageList to the DockingManager.ImageList property.

5. The Essential Tools DockingManager is implemented as an extender provider and will add the 'SetEnableDocking' extended property to all controls that are directly located on the host form. This property is the 'trigger' by which a control is transformed into a docking window. In turn, select each of the controls added in Step 2 and using the property browser, set the EnableDocking property found under the 'Syncfusion Docking'

category to TRUE. The control is at this point transformed into a dockable window and will be docked to the form's left border by default.

6. Setting the EnableDocking property will add the DockIcon, DockLabel, AutoHideOnLoad, HiddenOnLoad and FloatOnly extended properties to the control.

7. Set the DockIcon property to the index value of the image within the image list that represents the particular control. Set the DockLabel property to be the name that is to be used as the control's caption. The other extended properties are set as per the dictums of the docking layout.

8. The dockable controls set in Step 6 are full-fledged docking windows and the application's docking layout may now be set by simply dragging the windows around and redocking or floating them.

9. To enable the application's docking state to be persisted between instances, select the DockingManager and set it's PersistState property to be TRUE. Not setting the PersistState property will force the DockingManager to use the designer set state during each invocation of the application.

XP style Menus & Toolbars

1. Select the Essential Tools MainFrameBarManager and add it to the main form’s designer in the component tray. Create 2 ImageLists smallImageList1 and largeImageList that will contain the images in the menu items. Assign the above images lists to the

MainFrameBarManager’s ImageList and LargeImageList properties.

2. Filling the MainFrameBarManager with menu items: Right-click on the MainFrameBarManager and choose Customize. In the “Customize” Dialog, select

the “Commands” tab. Right click on the “Categories” tree to create Categories. Create the BarItems by right clicking in the “Commands” list under each category. Set the Text, ImageIndex (if any) and the other properties for the BarItems that were just created. Clicking on the BarItem in the Commands list will show the component in the property editor in the designer, where the properties associated with the BarItem can be edited.

The BarItems can be moved around into different Categories by updating their CategoryIndex property.

3. Creating the MainMenu and Toolbars: Go to the Toolbars tab in the Customize dialog and select New to create the “MainMenu” and “File” Bar objects. For the MainMenu Bar, select the BarStyle property in the property grid and add the IsMainMenu flag (to designate it as the main-menu for the application).

4. Filling the main-menus and toolbars: BarItems can simply be dragged and dropped from the Commands view into the main-menu and toolbars and into the submenus. Note that the same BarItem can be dropped into different places in the menu structure.

5. Setting up Click event handlers: Select the BarItem in the Commands Tab and then setup the event handler in the property grid for that BarItem, for C#. In VB, go to the code view, select the BarItem in the combo on top and then subscribe to its Click event.

6. Filling Child Forms: Add instances of the Essential Tools ChildFrameBarManager components to the application’s child forms and follow steps similar to the above to fill it with menus and toolbars. The toolbars will not be dockable on the Form during design-time as they will be merged with the toolbars in the main-form during runtime.

7. Registering the Child Types with the MainFrameBarManager: In the main form’s constructor call the RegisterMdiChildTypes method after InitializeComponent to let the MainFrameBarManager know about the child types in advance. This step is optional. Calling this method will make the menus and toolbars available to the user all the time (even before a child form gets instantiated). If this method is not called, then the toolbars

and menu items of the child forms will be merged with that of the main form as they get created, dynamically.

8. Toolbar Merging: Use the same name (BarName property) for the Toolbars (Bar instances) to let the framework merge them (from the different Forms) during runtime. The MainMenus will automatically be merged (even if they don’t have the same name).

9. BarItems Merging: The BarItems from the different Forms will be merged based on their Text, MergeOrder and MergeType properties. The Essential Tools User’s Guide has more detailed information on merging.

XPToolBar

1. Select instances of the Essential Tools XPToolBar control and drop them on the main form’s dockable Panels such as the ‘Solution Explorer’ and ‘Object Browser’ that have stand-alone toolbars.

2. Using the XPToolBar.Items property collection editor, populate the XPToolBars with suitable BarItems. The drop-down combo within the collection editor allows you to specify the item type as a standard BarItem, ParentBarItem, DropDownItem, etc.,

3. For each of these BarItems specify the Appearance attributes such as the ImageList/ImageIndex values, ToolTip text, Enabled state etc.,

4. Use the XPToolBar.SeparatorIndices property editor to set up any required separators within the toolbar.

5. Event handlers for the toolbar items may be specified by selecting each BarItem in the toolbar, and using the events tab within the Property Browser to wire a handler for the Click event.

GroupBar and GroupView Controls

1. Select the Essential Tools GroupBar item from the VS.NET Toolbox window and add an instance of the control to the main form.

2. Use the GroupBar.GroupBarItems property collection editor to add the various groups such as ‘Components’, ‘Windows Forms’, ‘Syncfusion’ etc., and set the GroupBarItem.Text property for each of these items.

3. Within the designer, clicking on a group with activate it and display the group’s client region. Activating each group in turn, select instances of the Essential Tools GroupView control and drop an instance of it onto the client region of the group. The GroupView control will be automatically sized to fit the particular group on which it is dropped.

4. Assign ImageLists containing the small and large GroupViewItem images to the GroupView control’s SmallImageList and LargeImageList properties.

5. Using the GroupView.GroupViewItems collection editor, add the required GroupViewItems and assign the ImageIndex and Text value for each.

6. At this point the GroupBar and GroupView controls have their default style values. Please refer to the following Essential Tools knowledge base article to obtain the exact style values required to set the VS.NET Toolbox type UI: Using the GroupBar and GroupView controls, how do I implement a Microsoft Visual Studio.NET toolbox type UI?
7. Provide a handler for the GroupView control’s GroupViewItemSelected event and within the handler, add code for the processing to be performed when each GroupViewItem is selected. The following code shows a sample event handler for a GroupView control named ‘gvcPersonal’,

private void gvcPersonal_GroupViewItemSelected(object sender, System.EventArgs e)

{

 int nselected = this.gvcPersonal.SelectedItem;

 if(nselected >= 0)

 { MessageBox.Show(this.gvcPersonal.GroupViewItems[nselected].Text); Trace.WriteLine(this.gvcPersonal.GroupViewItems[nselected].Text);

 }

}

Tabbed MDI Manager

Setting up the TabbedMDIManager is purely a programmatic exercise involving the following very simple steps,

1. An instance of the Essential Tools TabbedMDIManager is added to the main form class.

2. The following lines of code are added to the VSMainForm constructor following the InitializeComponent call.

this.tabbedMDIManager = new TabbedMDIManager();

this.tabbedMDIManager.AttachToMdiContainer(this);

With the above steps in place, the majority of the work required for the sample is complete, and upon invocation, you will notice that VSDemo assumes the familiar Visual Studio.NET appearance. As in the VS.NET IDE, docking windows and toolbars may be dragged around and docked or floated, child forms upon launch will be automatically added to the tabbed MDI interface and the corresponding menus & toolbars will be dynamically merged with the main menu & toolbars, docking windows & MDI child forms may be seamlessly interchanged, and the entire layout will be persisted upon exit and restored during the subsequent launch.

