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The Story behind the Succinctly Series 
 of Books 

Daniel Jebaraj, Vice President 
Syncfusion, Inc. 

taying on the cutting edge 

As many of you may know, Syncfusion is a provider of software components for the 
Microsoft platform. This puts us in the exciting but challenging position of always 
being on the cutting edge. 

Whenever platforms or tools are shipping out of Microsoft, which seems to be about 
every other week these days, we have to educate ourselves, quickly. 

Information is plentiful but harder to digest 
In reality, this translates into a lot of book orders, blog searches, and Twitter scans. 

While more information is becoming available on the Internet and more and more books are 
being published, even on topics that are relatively new, one aspect that continues to inhibit us is 
the inability to find concise technology overview books.  

We are usually faced with two options: read several 500+ page books or scour the web for 
relevant blog posts and other articles. Just as everyone else who has a job to do and customers 
to serve, we find this quite frustrating. 

The Succinctly series 
This frustration translated into a deep desire to produce a series of concise technical books that 
would be targeted at developers working on the Microsoft platform.  

We firmly believe, given the background knowledge such developers have, that most topics can 
be translated into books that are between 50 and 100 pages.  

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything 
wonderful born out of a deep desire to change things for the better? 

The best authors, the best content 
Each author was carefully chosen from a pool of talented experts who shared our vision. The 
book you now hold in your hands, and the others available in this series, are a result of the 
authors’ tireless work. You will find original content that is guaranteed to get you up and running 
in about the time it takes to drink a few cups of coffee.  

Free forever  
Syncfusion will be working to produce books on several topics. The books will always be free. 
Any updates we publish will also be free.  

S 
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Free? What is the catch? 

There is no catch here. Syncfusion has a vested interest in this effort.  

As a component vendor, our unique claim has always been that we offer deeper and broader 
frameworks than anyone else on the market. Developer education greatly helps us market and 
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn 
the moon to cheese!” 

Let us know what you think 

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at 
succinctly-series@syncfusion.com.  

We sincerely hope you enjoy reading this book and that it helps you better understand the topic 
of study. Thank you for reading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Please follow us on Twitter and “Like” us on Facebook to help us spread the  
word about the Succinctly series! 

 

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion
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Chapter 1  Introducing Hive 

What is Hive? 

Hive is a data warehouse for Big Data. It allows you to take unstructured, variable data in 
Hadoop, apply a fixed external schema, and query the data with an SQL-like language. Hive 
abstracts the complexity of writing and running map/reduce jobs in Hadoop, presenting a 
familiar and accessible interface for Big Data. 

Hadoop is the most popular framework for storing and processing very large quantities of data. 
It runs on a cluster of machines—at the top end of the scale are Hadoop deployments running 
across thousands of servers, storing petabytes of data. With Hadoop, you query data using jobs 
that can be broken up into tasks and distributed around the cluster. These map/reduce tasks are 
powerful, but they are complex, even for simple queries. 

Hive is an open source project from Apache that originated at Facebook. It was built to address 
the problem of making petabytes of data available to data scientists from a variety of technical 
backgrounds. Instead of training everyone in map/reduce and Java, Scala, or Python, the 
Facebook team recognized that SQL was already a common skill, so they designed Hive to 
provide an SQL facade over Hadoop. 

Hive is essentially an adaptor between HiveQL, with the Hive Query Language based on SQL 
and a Hadoop data source. You can submit a query such as SELECT * FROM people to Hive, 

and it will generate a batch job to process the query. Depending on the source, the job Hive 
generates could be a map/reduce running over many files in Hadoop or a Java query over 
HBase tables. 

Hive allows you to join across multiple data sources, so that you can write data as well as read 
it. This means you can run complex queries and persist the results in a simplified format for 
visualization. Hive can be accessed using a variety clients, making it easy to integrate into your 
existing technology landscape, and Hive works well with other Big Data technologies such as 
HBase and Spark. 

In this book, we'll learn how Hive works, how to map Hadoop and HBase data in Hive, and how 
to write complex queries in HiveQL. We'll also look at running custom code inside Hive queries 
using a variety of languages. 

Use cases for Hive 

Hive is an SQL facade over Big Data, and it fits with a range of use cases, from mapping 
specific parts of data that need ad-hoc query capabilities to mapping the entire data space for 
analysis. Figure 1 shows how data might be stored in an IoT solution in which data from devices 
is recorded in HBase and server-side metrics and logs are stored in Hadoop. 
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Figure 1: Big Data Solutions with Multiple Storage Sources 

As Figure 2 demonstrates, this space can be mapped as three tables in Hive: device_metrics, 

server_metrics, and server_logs. Note that although the source folder and table names 

have hyphens, that isn’t supported in Hive, which means device-events becomes 

device_events. 
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Figure 2: Mapping Multiple Sources with Hive 

You can find the most active devices for a period by running a group by query over the 

device_metrics table. In that instance, Hive would use the HBase driver, which provides real-

time data access, and you can expect a fast response. 

If you want to correlate server errors with CPU usage, you can JOIN across the 
server_metrics and server_logs tables. Log entries can be stored in a tab-separated 

variable (TSV) format, and metrics might be in JSON, but Hive will abstract those formats, 
enabling you to query them in the same way. These files are stored in the Hadoop Distributed 
File System (HDFS), which means Hive will run them as a map/reduce job. 

Hive doesn't only abstract the format of the data, it also abstracts the storage engine, which 
means you can query across multiple data stores. If you have a list of all known device IDs in a 
CSV file, you can upload that to HDFS and write an outer join query over the 

device_metrics HBase table and the device_ids CSV file in order to find devices that have 

not sent any metrics for a period. 

We'll look more closely at running those types of queries in Chapter 9  Querying with HiveQL. 

Hive typically runs on an existing Hadoop, HBase, or Spark cluster, which means you don't 
need additional infrastructure to support it. Instead, it provides another way to run jobs on your 
existing machines.  
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Hive’s metastore, which is the database Hive uses to store table definitions separately from the 
data sources it maps, constitutes its only significant overhead. However, the metastore can be 
an embedded database, which means running Hive to expose a small selection of tables comes 
at a reasonable cost. You will notice that once Hive is introduced, it simplifies Big Data access 
significantly, and its use tends to grow. 

Hive data model 

I've used a lot of terminology from SQL, such as tables and queries, joins, and grouping. 
HiveQL is mostly SQL-92 compliant, so that most of the Hive concepts are SQL concepts based 
on modeling data with tables and views.  

However, Hive doesn’t support all the constructs available in SQL databases. There are no 
primary keys or foreign keys, which means you can’t explicitly map data relations in Hive. Hive 
does support tables, indexes, and views in which tables are an abstraction over the source data, 
indexes are a performance boost for queries, and views are an abstraction over tables. 

The main difference between tables in SQL and Hive comes with how the data is stored and 
accessed. SQL databases use their own storage engine and store data internally. For example, 
a table in a MySQL database is stored in the physical files used by that instance of MySQL, 
while Hive can use multiple data sources. 

Hive can manage storage using internal tables, but it can also use tables to map external data 
sources. The definition you create for external tables tells Hive where to find the data and how 
to read it, but the data itself is stored and managed by another system. 

Internal tables 

Internal tables are defined in and physically managed by Hive. When an internal table is 
queried, Hive executes the query by reading from its own managed storage. We'll see how and 
where Hive stores the data for internal tables in Chapter 3  Internal Hive Tables. 

In order to define an internal table in Hive, we use the standard create table syntax from 

SQL, specifying the column details—name, data type, and any other relevant properties. Error! 
Reference source not found. shows a valid statement that will create a table called 
server_log_summaries. 
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Code Listing 1: Creating an Internal Table 

CREATE TABLE IF NOT EXISTS server_log_summaries 
(  
 period STRING, 
 host STRING, 
 logLevel STRING, 
 count INT 
) 

This statement creates an internal Hive table we can use to record summaries for our server 
logs. This way the raw data will be in external HDFS files with a summary table kept in Hive. 
Because Code Listing 1’s statement is standard SQL, we can run it on either Hive or MySQL. 

External tables 

External tables are defined in Hive, but they are physically managed outside of Hive. Think of 
external tables as a logical view of another data source—when we define an external table, Hive 
records the mapping but does not copy over any of the source data.  

When we query an external table, Hive translates the query into the relevant API calls for the 
data source (map/reduce jobs or HBase calls) and schedules the query as a Hadoop job. When 
the job finishes, the output is presented in the format specified in the Hive table definition. 

External tables are defined with the create external table statement, which has a similar 

syntax to internal tables. However, Hive must also know where the data lives, how the data is 
stored, and how rows and columns are delimited. Code Listing 2 shows a statement that will 
create an external table over HDFS files. 

Code Listing 2: Creating an External Table 

CREATE EXTERNAL TABLE server_logs  

( 
 serverId STRING,  
 loggedAt BIGINT, 

 logLevel STRING, 
 message STRING 
) 

STORED AS TEXTFILE  
LOCATION '/server-logs'; 

This statement would fail in a standard SQL database because of the additional properties we 
give Hive to set up the mapping: 

 EXTERNAL TABLE—specifies that the data is stored outside of Hive. 

 STORED AS TEXTFILE—indicates the format of the external data. 

 LOCATION—shows folder location in HDFS where the data is actually stored. 
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Hive will assume by default that text files are delimited format, using ASCII character \001 (ctrl-
A) as the field delimiter and the new line character as the row delimiter. And, as we'll see in 
Chapter 3  Internal Hive Tables, we can explicitly specify which delimiter characters to use (e.g., 
CSV and TSV formats)  

When we query the data, Hive will map each line in the file as a row in the table, and for each 
line it will map the fields in order. In the first field it will expect a string as the serverId value, 

and in the next field it will expect a long for the timestamp. 

Mapping in Hive is robust, which means any blank fields in the source will be surfaced as NULL 
in the row. Any additional data after the mapped fields will be ignored. Rows with invalid data—
incomplete number of fields or invalid field formats—will be returned when you query the table, 
but only fields that can be mapped will be populated. 

Views 

Views in Hive work in exactly the same way as views in an SQL database—they provide a 
projection over tables in order to give a subset of commonly used fields or to expose raw data 
using a friendlier mapping. 

In Hive, views are especially useful for abstracting clients away from the underlying storage of 
the data. For example, a Hive table can map an HDFS folder of CSV files, and it can offer a 
view providing access to the table. If all clients use the view to access data, we can change the 
underlying storage engine and the data structure without affecting the clients (provided we can 
alter the view and map it from the new structure). 

Because views are an abstraction over tables, and because table definitions are where Hive's 
custom properties are used, the create view statement in Hive is the same as in SQL 

databases. We specify a name for the view and a select statement in order to provide the 

data, which can contain functions for changing the format and can join across tables. 

Unlike with SQL databases, views in Hive are never materialized. The underlying data is always 
retained in the original data source—it is not imported into Hive, and views remain static in Hive. 
If the underlying table structures change after a view is created, the view is not automatically 
refreshed. 

Code Listing 3 creates a view over the server_logs table, where the UNIX timestamp (a long 

value representing the number of seconds since 1 January 1970) is exposed as a date that can 
be read using the built-in HiveQL function FROM_UNIXTIME. The log level is mapped with a 
CASE statement. 
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Code Listing 3: Creating a View 

CREATE VIEW server_logs_formatted  
AS 

SELECT  
 serverId,  
 FROM_UNIXTIME(loggedat, 'yyyy-MM-dd'), 

 CASE logLevel  
  WHEN 'F' THEN 'FATAL'  
  WHEN 'E' THEN 'ERROR'  

  WHEN 'W' THEN 'WARN' 
  WHEN 'I' THEN 'INFO' 
 END, 

 message 
FROM server_logs 

Hive offers various client options for working with the database, including a REST API for 
submitting queries and an ODBC driver for connecting SQL IDEs or spreadsheets. The easiest 
option, which we’ll use in this book, is the command line—called Beeline.  

Code Listing 4 uses Beeline and shows the same row being fetched from the server_logs 
table and the server_logs_formatted view, with the view applying functions that make the 

data friendlier. 
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Code Listing 4: Reading from Tables and Views using Beeline 

> select * from server_logs limit 1; 
+-----------------------+-----------------------+-----------------------+-- 

| server_logs.serverid  | server_logs.loggedat  | server_logs.loglevel  | 
server_logs.message  | 
+-----------------------+-----------------------+-----------------------+-- 

| SCSVR1                | 1453562878            | W                     | 
edbeuydbyuwfu        | 
+-----------------------+-----------------------+-----------------------+-- 

1 row selected (0.063 seconds) 
 
> select * from server_logs_formatted limit 1; 

+---------------------------------+----------------------------+----------- 
| server_logs_formatted.serverid  | server_logs_formatted._c1  | 
server_logs_formatted._c2  | server_logs_formatted.message  | 

+---------------------------------+----------------------------+----------- 
| SCSVR1                          | 2016-01-23                 | WARN                       
| edbeuydbyuwfu                  | 

+---------------------------------+----------------------------+----------- 

Indexes 

Conceptually, Hive indexes are the same as SQL indexes. They provide a fast lookup for data in 
an existing table, which can significantly improve query performance, and they can be created 
over internal or external tables, giving us a simple way to index key columns in HDFS or HBase 
data. 

An index in Hive is created as a separate internal table and populated from a map/reduce job 
that Hive runs when we rebuild the index. There is no automatic background index rebuilding, 
which means indexes must be rebuilt manually when data has changed. 

Surfacing indexes as ordinary tables allows us to query them directly, or we can query the base 
table and let the Hive compiler find the index and optimize the query. 

Code Listing 5 shows an index being created and then populated over the serverId column in 

the system_logs table (with some of the Beeline output shown). 
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Code Listing 5: Creating and Populating an Index 

> create index ix_server_logs_serverid on table server_logs (serverid) as 
'COMPACT' with deferred rebuild; 

No rows affected (0.138 seconds) 

> alter index ix_server_logs_serverid on server_logs rebuild; 

… 

INFO  : The url to track the job: http://localhost:8080/ 

INFO  : Job running in-process (local Hadoop) 

INFO  : 2016-01-25 07:30:48,507 Stage-1 map = 100%,  reduce = 100% 

INFO  : Ended Job = job_local1186116405_0001 

INFO  : Loading data to table 

default.default__server_logs_ix_server_logs_serverid__ from 

file:/user/hive/warehouse/default__server_logs_ix_server_logs_serverid__/.hive-

staging_hive_2016-01-25_07-30-46_971_7660660875879129827-1/-ext-10000 

INFO  : Table default.default__server_logs_ix_server_logs_serverid__ stats: 

[numFiles=1, numRows=3, totalSize=142, rawDataSize=139] 

No rows affected (1.936 seconds) 

Although the CREATE INDEX statement is broadly the same as SQL, specifying the table and 
column name(s) to index, it contains two additional clauses: 

 'COMPACT'—Hive supports a plug-in indexing engine which means we can use 
COMPACT indexes, suitable for indexing columns with many values, or BITMAP 
indexes, which are more efficient for columns with a smaller set of repeated values. 

 DEFERRED REBUILD—without this, the index will be populated when the CREATE 
INDEX statement runs. Deferring rebuild means we can populate the index later using 
the ALTER INDEX … REBUILD statement. 

As in SQL databases, indexes can provide a big performance boost, but they do create 
overhead with the storage used for the index table along with the time and compute required to 
rebuild the index.  

Summary 

This chapter’s overview of Hive addressed how the key concepts are borrowed from standard 
SQL, and it showed how Hive provides an abstraction over Hadoop data by mapping different 
sources of data as tables that can be further abstracted as views. 
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We’ve seen some simple HiveQL statements for defining tables, views, and indexes, and we 
have noted that the query language is based on SQL. HiveQL departs from standard SQL only 
when Hive needs to support additional functionality, such as when specifying the location of 
data for an external table. 

In the next chapter we’ll begin running Hive and executing queries using HiveQL and the 
command line. 
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Chapter 2  Running Hive 

Hive runtime options 

Because Hive sits naturally alongside other parts of Hadoop, it typically runs alongside an 
existing cluster. For nonproduction environments, Hadoop can run in local or pseudo-distributed 
mode, and Hive can submit jobs to Hadoop, which means it will use whatever runtime is 
configured. 

Hive typically executes queries by sending jobs to Hadoop, either using the original map/reduce 
engine or, more commonly now, with Yet Another Resource Negotiator (YARN), the job 
management framework from Hadoop 2. Hive can run smaller queries locally using its own Java 
virtual machine (JVM) rather than submitting a job to the cluster. That’s useful when developing 
a query because we can quickly run it over a subset of data and then submit the full job to 
Hadoop. 

Setting up a production Hadoop cluster isn’t a trivial matter, but in the cloud we can easily 
configure Hadoop clusters from the major providers to include Hive. By default, all the HDInsight 
cluster types in Microsoft Azure have Hive installed, which means it can run as part of a 
Hadoop, HBase, or Storm cluster with no extra configuration. When using Amazon's Elastic 
MapReduce, you will need to specify Hive as an option when creating a cluster. 

Hive is a Java system, and it’s not complex to install, but Hadoop must already be set up on 
your machine. The easiest way to run Hive for development and testing is with Docker, and in 
this chapter we’ll look at using an image I’ve published on the Docker Hub that will help you get 
started with Hive. 

Installing Hive 

Hive is a relatively easy part of the Hadoop stack to install. It’s a Java component with only a 
few options, and it is installed onto the existing Hadoop nodes.  

For a single node dev or test environment, you should install HDFS first, before Hive. In both 
cases, you simply download the latest tarball and extract it. Hive's runtime behavior can be 
changed from a variety of settings specified in the hive-site.xml config file, but these 

changes are mostly optional. 

Because Hive stores its own data in HDFS, you will need to set up the folders it expects to use 
and the necessary permissions using hdfs dfs, as shown in Code Listing 6. 
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Code Listing 6: Creating Hive Folders in HDFS 

hdfs dfs -mkdir -p /tmp 

hdfs dfs -mkdir -p /user/hive/warehouse 

hdfs dfs -chmod g+w /tmp 

hdfs dfs -chmod g+w /user/hive/warehouse 

 Note: Full installation steps are provided in the Apache Hive Wiki here: 
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Installation. Or you 
can see the steps captured in the Dockerfile for the hive-succinctly image on 
GitHub: https://github.com/sixeyed/hive-succinctly/tree/master/docker. 

Running Hive in a Docker container 

Docker containers are great for experimenting while you learn a new technology. You can spin 
up and kill instances with very little overhead, and you don’t need to worry about any software or 
service conflicts with your development machine.    

Docker is a cross-platform tool, which means you can run it on Windows, OS/X, or Linux, and 
installation is relatively simple. You can follow the instructions at http://docker.com. In addition to 
the runtime, Docker has a public registry of images, the Docker Hub, where you can publish and 
share your own images or pull images other people have shared. 

The image hive-succinctly on the Docker Hub is one I’ve put together expressly for use with 

this book. It comes with Hive already installed and configured, and the image is also preloaded 
with sample data you can use for trying queries. To run that image, install Docker and execute 
the command in Code Listing 7. 

Code Listing 7: Running Hive in Docker 

docker run -d --name hive -h hive \ 

 –p 8080:8080 –p 8088:8088 –p 8042:8042 –p 19888:19888 \ 

 sixeyed/hive-succinctly 

Some of the settings in the docker run command are optional, but if you want to code along 

with the sample in this book, you'll need to run the full command. If you're not familiar with 
Docker, here is a brief listing of the command’s functions: 

 Pulls the image called hive-succinctly from the sixeyed repository in the public 

Docker Hub. 

 Runs the image in a local container with all the key ports exposed for the Hive Web UI. 

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Installation
https://github.com/sixeyed/hive-succinctly/tree/master/docker
http://docker.com/
https://hub.docker.com/r/sixeyed/hive-succinctly
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 Names the image hive, allowing you to control it with other Docker commands without 

knowing the container ID that Docker will assign. 

 Gives the image the hostname hive, allowing you to access it using that name.  

Pulling the image from the registry to your local machine takes a little while the first time this 
command runs, but with future runs the container will start in a few seconds and you’ll have 
Hive running in a container with all the server ports exposed. 

 Note: The hive-succinctly image uses Hive 1.2.1 and Hadoop 2.7.2. It will 
remain at those versions, which means you can run the code samples from this book 
using the exact versions. The image runs Hadoop in pseudo-distributed mode—
although it starts quickly it may take a couple of minutes for the servers to come 
online and make Hive available. 

Getting started with Hive 

There are two command-line interfaces with Hive—the original Hive CLI and the newer 
replacement, Beeline. Hive CLI is a Hive-specific tool that doesn’t support remote connections, 
which means it must be run from the Hive master node. That limitation, along with issues 
concerning long-running queries, means the original CLI has been deprecated in favor of 
Beeline. Although there are some benefits to using the Hive CLI, we’ll focus on Beeline in this 
book. 

Beeline is an extension of the open source SQLLine JDBC command-line client, which means 
you can run it remotely and connect to Hive just as you would connect to any other JDBC-
compliant server.  

If you’re running the hive-succinctly Docker container, the command from Code Listing 8 will 

connect you to the Hive container and start the Beeline client. 

Code Listing 8: Starting Beeline in Docker 

docker exec -it hive beeline 

With Beeline, standard HiveQL queries are sent to the server, but for internal commands (such 
as connecting to the server) you will use a different syntax that is prefixed with the exclamation 
mark. Code Listing 9 shows how to connect to the Hive server running on the local machine at 
port 10000 as the user root. 

 

 

 

 

 

http://sqlline.sourceforge.net/
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Code Listing 9: Connecting to Hive from Beeline  

!connect jdbc:hive2://127.0.0.1:10000 -n root 

When you’re connected, you can send HiveQL statements and see the results from the server. 
In Code Listing 10, I select the first row from the server_logs table, which is already created 

and populated in the Docker image. 

Code Listing 10: Running a Query in Beeline 

> select * from server_logs limit 1; 
+-----------------------+-----------------------+-----------------------+-- 

| server_logs.serverid  | server_logs.loggedat  | server_logs.loglevel  |                            

server_logs.message                            | 

+-----------------------+-----------------------+-----------------------+-- 

| SCSVR1                | 1439546226            | W                     | 

9c1224a9-294b-40a3-afbb-d7ef99c9b1f49c1224a9-294b-40a3-afbb-d7ef99c9b1f4  | 

+-----------------------+-----------------------+-----------------------+-- 

1 row selected (1.458 seconds) 

The datasets in the image are small, just tens of megabytes, but if they are of Big Data 
magnitude, you might wait minutes or hours to get the results of your query. But, however large 
your data, and however complex your query, you should eventually get a result because Hive 
executes jobs using the core Hadoop framework. 

When you have long-running jobs in Hive, you can monitor them with the standard UI interfaces 

from Hadoop—the YARN monitoring UI is available from port 8080, which is exposed in the 

Docker container, so that you can browse to it from your host machine. Figure 3 shows the UI 

for a running job at http://localhost:8080. From here you can drill down to the individual 

map/reduce tasks. 

http://localhost:8080/
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Figure 3: Monitoring Hive Jobs in the YARN UI 

How the Hive runtime works 

The key element of Hive is the compiler, which takes the storage-agnostic HiveQL query and 
translates it into a job to be executed on the storage layer. For Hive tables mapped over files in 
HDFS, the compiler will generate a Java map/reduce query; for tables mapped over HBase, it 
will generate queries using the HBase Java API. 

Hive sends the compiled job to the execution engine, which typically means creating multiple 
jobs in YARN—a master job for coordination that spawns multiple maps and reduces jobs. 
Figure 4 shows the steps from HiveQL query to YARN jobs. 
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Figure 4: The Hive-Hadoop Architecture 

Because the Hive compiler has a pluggable transform architecture, the new query functionality 
was provided by the HBase Storage Handler when HBase support was added to Hive. As Hive 
expands to add other storage technologies, it will only need new handlers plugged in to provide 
the query layer. 

Summary 

Hive is essentially a façade with a set of built-in adapters. When a HiveQL query runs, the 
compiler translates it into a map/reduce job using the relevant storage handler, and the 
execution engine sends the job to Hadoop for processing. 

Typically, Hive jobs will be run on a cluster and managed by YARN, but for smaller queries and 
in nonproduction environments, Hive can run queries locally using its own JVM process. 
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Chapter 3  Internal Hive Tables 

Why use Internal tables? 

Internal tables, also known as native or managed tables, are controlled by Hive—in fact, Hive 
owns the storage of these tables. They're still continued in HDFS, which means you get all the 
benefits of reliable, widely available data, and, if you choose a common format, you can still 
query Hive table files using other Hadoop tools. 

You receive the major benefit of more Hive functionality when you use internal tables. Currently, 
updating or deleting data is only possible with managed tables (we'll cover this more in Chapter 
7  DDL and DML in Hive), and there are many edge cases with HiveQL that work only with 
internal tables.  

Using internal tables lets you focus on modeling the data in the way you want to use it while 
Hive worries about how the data is physically maintained. And for large datasets, you can 
configure sharding, so that tables are physically split across different files in order to improve 
performance. 

Hive also allows for and manages temporary tables, and those are useful for storing 
intermediate result sets that Hive destroys when the session ends. The full set of Hive's Extract, 
Transform, and Load (ETL) tools are available for internal tables, which means they are a good 
choice for storing new data to be accessed primarily through Hive. 

Hive stores internal tables as files in HDFS, which will allow you to access them using other 
Hadoop tools. The more optimized storage options are not supported by the entire Hadoop 
ecosystem. You can use internal Hive tables even if you are using a range of tools, but you will 
need to choose an interoperable format. 

Defining internal tables 

The create table statement will create an internal table unless you specify the external 

modifier (which we will cover in Chapter 4  External Tables Over HDFS and Chapter 5  External 
Tables Over HBase). The simplest statement, shown in Code Listing 11, will create a table with 
a single column, using all default values. 

Code Listing 11: Creating an Internal Hive Table 

create table dual(r string); 

The default root location in HDFS for Hive tables is /user/hive/warehouse, and in Code 

Listing 12 we can see that when the create table statement runs, Hive creates a directory 

called dual, but the directory will be empty. 
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Code Listing 12: HDFS Folder Created by Hive 

root@hive:/hive-setup# hdfs dfs -ls /user/hive/warehouse/     

Found 1 item 

drwxrwxr-x   - root root       4096 2016-01-25 18:02 
/user/hive/warehouse/dual 

root@hive:/hive-setup# hdfs dfs -ls /user/hive/warehouse/dual 
root@hive:/hive-setup# 

When we insert data into the new table, Hive will create a file in HDFS and populate it. Code 
Listing 13 shows an insert statement in the new table, with all the output from Beeline, which 

allows us to see what Hive is doing. 

Code Listing 13: Inserting a Row into a Hive Table 

> insert into dual(r) values('1'); 
INFO  : Number of reduce tasks is set to 0 since there's no reduce operator 

INFO  : number of splits:1 

INFO  : Submitting tokens for job: job_local1569518498_0001 

INFO  : The url to track the job: http://localhost:8080/ 

INFO  : Job running in-process (local Hadoop) 

INFO  : 2016-01-25 18:07:39,487 Stage-1 map = 100%,  reduce = 0% 

INFO  : Ended Job = job_local1569518498_0001 

INFO  : Stage-4 is selected by condition resolver. 

INFO  : Stage-3 is filtered out by condition resolver. 

INFO  : Stage-5 is filtered out by condition resolver. 

INFO  : Moving data to: file:/user/hive/warehouse/dual/.hive-

staging_hive_2016-01-25_18-07-37_949_178012634824589876-2/-ext-10000 from 

file:/user/hive/warehouse/dual/.hive-staging_hive_2016-01-25_18-07-

37_949_178012634824589876-2/-ext-10002 

INFO  : Loading data to table default.dual from 

file:/user/hive/warehouse/dual/.hive-staging_hive_2016-01-25_18-07-

37_949_178012634824589876-2/-ext-10000 

INFO  : Table default.dual stats: [numFiles=1, numRows=1, totalSize=2, 

rawDataSize=1] 

No rows affected (1.724 seconds) 

There is a lot of detail in the INFO level output, and some of it offers useful information: 

 What is the URL for tracking the job in Hive's Web UI (good for long-running queries). 

 How the job is running (in-process rather than through YARN). 

 How the job is structured (into map and reduce stages). 
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 What Hive is doing with the data (first loading it to a staging file). 

 How many rows were returned from the query. The ‘no rows affected’ response does not 
mean that no rows were inserted—it’s the counter in Beeline answering how many rows 
were in fact returned from the query. 

Hive deals with appending data to HDFS via the staging file. Hive writes all the new data to it, 
and when the write is committed Hive moves the file to the correct location in HDFS. Inserting 
rows into internal tables is an ACID operation, and when it finishes we can view the file and its 
contents in HDFS using the list and cat commands in Code Listing 14. 

Code Listing 14: Viewing File Contents for a Hive Table 

root@hive:/hive-setup# hdfs dfs -ls /user/hive/warehouse/dual/ 

Found 1 items 

-rwxrwxr-x   1 root root          2 2016-01-26 07:00 
/user/hive/warehouse/dual/000000_0 

root@hive:/hive-setup# hdfs dfs -cat /user/hive/warehouse/dual/000000_0  
1 

The hdfs dfs -ls command tells us there is no one file in the directory for the dual table, 

called 000000_0, and that file’s contents make up one row with a single character, the '1' we 

inserted into the table. We can read the contents of the file because the default format is text, 
but Hive also supports other, more efficient file formats. 

File formats 

The create table command supports the stored as clause that specifies the physical file 

format for the data files. The clause is optional, and if you omit it as we did in Code Listing 14, 
Hive assumes the default stored as textfile. 

Hive has native support for other file types that are supported by other tools in the Hadoop 
ecosystem. Here are three of the most popular: 

 AVRO—schema-based binary format, interoperable across many platforms. 

 ORC—Optimized Row Columnar format, built for Hive as an efficient format. 

 PARQUET—a compressed columnar format, widely used in Hadoop. 

If you are creating new data with Hive, the ORC format is typically the optimal choice for storage 
size and access performance, but it is not widely supported by other Hadoop tools. If you want 
to use other tools to access the same data (such as Pig and Spark), Parquet and Avro are more 
commonly supported. 
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Columnar file formats have a more intelligent structure than flat text files, and they typically store 
data in blocks along with a lightweight index that Hive uses to locate the exact block it needs to 
read. Read operations don't need to scan the entire file, they need only to read the index and 
the block containing the data. 

Avro, ORC, and Parquet all provide compression by default. With large data sizes, the overhead 
in CPU time needed to compress and decompress data is usually negligible compared to the 
time saved in transferring smaller files across the network or blocks from disk into memory. 

 Note: You can change the file format of an existing table using alter table… 
set fileformat, but Hive does not automatically convert all the existing data. If you 
have data in a table and you change the file format in order to write more data, you 
will have multiple files in different formats—Hive won't be able to read from the table. 
If you want to change the format, you should use one of the ETL options described in 
Chapter 6  ETL with Hive. 

Simple data types 

One of Hive's most appealing features is its ability to apply structure to unstructured or 
semistructured Hadoop data. When you define a table in Hive, each column uses a specific data 
type. You need not worry about how the data is mapped with internal tables because Hive owns 
the storage and takes care of serializing and deserializing the data on disk. 

Hive provides all the basic data types used in typical databases, and it also includes some 
higher-value data types that allow you to more accurately model your data. For complex data 
types, Hive uses columns that can contain multiple values in different types of collections. We'll 
look at those in Chapter 4  External Tables Over HDFS within the context of mapping existing 
data. 

Number types 

With built-in functions for mathematical operations such as log, square root, and modulus, Hive 
offers richer support for numerical data than many relational databases. Hive can also implicitly 
convert between multiple integer and floating-point types (so long as you are converting from a 
smaller capacity to a larger one). 

In ascending order of capacity, here are the four integer types: 

 TINYINT—from -128 to +127, postfix with 'Y' in literals. 

 SMALLINT—from -32768 to +32767, postfix with 'S' in literals. 

 INT—from -2147483648 to +2147483647, no postfix needed. 

 BIGINT—from -9223372036854775808 to +9223372036854775807, postfix 'L'. 
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INT is the default integer type, but the +/-2Bn range will be limiting if you are storing sequences, 
counts, or UNIX timestamps (although Hive has a specific data type for that).  

If you exceed the capacity of an integer field, Hive doesn't produce a runtime error. Instead, it 
wraps the value (from positive to negative and vice versa), so be careful that your calculations 
aren't skewed by silently breaching column capacity. 

Code Listing 15 shows the result of breaching column capacity—in this case turning a positive 
TINYINT into a negative value and a negative SMALLINT into a positive value. 

Code Listing 15: Wrapping Numbers from Positive to Negative 

> select (127Y + 1Y), (-32759S - 10S); 
+-------+--------+--+ 

|  _c0  |  _c1   | 

+-------+--------+--+ 

| -128  | 32767  | 

+-------+--------+--+ 

Floating point types allow for greater precision and a larger range of numbers: 

 FLOAT—single precision, 4-byte capacity. 

 DOUBLE—double precision, 8-byte capacity. 

 DECIMAL—variable precision, 38-digit capacity. 

DECIMAL types default to a precision of 10 and a scale of zero, but they are typically defined 
with specific values—e.g., a five-digit field with two decimal places would be defined as 
DECIMAL (5,2) and could hold a maximum value of 999.99. 

With the DECIMAL type using zero scale, you can store larger integers than is possible with 
BIGINT. The postfix for integer numbers represented as a decimal is BD (the DECIMAL type is 
based on Java's BigDecimal type), and as Code Listing 16 shows, this allows you to work 
beyond the BIGINT limits. 

Code Listing 16: Representing Large Integers with BigDecimal 

> select (9223372036854775807L * 10), (9223372036854775807BD * 10); 

+------+-----------------------+--+ 

| _c0  |          _c1          | 

+------+-----------------------+--+ 

| -10  | 92233720368547758070  | 

+------+-----------------------+--+ 

Hive supports both scientific notation and standard notation for floating-point numbers, and it 
allows a mixture of them in the same rows and tables. 
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Hive will approximate to zero or infinity when you reach the minimum and maximum limits of the 
decimal types it can store. But those limits are at powers of approximately +/-308, which means 
you are unlikely to hit them. Code Listing 17 shows what happens if you do. 

Code Listing 17: Breaching Limits for Floating Point Numbers 

> select 1E308, 1E330, -1E-308, -1E-330; 

+----------+-----------+------------+-------+--+ 

|   _c0    |    _c1    |    _c2     |  _c3  | 

+----------+-----------+------------+-------+--+ 

| 1.0E308  | Infinity  | -1.0E-308  | -0.0  | 

+----------+-----------+------------+-------+--+ 

Character types 

The primary character type in Hive is STRING, which does not impose a maximum length and 
practically supports strings of any size. User Defined Functions over character types typically 
use strings, but there are choices of types available: 

 STRING—unlimited size, literals can be delimited with single or double quotes. 

 VARCHAR—specified maximum size, whitespace in input is preserved. 

 CHAR—fixed length, smaller input is padded with whitespace. 

You can compare strings in columns with different character types, but you must know whether 
or not whitespace will affect the comparison. STRING and VARCHAR types preserve 
whitespace, which means values with the same text content but that end with different numbers 
of spaces are not equal. CHAR fields are always padded to the set length with spaces, so that 
only the text is compared. 

Code Listing 18 creates a table with three character columns and inserts rows that include the 
same text in each field and with differing amounts of trailing whitespace. 
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Code Listing 18: Creating Tables with Character Fields 

> create table strings(a_string string, a_varchar varchar(10), a_char 
char(10)); 

No rows affected (0.192 seconds) 

> insert into strings(a_string, a_varchar, a_char) values('a', 'a', 'a'); 

No rows affected (1.812 seconds) 

> insert into strings(a_string, a_varchar, a_char) values('b        ', 'b     
', 'b'); 

No rows affected (1.381 seconds) 

Because the table is in the default file format, it is stored as text, and when we read the files we 
can see where the whitespace is being persisted, as in Code Listing 19 (where '#' represents 
the default separator \0001). 

Code Listing 19: Storage of Whitespace in Character Fields 

root@hive:/hive-setup# hdfs dfs -cat /user/hive/warehouse/strings/*               

a#a#a                 

b        #b     #b 

If we query that table to find rows with matching columns, we will receive only the first row 
because the fields in the second row have differences in the trailing whitespace. But if we use 
the trim() function to clear the whitespace for the comparison, both rows are returned—as in 

Code Listing 20. 
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Code Listing 20: Comparing Values in Character Fields 

> select * from strings where a_string = a_varchar and a_string = a_char; 

+-------------------+--------------------+-----------------+--+ 

| strings.a_string  | strings.a_varchar  | strings.a_char  | 

+-------------------+--------------------+-----------------+--+ 

| a                 | a                  | a               | 

+-------------------+--------------------+-----------------+--+ 

1 row selected (0.088 seconds) 

> select * from strings where trim(a_string) = trim(a_varchar) and 
trim(a_string) = a_char; 

+-------------------+--------------------+-----------------+--+ 

| strings.a_string  | strings.a_varchar  | strings.a_char  | 

+-------------------+--------------------+-----------------+--+ 

| a                 | a                  | a               | 

| b                 | b                  | b               | 

+-------------------+--------------------+-----------------+--+ 

2 rows selected (0.095 seconds) 

Date and time types 

Hive explicitly supports date and time data with types capable of storing high-precision 
timestamps or dates without a time component: 

 TIMESTAMP—UNIX-style timestamps, recording time elapsed since epoch. Precision 
can vary from seconds to nanoseconds. 

 DATE—a date with no time component.  

Both types support literal expressions as strings in the formats 'yyyy-MM-dd' (for dates) and 

'yyyy-MM-dd HH:mm:ss.fff' (for timestamps, with up to nine decimal places supporting 

nanosecond precision). 

If you have values recorded as integer UNIX timestamps, you can insert them into TIMESTAMP 
columns using the from_unixtime() function. Note that only second precision is supported 

here, and you cannot use functions in an insert … values statement, which means the syntax 

differs for string and integer timestamp insertion, as shown in Code Listing 21. 
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Code Listing 21: Converting Dates and Timestamps 

> create table datetimes(a_timestamp timestamp, a_date date); 

No rows affected (0.068 seconds) 

> insert into datetimes(a_timestamp, a_date) values('2016-01-27 
07:19:01.001', '2016-01-27'); 

... 

No rows affected (1.387 seconds) 

> from dual insert into table datetimes select from_unixtime(1453562878), 
'2016-01-23'; 

... 

No rows affected (1.296 seconds) 

Here we create a table with a timestamp and a date column, and we insert two rows with 
different levels of precision in the timestamp. The from dual is a trick that lets us use a select 

statement with functions as the source clause for an insert (we'll cover that more in Chapter 6  
ETL with Hive). 

Hive supports conversion between timestamps and dates, and the built-in date functions apply 
to both types of column. With timestamps, the time portion will be lost if you convert to date 
type, and with dates any time-based functions will return NULL. Code Listing 22 shows those 
conversions and some sample functions. 
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Code Listing 22: Working with Date Types 

> select a_timestamp, year(a_timestamp), a_date, year(a_date) from 
datetimes; 

+--------------------------+-------+-------------+-------+--+ 

|       a_timestamp        |  _c1  |   a_date    |  _c3  | 

+--------------------------+-------+-------------+-------+--+ 

| 2016-01-27 07:19:01.001  | 2016  | 2016-01-27  | 2016  | 

| 2016-01-23 15:27:58.0    | 2016  | 2016-01-23  | 2016  | 

+--------------------------+-------+-------------+-------+--+ 

2 rows selected (0.067 seconds) 

> select a_timestamp, hour(a_timestamp), a_date, hour(a_date) from 
datetimes; 

+--------------------------+-------+-------------+-------+--+ 

|       a_timestamp        |  _c1  |   a_date    |  _c3  | 

+--------------------------+-------+-------------+-------+--+ 

| 2016-01-27 07:19:01.001  | 7     | 2016-01-27  | NULL  | 

| 2016-01-23 15:27:58.0    | 15    | 2016-01-23  | NULL  | 

+--------------------------+-------+-------------+-------+--+ 

2 rows selected (0.073 seconds) 

> select cast(a_timestamp as date), cast(a_date as timestamp) from 
datetimes; 

+--------------+------------------------+--+ 

| a_timestamp  |         a_date         | 

+--------------+------------------------+--+ 

| 2016-01-27   | 2016-01-27 00:00:00.0  | 

| 2016-01-23   | 2016-01-23 00:00:00.0  | 

+--------------+------------------------+--+ 

2 rows selected (0.067 seconds) 

Other types 

There are two other simple types in Hive: 

 BOOLEAN—for true/false values. 

 BINARY—for arbitrary byte arrays, which Hive does not interpret. 
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Boolean values are represented with the literals true and false; you can cast other types as 

boolean, but you might not get the expected result. Unlike with other languages, in Hive false 

is represented as the literal false or as the numeric value 0—any other value (such as number 

1 or -1; or string 'true' or 'false') represents true. 

Binary values can be used to store any array of bytes, but the data type does not behave like 
the blob data type in SQL databases. Binary column values in Hive are stored in-line in the data 
file with the rest of the row, rather than as a pointer to a blob. Because Hive doesn’t interact with 
binary data, binary values are not widely used. 

Summary 

In this chapter we've looked at using internal tables with Hive. The underlying data for internal 
tables is stored as files in HDFS, which means Hive gets all the reliability and scalability of 
Hadoop for free. By using internal tables, Hive controls reading and writing at the file level, so 
that the full feature set of Hive is available. 

We also looked at the different file formats Hive provides, with text files as the default and more 
efficient columnar formats, such as ORC and Parquet, also natively supported. The format you 
choose when using internal tables will depend on whether or not any other systems need to 
access the raw data. If not, Hive's ORC format is a good choice; otherwise Parquet and Avro 
are well supported in Hadoop. Flat files can be supported by many options. 

Lastly, we looked at all the simple data types available in Hive, noting that these are equally 
suitable to internal and external tables (provided they can be correctly mapped from the source 
data). In the next chapters we'll look at using external tables instead, and we’ll see how to use 
Hive with existing HDFS files and with HBase tables. 
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Chapter 4  External Tables Over HDFS 

Why use Hive with HDFS? 

Hive allows us to write queries as though we’re accessing a consistent, structured data store by 
applying a fixed schema over a variety of formats in HDFS. HiveQL presents a familiar, simple 
entry point that lets users run complex queries without having to understand Java or the 
map/reduce API. 

With Hive, we can apply a rich model to data that will simplify querying as users work with 
higher-level constructs such as tables and views, again without needing to understand the 
properties in the underlying data files. 

Hive has native support for all the major file formats in Big Data problems—CSV, TSV, and 
JSON (together with more exotic formats such as ORC and Parquet). As with other tools in the 
Hadoop ecosystem, Hive also uses native support for compression, so that if raw data is 
compressed with GZip, BZip2, or Snappy, Hive can access it without customization. 

And because the Hive table and view descriptions are essentially in standard SQL, Hive 
metadata acts as living documentation over Hadoop files, with the mappings clearly defining the 
expected content of the data. 

Defining external tables over HDFS files 

When you use HDFS as the backing store for a Hive table, you actually map the table to a folder 
in HDFS. So if you are appending event-driven data to files using a time-base structure, as in 
Figure 5, you define the Hive table at the root folder in the structure. 
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Figure 5: Mapping HDFS Folders in Hive 

In this case, the server_logs table can be defined using the /server/logs folder as the root 

location, with all the files under all the nested folders readily available when we query the table. 
The Hive table definition specifies only the root folder location, and Hive will not list out the files 
and construct map jobs to read them until you submit a query. 

The server-logs table is already configured in the hive-succinctly Docker image. The files 

are in the data directory in the HDFS file system root, and they are stored in CSV format. Code 

Listing 23 shows some sample rows from one file using the hdfs dfs -cat command. 
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Code Listing 23: Sample Lines from HDFS Files 

root@hive:/# hdfs dfs -cat /server-logs/server-logs_SCSVR1.csv | head -n 

SCSVR1,1439546226,W,9c1224a9-294b-40a3-afbb-d7ef99c9b1f49c1224a9-294b-40a3-

afbb-d7ef99c9b1f4  

SCSVR1,1427072670,E,99eb03d9-110a-4923-b58e-971656c2046299eb03d9-110a-4923-

b58e-971656c20462 

SCSVR1,1448727463,D,44610125-4bdb-4046-b363-aa7a0cd28bde44610125-4bdb-4046-

b363-aa7a0cd28bde 

The server log files have one line for each log entry, and entries have the same fields in the 
following order: 

 Timestamp—UNIX timestamp of the log entry. 

 Hostname—name of the server writing the log. 

 Level—log level, using the standard Apache log4* levels (e.g., D=debug, W=warn, 
E=error). 

 Message—log message. 

To map that data in Hive, we need to use the create external table statement, which 

specifies the field mappings, data format, and location of the files. Code Listing 24 shows one 
valid statement for creating the table. 

Code Listing 24: Mapping HDFS Files as an External Table  

create external table server_logs  

(serverid string, loggedat bigint, loglevel string, message string) 

 row format delimited 

 fields terminated by ',' 

 stored as textfile 

 location '/server-logs'; 

Columns are defined using positional mapping, so that the first column in the table will be 
mapped to the first field in each row, and the last column will be mapped to the last field. We’re 
using some of the simple data types we’ve already seen—BIGINT and STRING—and we’ll work 
with more complex data types later in this chapter. 

File formats 

The same file formats available for internal tables can also be used for external tables. The file 
structure for columnar formats such as ORC and Avro is well known—you shouldn't need to 
customize the table in Hive unless you are specifying stored as ORC or Avro. 
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However, text files might have any structure, and the Hive default of delimiting rows with the 
newline character and fields with \001 is not always suitable. The create external table 

statement supports clauses that tell Hive how to deserialize the data it gets from HDFS into 
rows and columns. 

Code Listing 25 shows how to map a file with an unusual format. This is for use with data in text 
files in which the rows are delimited by the new-line character, fields are delimited with vertical 
tab (ASCII character 011), and special characters are escaped with the tilde. 

Code Listing 25: Specifying Delimiters for External Tables 

create external table server_metrics 

(serverId string, recordedAt timestamp, cpuPc decimal(3,1),  

 memoryPc decimal(3,1), storagePc decimal(3,1)) 

row format delimited 

fields terminated by '\011' 

escaped by '~' 

lines terminated by '\n' 

stored as textfile 

location '/server-metrics'; 

Hive will take this unusual format and map it into usable rows and columns. Code Listing 26 
shows the first line of the raw data in HDFS, followed by the same data mapped as a row in 
Hive. 

Code Listing 26: Mapping Unusual File Formats 

root@hive:/hive-setup# hdfs dfs -cat /server-metrics/server_metrics.txt | 
head -n 1                                              

SCSVR1~ LON 2016-01-28 18:05:01 32.6 64.1 12.2 

> select * from server_metrics limit 1; 
+--------------------------+----------------------------+--------------------

| server_metrics.serverid  | server_metrics.recordedat  | 

server_metrics.cpupc  | server_metrics.memorypc  | server_metrics.storagepc  

| 

+--------------------------+----------------------------+------------------- 

| SCSVR1 LON               | 2016-01-28 18:05:01.0      | 32.6                  

| 64.1                     | 12.2                      | 

+--------------------------+----------------------------+-------------------- 

Here are the clauses used to define the structure of an external HDFS source: 

 ROW FORMAT—either 'DELIMITED' for flat files or 'SERDE' for complex formats with a 
custom serializer/deserializer (as with JSON, which we’ll see later in this chapter). 
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 LINES TERMINATED BY—the delimiter between lines of data, mapped to rows in the 
Hive table. Currently only the new-line ('\n') character is allowed. 

 FIELDS TERMINATED BY—the delimiter between fields of data, mapped to columns in 
Hive rows. 

 ESCAPED BY—the character used to escape the field delimiter, e.g., if your file is a 
CSV you can escape commas inside fields with a backslash so that '\,' means a comma 
in a string field, not the start of a new field. 

All clauses except ROW FORMAT take a single character, and you can use backslash notation 
with ASCII values for nonprintable characters, e.g., '\011' for vertical tab. The same clauses 

are available for internal files stored as text files, which can be useful if you want Hive to own 
the data, but you will need a custom format that you can use with other tools. 

Mapping bad data 

When you run a create external table statement, no data validation occurs when the 

statement runs. Hive will create the HDFS folder if it doesn't exist, but if the folder does exist 
Hive won’t check for any files there or to see if the file content has the expected number of 
fields. The mappings are performed at runtime when you query the table. 

Within each row, Hive attempts to map HDFS data at the field level. If a row is missing a field, 
the column mapped from that field will be returned as null for that row. If a row has a field 
containing data that Hive can’t convert to the specified column type, that column will be returned 
as null for the row. 

In the hive-succinctly Docker image, the table server-logs is already created, and there 

are several files in the location folder. Most of the data files have valid data, matching the 
external table definition, so that Hive can load all columns in all rows for those files. 

One file in the location is not in the correct format—the message field is missing. Also note that 
the timestamp and server name fields are in the wrong order. Hive will still attempt to read data 
from that file, but, as Code Listing 27 shows, some of the mappings will fail. 
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Code Listing 27: Mapping Bad Data 

> select * from server_logs; 
+-----------------------+-----------------------+-----------------------+--- 

| server_logs.serverid  | server_logs.loggedat  | server_logs.loglevel  | 

server_logs.message  | 

+-----------------------+-----------------------+-----------------------+--- 

| 1453562878000         | NULL                  | W                     | 

NULL                 | 

| 1453562879000         | NULL                  | F                     | 

NULL                 | 

Because Hive can convert a numeric value into a string, the serverId column is returned, but 

the loggedAt timestamp is NULL—Hive can't convert the string data into long values. And 

because Hive continues processing the row even when it finds an error, the logLevel fields are 

mapped, but the message column (which is missing in the CSV file) is NULL. 

If the source is incorrectly formated, for example if a location is mapped as ORC in Hive but the 
data is actually in text files, Hive cannot read the data and returns an error, as shown in Code 
Listing 28. 

Code Listing 28: Mapping the Wrong File Type 

> select * from server_logs_orc; 
 
Error: java.io.IOException: java.io.IOException: Malformed ORC file 
file:/server-logs/server_logs_bad.csv. Invalid postscript. (state=,code=0) 

 Tip: This can happen if you try to change the file format of a table that exists in 
Hive—the expected format gets changed in the metastore, but the existing files aren’t 
converted. You can recover the data by reverting back to the original format. 

Complex data types 

In addition to primitive data types (such as INT, STRING, and DATE, as seen in Chapter 3  
Internal Hive Tables), Hive supports three complex data types that can be used to represent 
collections of data: 

 ARRAY—an ordered collection in which all elements have the same data type. 

 MAP—an unordered collection of key-value pairs. Keys must all have the same data 
type—a primitive type—and values must have the same data type = which can be any 
type. 

 STRUCT—a collection of elements with a fixed structure applied. 
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When collection types are mapped from HDFS files, the mappings in the create external 
table statement must specify the delimiters for the elements of the collection. Code Listing 29 

shows the contents of a CSV file containing server details. 

Code Listing 29: Server Details CSV 

root@hive:/# hdfs dfs -cat /servers/servers.csv 

SCSVR1,192.168.2.1:192.168.2.2,8:32:1500,country=gbr:dc=london 

SCSVR2,192.168.20.1:192.168.20.2,4:16:500,country=gbr:dc=london 

SCSVR3,192.168.100.3:192.168.100.4,16:32:500,country=roi:dc=dublin 

In this file, fields are separated by commas, but after the first field each contains collections. 
Field 2 contains the server’s IP addresses separated by colons. Field 3 contains hardware 
details, again separated by colons. Field 4 contains the server’s location as key-value pairs.  

We can map these to the relevant collection types in Hive using an array for the IP addresses, a 
struct for the hardware, and a map for the location. Code Listing 30 shows how to specify those 
mappings when we create the table. 

Code Listing 30: Mapping Collection Columns 

create external table servers 

 (name string, ipAddresses array<string>,  

  hardware struct<cores:int, ram:int, disk:int>,  

  site map<string, string>) 

row format delimited 

fields terminated by ',' 

collection items terminated by ':' 

map keys terminated by '=' 

lines terminated by '\n' 

stored as textfile 

location '/servers'; 

We specify three clauses for Hive in order to identify the delimiters in collections: 

 FIELDS TERMINATED BY—the field separator, comma in this case. 

 COLLECTION ITEMS TERMINATED BY—separator for collection elements, colon in 
this case. 

 MAP KEYS TERMINATED BY—the separator for key-value pairs, equal sign in this 
case. 

Code Listing 31 shows how Hive represents collection columns when we fetch rows. 
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Code Listing 31: Reading Rows with Collection Columns 

> select * from servers limit 2; 
+---------------+----------------------------------+------------------------- 

| servers.name  |       servers.ipaddresses        |         servers.hardware          

|           servers.site           | 

+---------------+----------------------------------+------------------------- 

| SCSVR1        | ["192.168.2.1","192.168.2.2"]    | 

{"cores":8,"ram":32,"disk":1500}  | {"country":"gbr","dc":"london"}  | 

| SCSVR2        | ["192.168.20.1","192.168.20.2"]  | 

{"cores":4,"ram":16,"disk":500}   | {"country":"gbr","dc":"london"}  | 

+---------------+----------------------------------+------------------------- 

 Note: The terminated by clauses are specified once and apply to the entire table, 
which means your delimiter fields must be consistent in the source file. If your source 
has multiple complex types, they all must use the same delimiters—you can’t have 
arrays delimited by semicolons and structs delimited by underscores in the same 
table. 

Mapping JSON files 

Hive uses a pluggable serializer/deserializer framework (called “SerDe”) to read and write text 
files. For all the native data types, the SerDe that Hive should use will be implicitly specified with 
the stored as clause. With custom data types, you can provide your own SerDe and configure 

it in the create table statement. 

Several open source SerDe components can provide JSON file support in Hive, and one of the 
best, which allows reading and writing JSON, comes from Roberto Congiu on GitHub. You can 
download the latest Java Archive (JAR) file from Roberto’s website. 

You will need to register the JAR file with Hive in order to use the custom SerDe, and you must 
map from the JSON format, typically representing JSON objects as nested structs. Code Listing 
32 shows the steps. 

https://github.com/rcongiu/Hive-JSON-Serde
http://www.congiu.net/hive-json-serde
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Code Listing 32: Creating a Table Using JSON SerDe 

> add jar /tmp/json-serde-1.3.7-jar-with-dependencies.jar; 

INFO  : Added [/tmp/json-serde-1.3.7-jar-with-dependencies.jar] to class 
path 

INFO  : Added resources: [/tmp/json-serde-1.3.7-jar-with-dependencies.jar] 

> create external table devices 

> (device struct<deviceClass:string, codeName:string,  

> firmwareVersions: array<string>, cpu:struct<speed:int, cores:int>>) 

> row format serde 'org.openx.data.jsonserde.JsonSerDe' 

> location '/devices'; 

The row format clause specifies the class name of the SerDe implementation 

(org.openx.data.jsonserde.JsonSerDe), and, as usual, the location clause specifies the 

root folder. 

You can map the source JSON data in different ways with the complex data types available in 
Hive, which allows you to choose the most appropriate format for accessing the data. A sample 
JSON object for my devices table is shown in Code Listing 33. 

Code Listing 33: Sample JSON Source Data 

{ 
 "device": { 

  "deviceClass": "tablet", 

  "codeName": "jericho", 

  "firmwareVersions": ["1.0.0", "1.0.1"], 

  "cpu": { 

   "speed": 900, 

   "cores": 2 

  } 

 } 
} 

Properties from the root-level JSON object can be deserialized directly into primitive columns, 
and simple collections deserialized into arrays. You can also choose to deserialize objects into 
maps, so that each property is presented as a key-value pair or as a struct in which each value 
is a named part of a known structure. 

How you map the columns depends on how the data will be used. In this example, I use nested 
structs for the device and cpu objects, and I use an array for the firmwareVersions property. 

We can fetch entire JSON objects from Hive, or we can query on properties—as in Code Listing 
34. 
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Code Listing 34: Querying the JSON 

> select * from devices; 

+--------------------------------------------------------------------------

| 

{"deviceclass":"tablet","codename":"jericho","firmwareversions":["1.0.0","1

.0.1"],"cpu":{"speed":900,"cores":2}}  | 

| 

{"deviceclass":"phone","codename":"discus","firmwareversions":["1.4.1","1.5

.2"],"cpu":{"speed":1300,"cores":4}}   | 

+-------------------------------------------------------------------------- 

> select * from devices where device.cpu.speed > 1000; 

+-------------------------------------------------------------------------- 

| 

{"deviceclass":"phone","codename":"discus","firmwareversions":["1.4.1","1.5

.2"],"cpu":{"speed":1300,"cores":4}}  | 

+-------------------------------------------------------------------------- 

 Note: For files with a custom SerDe, the stored as and terminated by clauses 
are not needed, because the SerDe will expect a known format. In this case, the JSON 
SerDe expects text files with one JSON object per line, which is a common Hadoop 
format. 

Summary 

Presenting an SQL-like interface over unstructured data in HDFS is one of the key features of 
Hive. In this chapter we’ve seen how we can define an external table in Hive, where the 
underlying data exists in a folder in HDFS. That folder can contain terabytes of data split across 
thousands of files, and the batch nature of Hive will allow you to query them all. 

Hive supports a variety of file formats, including standard text files and more efficient columnar 
file types such as Parquet and ORC. When we define an external table, we specify how the 
rows and columns are mapped, and at runtime Hive uses the relevant deserializer to read the 
data. Custom serialization is supported with a plug-in SerDe framework. 

Tables defined in Hive have a fixed schema with known columns of fixed data types. The usual 
primitive data types we might find in a relational database are supported, but Hive also provides 
collection data types. Columns in Hive can contain arrays, structs, or maps, which allows us to 
surface complex data in Hive and query it using typical SQL syntax. 
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The separation between table structure and the underlying storage handler that reads and 
writes data means that Hive queries look the same whether they run over internal Hive tables or 
external HDFS files. In the next chapter we’ll cover another option for external tables with Hive’s 
support for HBase.  
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Chapter 5  External Tables Over HBase 

Why use Hive with HBase? 

HBase is a Big Data storage technology that provides real-time access to huge quantities of 
data. We won’t go into much HBase detail here, but Syncfusion has it covered with another free 
eBook in their Succinctly series—HBase Succinctly (also written by me). 

The architecture of HBase allows you to quickly read cells from specific rows and columns, but 
its semistructured nature means the data in the cells can sometimes be difficult to work with. By 
mapping HBase tables as Hive tables, you get all the benefits of a fixed structure, which you 
can query with HiveQL, along with all the speed benefits of HBase. 

In HBase, data is stored as rows inside tables. All rows have a row key as unique identifier, and 
all tables have one or more column families specified. Column families are dynamic structures 
that can contain different columns for different rows in the same table.  

Hive allows you to create a table based on HBase that will expose specific columns within a 
column family or expose whole column families as a MAP column represented as key-value 
pairs. As with HDFS, Hive doesn’t import any data from HBase, so that when you query an 
HBase table with Hive, it will be executed as a map/reduce job, and it will execute tasks using 
the HBase Java API. 

Combining HBase and Hive offers major advantages over using HBase alone. HBase doesn't 
provide indexes—you will need to query tables by their row key, which can be a slow process. 
Using Hive, however, you can create an index over any column in an HBase table, which means 
you can efficiently query HBase on fields other than the row key. 

Defining external tables over HBase tables 

In Hive, tables using HBase as storage are defined as external tables, and they use the same 
command syntax as HDFS-stored tables. There’s no need to specify a data format or SerDe 
with HBase, because Hive uses the HBase API to access data and the internal data format 
need not be known. 

HBase tables must be declared using a specific storage engine in the stored by clause that 

includes properties to identify the HBase table name. Code Listing 35 shows a create table 

statement for accessing data in the HBase table called device-events. 
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Code Listing 35: Mapping an HBase Table in Hive 

CREATE EXTERNAL TABLE device_events(rowkey STRING, data STRING) 

STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' 

WITH SERDEPROPERTIES ('hbase.columns.mapping' = ':key,cf1:data') 

TBLPROPERTIES ('hbase.table.name' = 'device-events'); 

We are only mapping the row key from the HBase table with this simple statement, along with 
one column from one column family. The :key column is provided for all HBase tables by the 

storage handler, and cf1:data indicates the data column in the cf1 column family (this is 

specific to my table).  

For external HBase tables, here are the clauses you need to specify: 

 STORED BY—this will be the fixed value 
org.apache.hadoop.hive.hbase.HBaseStorageHandler for all HBase tables. The 

storage handler is part of the Hive release, but you will need to make additional HBase 
libraries available to Hive (as we’ll see later in this chapter). 

 WITH SERDEPROPERTIES—the source columns from HBase are specified in the 
hbase.columns.mapping property. They are positional, so that the first column in the 

table definition is mapped to the first column in the property list.  

 TBLPROPERTIES—as a minimum, provide the source table name in the 
hbase.table.name property. You can also provide a schema name. 

HBase stores all data as byte arrays, and it is the client’s responsibility—in this case, the Hive 
storage handler’s responsibility—to decode the arrays into the relevant format. When you 
declare data types for columns in Hive, you must be sure the encoded byte array in HBase can 
be decoded to the type you specify. If Hive cannot decode the data, it will return NULLs. 

Mapping columns and column families 

In order to minimize storage and maximize access performance, tables in HBase typically 
include just one or two column families with very short names. With Hive we can map individual 
columns within column families as primitive data types or map the entire column family as a 
MAP. 

I use two column families in my device-events table in HBase—e for the event data and m for 

the metadata properties. If I want to expose that table through Hive, with specific event columns 
and all the metadata columns, I can use the with serdeproperties clause, as shown in 

Code Listing 36. 
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Code Listing 36: Mapping Specific HBase Columns 

CREATE EXTERNAL TABLE device_events(rowkey STRING, eventName STRING, 
receivedAt STRING, payload STRING, metadata MAP<string, string>) 

STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' 

WITH SERDEPROPERTIES ('hbase.columns.mapping' = ':key,e:n,e:t,e:p,m:') 

TBLPROPERTIES ('hbase.table.name' = 'device-events'); 

Column mappings are supplied as a comma-separated string in which specific columns are 
named using the {column family}:{column name} syntax, and whole families are named 

using the {column family}: syntax.  

Table 1 shows the HBase source for each of the Hive columns. 

Table 1: Table Structure in HBase 

Hive Column HBase Column 
Family 

HBase Column Notes 

rowkey - - Built-in :key property 

eventName e n  

timestamp e t  

payload e p  

metadata m - Whole family 

With this mapping, we can read HBase data in Hive in a more structured format, and we can 
use higher-level HiveQL functionality to derive useful information from the data. 

Code Listing 37 shows how the raw data looks in HBase while using the HBase Shell to read all 
the cells with row key rk1 in the table device-events. 
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Code Listing 37: Reading Data in HBase 

hbase(main):011:0> get 'device-events', 'rk1' 

COLUMN                             CELL                                                                                              

 e:n                               timestamp=1453966450613, value=power.on                                                           

 e:p                               timestamp=1453966518206, 

value={"some":"json"}                                                    

 e:t                               timestamp=1453966495748, 

value=1453562878                                                         

 m:d                               timestamp=1453966537534, value=device-id                                                          

 m:u                               timestamp=1453966556996, value=elton                                                              

 m:v                               timestamp=1453966547593, value=1.0.0                                                              

Note that the timestamps shown are internal fields in which HBase records the last modification 
time of the cell value. The cell values are all stored as strings, which simplifies interop between 
HBase and other tools. 

Code Listing 38 shows that same row fetched through Hive. 

Code Listing 38: Reading HBase Data in Hive 

> select * from device_events where rowkey='rk1'; 

+-----------------------+--------------------------+----------------------- 

| device_events.rowkey  | device_events.eventname  | 

device_events.receivedat  | device_events.payload  |           

device_events.metadata           | 

+-----------------------+--------------------------+----------------------- 

| rk1                   | power.on                 | 1453562878                

| {"some":"json"}        | {"d":"device-id","u":"elton","v":"1.0.0"}  | 

+-----------------------+--------------------------+----------------------- 

Code Listing 39 depicts how we can use basic HiveQL to make more sense of the data—in this 
case showing the UNIX timestamp in the receivedAt field as a date and extracting the user 

name from the metadata map. 
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Code Listing 39: Formatting HBase Data in Hive 

> select eventname, from_unixtime(cast(receivedat as int)), payload, 
metadata['u'] from device_events where rowkey='rk1'; 

+------------+----------------------+------------------+--------+--+ 

| eventname  |         _c1          |     payload      |  _c3   | 

+------------+----------------------+------------------+--------+--+ 

| power.on   | 2016-01-23 15:27:58  | {"some":"json"}  | elton  | 

+------------+----------------------+------------------+--------+--+ 

Converting data types 

Because HBase stores all data as byte arrays, conversion issues between systems can arise if 
you use HBase in a multiplatform environment. In those scenarios it’s common to sacrifice some 
storage performance in order to support interoperable data and store all HBase data as 
standard UTF-8 encoded strings. 

We’ll see more HiveQL syntax in Chapter 9  Querying with HiveQL, but here it is useful to know 
that the cast function converts between primitive data types and that we can include data 

conversion in a view in order to give more logical access to HBase data. 

Direct access to rows always comes via the row key in HBase, and the keys are often cryptic 
combinations of multiple values. We can use string functions from HiveQL to split the row key 
into component parts, surfacing them as typed columns in a view and making the data much 
more readable. 

Code Listing 40 shows a sample cell from a row in our HBase table where all values are being 
stored as encoded strings. 

Code Listing 40: Fetching One Cell in HBase 

hbase(main):002:0> get 'device-events', 'uuid|20160128', 'e:n' 

COLUMN                             CELL                                                                                              

 e:n                               timestamp=1454002528064, value=power.off                                                          

The row key is constructed from a device ID (which would be a real UUID in the actual 
database) and a date period separated by the pipe character. A common issue in HBase is that 
the row key design must support the primary data access vector (in this case the device ID), 
and if you want to query by a secondary vector (the date period), you must enact a full table 
scan. 

Code Listing 41 shows how to create a view over the Hive table that will, by splitting the row key 
into two parts, expose the HBase data in a more useful way. 
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Code Listing 41: Splitting HBase Row Keys with Hive Views 

CREATE VIEW device_events_period(rowkey, deviceId, period, eventname, 
receivedat) AS 

SELECT rowkey, split(rowkey, '\\|')[0], split(ROWKEY, '\\|')[1], eventname, 
receivedat FROM device_events; 

 Tip: In this example, the view maintains the full row key as a separate column. 
That’s a good practice because your results contain the row key that you can use to 
query HBase directly if you want to read the source data. 

Now we can search for rows in a given period with a clear and logical HiveQL statement, as in 
Code Listing 42. 

Code Listing 42: Querying HBase by Partial Row Key 

1: jdbc:hive2://127.0.0.1:10000> select * from device_events_period where 
substr(period, 1, 6) = '201601'; 

+------------------------------+--------------------------------+---------- 

| device_events_period.rowkey  | device_events_period.deviceid  | 

device_events_period.period  | device_events_period.eventname  | 

device_events_period.receivedat  | 

+------------------------------+--------------------------------+---------- 

| uuid|20160128                | uuid                           | 20160128                     

| power.off                       | 1453564612                       | 

+------------------------------+--------------------------------+---------- 

Here we use the substr function to compare the first six characters of the string field with the 

literal '201601,' so we return rows in which the date comes in January 2016. That simple query 
will read a subset of the HBase data by matching a portion in the middle of the row key—
something you cannot do with HBase alone. 

Hive’s inability to create indexes over views, which would let us create a secondary index for 
HBase tables by using the parts of the row key, is a feature currently missing from the 
component. We also can’t include functions in the create index statement; if we want a 

secondary index over the parts of the row key, we'll need an ETL process (which we'll see in 
Chapter 6  ETL with Hive). 

Bad and missing data 

Because column families are dynamic in HBase, the mappings we define in Hive might not 
apply to every row. In fact, rows might have no cells for specific columns we expect to find, or 
the data in mapped cells might not be in the expected format. 
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Hive takes the same optimistic approach for HBase that it takes with other sources. When rows 
do not contain the expected data, it will map any columns that are correct, and return NULL for 
any columns that it cannot map. Even if the majority of columns can’t be mapped, Hive will 
return a row with a majority of NULLs rather than no row at all. 

Table 2 shows two rows in the HBase table that were mapped in Code Listing 36 and that don’t 
conform to the expected Hive structure. 

Table 2: Unexpected Data in HBase 

Row Row Key Event Name 
(e:n) 

Valid in HBase Valid in Hive 

1 uuid3|20160128 - Yes Yes 

2 uuid2 power.off Yes No 

The first row includes the row key in the valid format but no data in the eventName (e:n) 

column. The second row has data in the eventName column but an unexpected row key format. 

Both are valid in HBase, which doesn’t require rows to have columns or to adhere to an explicit 
row key format. 

Hive does what it can with that data. If we explicitly map a column that doesn’t exist, Hive won’t 
include any rows in the response that do not have that column. However, if we exclude that 
column from the query, the rows with missing values do get returned, as we see in Code Listing 
43, in which the rowkey for uuid3 is seen in the first set of results, but not the second. 
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Code Listing 43: Querying Unexpected HBase Data in Hive 

> select rowkey, payload from device_events; 

+-----------------+-------------------+--+ 

|     rowkey      |      payload      | 

+-----------------+-------------------+--+ 

| uuid2           | {"other":"json"}  | 

| uuid3|20160128  | {"more":"json"}   | 

| uuid|20160128   | {"other":"json"}  | 

+-----------------+-------------------+--+ 

3 rows selected (0.32 seconds) 

> select rowkey, eventname from device_events; 

+----------------+------------+--+ 

|     rowkey     | eventname  | 

+----------------+------------+--+ 

| uuid2          | power.off  | 

| uuid|20160128  | power.off  | 

+----------------+------------+--+ 

Swallowing exceptions means Hive might not return all the data in the source, but it also means 
that long-running queries won’t be broken by bad data.  

Connecting Hive to HBase 

Hive can run on an HBase cluster or on a separate Hadoop cluster configured to talk to HBase. 
Most people choose an option depending upon usage needs—if you share hardware, you'll be 
competing for resources. 

If you'll be running Hive loads at the same time as heavy HBase usage, separate clusters is the 
way to go. But if your Hive queries are overnight jobs and HBase is used during the day, sharing 
a cluster works fine. 

Hive comes packaged with the HBase storage handler, and, provided all the HBase libraries are 
available, you need only to configure Hive with the address of the HBase Zookeeper quorum.  

When you query HBase data from Hive, the Hive compiler defers to the HBase storage handler 
in order to generate the data access jobs. In this case, Hive will generate Java code to query 
HBase using the native Java API, and it will use the configured Zookeeper quorum to find the 
address of the HMaster and HRegion nodes. 

HBase is designed for real-time access, and queries are typically executed very quickly. For 
optimum performance, your tables should be structured so that the storage handler can query 
HBase by scanning a subset of rows rather than the entire table (that’s something we don’t have 
space for here, but if you’re interested, the area to research is “filter push-down”). 
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Configuring Hive to connect to HBase 

HBase uses ZooKeeper for configuration and notifications, including sending and listening for 
heartbeats to determine which servers are active. ZooKeeper contains connection details for the 
servers in the HBase cluster, which means that, provided Hive can reach ZooKeeper, it can get 
all the other information it needs. 

Code Listing 44 shows a snippet from hive-site.xml that contains the HBase ZooKeeper 

quorum addresses—typically multiple servers (here named zk1 to zk3), and they should all be 

accessible to Hive via DNS or using fully qualified domain names. 

Code Listing 44: Configuring the HBase Zookeeper Address 

<property> 

 <name>hbase.zookeeper.quorum</name> 

 <value>zk1,zk2,zk3</value> 

</property> 

Hive ships with the HBase storage handler and the Zookeeper library, but you will need to add 
the correct dependencies for your version of HBase (which you can discover from your running 
HBase server) and make them available in HDFS. 

Hive uses the HBase libraries at two points in the runtime—on the server when a query is 
compiled, in order to build the map/reduce job, and also on each data node in the cluster when 
the job runs. Hive supports shipping dependencies to data nodes by making the libraries 
available in HDFS and listing all the dependencies in config. Code Listing 45 shows a sample of 
the HBase libraries configured in the hive-succinctly Docker image. 

Code Listing 45: Specifying Auxiliary Libraries 

<property> 

 <name>hive.aux.jars.path</name> 

 <value>hdfs://localhost:9000/hive/auxlib/hbase-server-

1.1.2.jar,hdfs://localhost:9000/hive/auxlib/protobuf-java-2.5.0.jar, 

      ...</value> 

</property> 

 Tip: You can get the correct list of HBase dependencies by logging onto the HBase 
Master node and running the command line hbase mapredcp | tr ':' '\n'. You can 
download the HBase tarball, extract the files in the list, put them into HDFS, and add 
them to the hive-site.xml config. 

Hive, HBase and Docker Compose 

In order to try out connecting Hive to a remote HBase server, we can use two Docker containers 
and configure them using Docker Compose, which is an extension to Docker used for specifying 
groups of containers that run together as a logical unit. 
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The easiest way to accomplish that is to use my hbase-succinctly and hive-succinctly 

images on the Docker Hub, which you can connect together using the Docker Compose YAML 
file on my GitHub repository with the code for this course. 

Docker Compose uses a very simple syntax in the YAML file. The HBase container exposes all 
the ports Hive needs and is given the hostname hbase. The Hive container is linked to the 

HBase container so that it can access the exposed ports (which aren’t publically exposed and 
therefore aren’t available outside Docker containers). And the Hive container will have an entry 
for hbase in its HOSTS file, so that it can connect to the HBase container by host name. 

In the hive-succinctly container image, the configuration contains the HBase Zookeeper 

quorum address (set to hbase), and the Hive library folder (/hive/auxlib) will already have all 

the additional libraries needed to talk to HBase, which means you won't need to configure 
anything yourself. 

You will need to install Docker Compose as well as Docker, then download docker-
compose.yml and navigate to the directory where you saved it. Code Listing 46 shows how to 

control the lifecycle of the containers through Docker Compose. 

Code Listing 46: Starting and Stopping Containers 

docker-compose up -d 

docker-compose stop 

docker-compose start 

docker-compose kill 

docker-compose rm 

Here are the definitions of Code Listing 46’s key terms: 

 Up—get the latest images, then create, configure and start containers. 

 Stop—stop the containers running, but leave them in-place with their state saved. 

 Start—start (or restart) the saved containers. 

 Kill—stop the containers and destroy their state. 

 Rm—remove the containers. 

Both containers are already set up with the sample data, tables, and views from this chapter, so 
that you can connect to the Hive container, run Beeline, and begin querying data that lives in the 
HBase container, which will be running in the background. 

https://github.com/sixeyed/hive-succinctly/blob/master/docker/docker-compose.yml
https://github.com/sixeyed/hive-succinctly/blob/master/docker/docker-compose.yml
https://docs.docker.com/compose/install/
https://docs.docker.com/engine/installation/
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 Tip: Both those containers use HDFS in pseudo-distributed mode, so that when 
you first run them they will take a few minutes to be ready. If you then use docker-
compose stop when you’re done, they’ll be ready straight away when you next run 
docker-compose start. 

When you run HBase queries in Hive, the compiler builds a job that uses the HBase API, then 
Hive fetches the data from the HBase server(s) and maps it to the table format. HBase owns 
reading (and writing) the data, and Hive owns query preparation and data translation. 

Summary 

Hive works well with HBase, taking advantage of real-time data access for fast querying and 
adding structured layers on top of the semistructured data in HBase.  

The nature of HBase storage means that column and family names are typically very short (one 
character is common) in order to minimize disk usage. At the same time, row keys are often 
cryptic structures with multiple data items concatenated. Hive can expose that data in 
structured, typed columns, adding a layer of meaning and making queries easier to 
comprehend. 

As with HDFS, Hive presents a consistent SQL interface for HBase, so that users need not have 
programming knowledge in order to query (HBase provides multiple server interfaces, but they 
all require programming).  

We’ve now seen how to define Hive tables using internal storage, external HDFS files, and 
HBase tables. External tables are a powerful Hive concept when you want to use existing data 
in a more accessible way, but the full range of Hive functionality is only available for internal 
tables.  

When you need the more advanced functionality that comes with internal tables, you can still 
use HDFS and HBase files as the source and load them into Hive tables using ETL functions, 
which we'll cover in the next chapter. 
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Chapter 6  ETL with Hive 

Extract, transform, load 

When you have existing data you want to load into Hive without creating a link to the source 

data by using an external table, Hive offers many options. In fact, Hive has several commands 

to support ETL, all of which result in populating an internal Hive table. 

You can populate Hive from a subset of data from HBase and split the row key into parts for 

indexing, or you can load files from either HDFS or the local file system. As part of the load, you 

can transform the data into more usable representations, or you can strip out only the parts you 

need. 

Hive offers multiple options for ETL, but all of the processing is done through map/reduce jobs, 

which means loading data of any size is possible. Hive is particularly well suited for the 

alternative data input approach ETL because it supports very efficient loading of data in the 

native format, which can then be transformed by reading and writing Hive tables. 

In this chapter we’ll cover the major commands for getting data into Hive in the format of your 

choosing. 

Loading from files 

The simplest ETL tool is the load command. Simply put, it loads a file or set of files into an 

existing internal Hive table. Running load is suitable only when the data in the source files 

matches the target table schema, because you cannot include any transformations in this 

option.  

You should also know that the load statement will not do any verification, which means you 

can load files with the wrong format into a table and the command will run, but you won’t be able 

to read the data back again. 

With load you can specify the source file(s) using either a local filepath or an HDFS path. Code 

Listing 47 shows an example that loads a syslog file from the local /tmp directory into the 

syslogs_flat table and then fetches the first row. 
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Code Listing 47: Loading Data into Hive 

> load data local inpath '/tmp/sample-data/syslogs/syslog' into table 
syslogs_flat; 

… 

INFO  : Loading data to table default.syslogs_flat from 

file:/tmp/syslogs/syslog 

INFO  : Table default.syslogs_flat stats: [numFiles=1, totalSize=462587] 

No rows affected (0.153 seconds) 

 

> select * from syslogs_flat limit 1; 

+------------------------------------------------------------------------+- 

|                           syslogs_flat.entry                           | 

+------------------------------------------------------------------------+- 

| Jan 28 20:35:00 sc-ub-xps thermald[785]: Dropped below poll threshold  | 

+------------------------------------------------------------------------+-

-+ 

 

The load command has two qualifiers for changing its behavior: 

 LOCAL—specifies that the source filepath is on the local machine. If omitted, the filepath 

is assumed to be HDFS. 

 OVERWRITE—deletes the existing contents of the table before loading the new files. If 

omitted, the new data is appended to the table. 

Code Listing 48 shows an alternative use of the load command—appending the existing data 

in the syslogs_flat table from a file in HDFS with counts before and after the load in order to 

show the number of rows in the table. 
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Code Listing 48: Appending Data to Hive 

> select count(*) from syslogs_flat; 

+-------+--+ 

|  _c0  | 

+-------+--+ 

| 3942  | 

+-------+--+ 

1 row selected (16.474 seconds) 

> load data inpath 'hdfs://localhost:9000/tmp/syslog.1' into table 
syslogs_flat; 

INFO  : Loading data to table default.syslogs_flat from 

hdfs://localhost:9000/tmp/syslog.1 

INFO  : Table default.syslogs_flat stats: [numFiles=2, totalSize=1753418] 

No rows affected (0.195 seconds) 

> select count(*) from syslogs_flat; 

+--------+--+ 

|  _c0   | 

+--------+--+ 

| 15642  | 

+--------+--+ 

  

 Note: the source file path is specified as a full URI here in order to show that a 
remote HDFS cluster can be used, but you can also specify relative or absolute paths 
for files in the home HDFS cluster used by Hive. 

The load command can only be used with internal tables because its single function is to copy 

files from the specified source to the underlying folder in HDFS for the Hive table. Code Listing 

49 shows the contents of the table folder after the two preceding load operations. 
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Code Listing 49: Listing Files Loaded into Hive 

root@hive:/hive-setup# hdfs dfs -ls /user/hive/warehouse/syslogs_flat 

Found 2 items 

-rwxrwxr-x   1 root supergroup     462587 2016-02-02 07:28 
/user/hive/warehouse/syslogs_flat/syslog 

-rwxrwxr-x   1 root supergroup    1290831 2016-02-02 07:32 
/user/hive/warehouse/syslogs_flat/syslog.1 

 

With the overwrite flag, Hive deletes the existing files before copying the new source files. 

Code Listing 50 shows the result of overwriting the table with a new file and also shows the 

HDFS file listing after the load. 

Code Listing 50: Load with Overwrite 

> load data inpath 'hdfs://localhost:9000/tmp/syslog.2.gz' overwrite into 
table syslogs_flat; 

INFO  : Loading data to table default.syslogs_flat from 

hdfs://localhost:9000/tmp/syslog.2.gz 

INFO  : Table default.syslogs_flat stats: [numFiles=1, numRows=0, 

totalSize=253984, rawDataSize=0] 

No rows affected (0.154 seconds) 

> select count(*) from syslogs_flat; 

+--------+--+ 

|  _c0   | 

+--------+--+ 

| 15695  | 

… 

root@hive:/hive-setup# hdfs dfs -ls /user/hive/warehouse/syslogs_flat          

Found 1 items 

-rwxrwxr-x   1 root supergroup     253984 2016-02-02 07:44 

/user/hive/warehouse/syslogs_flat/syslog.2.gz  

 

The load statement is a powerful and quick way of loading data into Hive because it simply 

does an HDFS put to copy the files from the source into the Hive table structure. However, its 

use is limited to cases in which the source files are in the correct format for the table and no 

transformation can occur as part of the load. 
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 Note: Hive also has the import and export functions that let you save or load 
tables to an HDFS location. These are are different from load, in that the Hive 
metadata gets exported and imported along with the data, so that you can use those 
functions effectively to back up a table on one Hive instance and recreate it on 
another. 

We can see the limitations of having untransformed data in the syslogs_flat table. For 

example, syslog files from a Linux machine can be easily loaded, but the format is not easily 

mapped in Hive. Each entry uses space-separated fields for date, machine name, and event 

type, along with a colon before the message. Data can’t be transformed as part of a load, so I 

have a Hive table with a single string column in which each row contains all the log entry data in 

one string value. 

The rows in the syslogs_flat table aren't well suited for querying if we use load, but now that 

the data is in Hive we can use other options to transform the data into a more usable format and 

load it into other tables.  

This is more of an extract, load, transform (ELT) approach in which data is first loaded into Hive 

in its native format, which is fast, and then transformed. Transformation can be scheduled as 

map/reduce jobs by Hive. 

Inserting from query results  

Hive supports loading a table with the results of a query on other objects, and you can include 

transformation functions in the query. You can also populate internal or external tables this way, 

with the query parser doing some basic validation in order to ensure that the columns from the 

source query will fit into the target table. 

Columns are positionally matched between source and target, which means you need to craft 

your select statement so that the columns in the result set are in the same order as the 

columns defined in the target table. 

If there are too many or too few columns in the query, Hive won't try to match them to the target 

table and you'll get an error, as in Code Listing 51.  

Code Listing 51: Invalid Insert Statement 

> insert into table server_logs select 's1', 123L, 'E' as loglevel from 
dual; 

Error: Error while compiling statement: FAILED: SemanticException [Error 
10044]: Line 1:18 Cannot insert into target table because column 
number/types are different 'server_logs': Table insclause-0 has 4 columns, 
but query has 3 columns. (state=42000,code=10044) 

  



 

64 

 

 Tip: You must include a from clause in an insert…select statement, which means 
you can't use literal expressions such as select 1, 'a'. But you can create a table 
with one row and one column (I name it dual after the convention in Oracle 
databases), and then you can use dual in the from clause. You will find that insert 
into [table] select 'a', 'b', 3 will fail, but insert into [table] select 'a', 
'b', 3 from dual will succeed. 

Hive doesn't verify the data types of the column, which means you can load data into the wrong 

columns without any errors. The type mismatch will manifest itself when you attempt to query 

the data and Hive can't map the values, so that the results contain nulls. 

The query clause can contain any valid HiveQL, including joins and unions between internal and 

external tables, function calls, and aggregation, which allows for a lot of extract and transform 

logic. In order to make a set of syslog files more usable, I've defined a new table with separate 

columns for the data items, as in Code Listing 52. 

Code Listing 52: A Structured Table for Syslogs 

> describe syslogs; 

+-----------+------------+----------+--+ 

| col_name  | data_type  | comment  | 

+-----------+------------+----------+--+ 

| loggedat  | timestamp  |          | 

| host      | string     |          | 

| process   | string     |          | 

| pid       | int        |          | 

| message   | string     |          | 

+-----------+------------+----------+--+ 

 

We'll see more HiveQL functions in Chapter 9  Querying with HiveQL, and there is a useful 

string function called sentences that takes an input string and returns it tokenized as an array 

of sentences, each containing an array of words. I can use that to pull out specific words from 

the log entry, as in Code Listing 53, in which I also cast strings to other types. 
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Code Listing 53: Splitting String Fields 

> select sentences(entry)[0][5] as host, sentences(entry)[0][6] as process, 
cast(sentences(entry)[0][7] as int) as pid from syslogs_flat limit 5; 

+------------+------------------------------------+-------+--+ 

|    host    |              process               |  pid  | 

+------------+------------------------------------+-------+--+ 

| sc-ub-xps  | anacron                            | 804   | 

| sc-ub-xps  | anacron                            | 804   | 

| sc-ub-xps  | org.gnome.zeitgeist.SimpleIndexer  | 1395  | 

| sc-ub-xps  | systemd-timesyncd                  | 625   | 

| sc-ub-xps  | systemd                            | 1293  | 

+------------+------------------------------------+-------+--+ 

 

The timestamp of the log entry is a little trickier, especially because Ubuntu doesn't record the 

year in the log, but if we assume the current year we can use a combination of string and date 

functions to prepend the year to the date and time in the entry, then convert it all to a timestamp, 

as in Code Listing 53. 

Code Listing 54: Transforming Strings to Timestamps 

> select unix_timestamp(concat(cast(year(current_date) as string), ' ', 
substr(entry, 0, 15)), 'yyyy MMM dd hh:mm:ss') from syslogs_flat limit 1;  

+-------------+--+ 

|     _c0     | 

+-------------+--+ 

| 1453755712  | 

+-------------+--+ 

 

The final column is the log message, which is a straightforward substring after the closing 

square bracket from the process ID, as in Code Listing 55. 

Code Listing 55: Extracting Substrings 
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> select trim(substr(entry, instr(entry, ']')+2)) from syslogs_flat limit 
1;  

+------------------------------+--+ 

|             _c0              | 

+------------------------------+--+ 

| Job 'cron.daily' terminated  | 

+------------------------------+--+ 

 

Putting it all together, we can populate the new syslogs table from the raw syslogs_flat table 

with a single insert … select. The query aspect is clunky because of the nature of the input 

data, but once it runs we can make much more useful selections over the formatted syslogs 

table, as in Code Listing 56. 

Code Listing 56: Transforming Raw Data 

> insert into syslogs select unix_timestamp(concat(cast(year(current_date) 
as string), ' ', substr(entry, 0, 15)), 'yyyy MMM dd hh:mm:ss'), 
sentences(entry)[0][5], sentences(entry)[0][6], cast(sentences(entry)[0][7] 
as int), trim(substr(entry, instr(entry, ']')+2)) from syslogs_flat; 

... 

No rows affected (16.757 seconds) 

> select process, count(process) as entries from syslogs where host = 'sc-
ub-xps'  group by process order by entries desc limit 5; 

… 

+-----------------+----------+--+ 

|     process     | entries  | 

+-----------------+----------+--+ 

| kernel          | 7862     | 

| thermald        | 2906     | 

| systemd         | 1450     | 

| NetworkManager  | 1245     | 

| avahi-daemon    | 310      | 

+-----------------+----------+--+ 

 

Inserting query results to tables also supports the overwrite clause, which effectively truncates 

the target table before inserting the results of the query. 
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Multiple inserts 

Hive supports an extended version of insert … select in which multiple insert statements 

from multiple queries over the same source can be chained. In this variation, you would begin 
by specifying the source table (or view), then adding the inserts. 

Multiple inserts are useful when you need to populate different Hive projections from a single 
source, because multiple inserts run very efficiently. Hive will scan the source data once, then 
run each query over the scanned data, inserting it into the target. 

In Code Listing 57 we use the unformatted syslogs table as the source and load the formatted 

table and a summary table at the same time. 

Code Listing 57: Multiple Inserts 

from syslogs_flat sf 

insert overwrite table syslogs select 
unix_timestamp(concat(cast(year(current_date) as string), ' ', 
substr(sf.entry, 0, 15)), 'yyyy MMM dd hh:mm:ss'), 
sentences(sf.entry)[0][5], sentences(sf.entry)[0][6], 
cast(sentences(sf.entry)[0][7] as int), trim(substr(sf.entry, 
instr(sf.entry, ']')+2)) 

insert overwrite table syslog_summaries select unix_timestamp(), 
sentences(sf.entry)[0][5] as host, count(sentences(sf.entry)[0][5]) as 
entries group by sentences(sf.entry)[0][5] 

… 

> select * from syslog_summaries limit 1; 

+-------------------------------+------------------------+----------------- 

| syslog_summaries.processedat  | syslog_summaries.host  | 

syslog_summaries.entries  | 

+-------------------------------+------------------------+----------------- 

| 2016-02-02 20:00:48.062       | sc-ub-xps              | 15695                     

| 

+-------------------------------+------------------------+----------------- 

Create table as select 

A final variation on inserting data from query results is create table as select (CTAS), 

which lets us define a table and populate it with a single statement. The table can only be 
internal, but we can specify the normal stored by clauses for internal tables. 
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In a CTAS table, the structure is inferred from the query, which means we don't need to 
explicitly specify the columns. Queries should cast values into the data types we want for the 
target table and should specify aliases that will be used as the column names. 

The CTAS operation is atomic, which means the table will not appear as available for querying 
until the CTAS completes and the table is populated. 

Code Listing 58 shows a CTAS statement for loading the individual words from syslog entries 
into a new table. The select statement parses the log message as sentences and extracts the 
first sentence as an array of strings, which is how Hive defines the column. 

Code Listing 58: Create Table as Select 

> create table syslog_sentences stored as orc as select 
sentences(trim(substr(entry, instr(entry, ']')+2)))[0] words from 
syslogs_flat; 

... 

No rows affected (12.758 seconds) 

> describe syslog_sentences; 

+-----------+----------------+----------+--+ 

| col_name  |   data_type    | comment  | 

+-----------+----------------+----------+--+ 

| words     | array<string>  |          | 

+-----------+----------------+----------+--+ 

1 row selected (0.064 seconds) 

> select * from syslog_sentences limit 2; 

+------------------------------------+--+ 

|       syslog_sentences.words       | 

+------------------------------------+--+ 

| ["Job","cron.daily","terminated"]  | 

| ["Normal","exit","1","job","run"]  | 

+------------------------------------+--+ 

Temporary tables 

Hive supports temporary tables, which are very useful for interim data transformations in 
ETL/ELT workloads that cannot achieve the full transform in a single step. Temporary tables 
don't support indexes, and they exist only for the life of the Hive session—they are automatically 
deleted when the session ends. 
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Temporary tables are internal tables stored for the user in the working directory within HDFS. 
They can be specified with a supported file format, so that you benefit from efficient storage 
while you use the table. However, note that not all functionality is supported. 

Code Listing 59 shows a temporary table being created to store the progress of an ETL job. 

Code Listing 59: Using Temporary Tables 

> create temporary table etl_progress(status string, stage string, 
processedat timestamp, rowcount bigint) stored as orc; 

No rows affected (0.079 seconds) 

> insert into etl_progress(status, stage, processedat, rowcount) 
values('Done', 'Transform.1', '2016-02-02 07:03:01', 328648); 

No rows affected (14.853 seconds) 

> select * from etl_progress; 

+----------------------+---------------------+---------------------------+- 

| etl_progress.status  | etl_progress.stage  | etl_progress.processedat  | 

etl_progress.rowcount  | 

+----------------------+---------------------+---------------------------+- 

| Done                 | Transform.1         | 2016-02-02 07:03:01.0     | 

328648                 | 

+----------------------+---------------------+---------------------------+- 

In this case the insert statement uses a literal date because Hive doesn't support using 

functions in the values clause for inserting into a temporary table. If you try using a built-in 
function, such as unix_timestamp, in order to get the current time, you'll receive an error.  

However, you can use functions in a select clause, which means you can use the same trick of 
selecting literals from dual, as shown in Code Listing 60. 
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Code Listing 60: Inserting from Functions 

> insert into etl_progress(status, stage, processedat, rowcount) 
values('Done', 'Transform.1', unix_timestamp(), 328648); 

Error: Error while compiling statement: FAILED: SemanticException [Error 
10293]: Unable to create temp file for insert values Expression of type 
TOK_FUNCTION not supported in insert/values (state=42000,code=10293) 

> insert into etl_progress select 'Done', 'Transform.2', unix_timestamp(), 
12435358 from dual; 

... 

No rows affected (12.437 seconds) 

Whether the session is interactive with Beeline or a job submitted through an external interface, 
Hive deletes the table at the end of the session. The temporary table is visible only in the 
session that created it. Other sessions, even for the same user, will not see the table. 

When the session that created the temporary table ends, the data and metadata for the table are 

removed, and when the next session starts the table will be gone, as we see in Code Listing 61.  



 
 

 

71  

Code Listing 61: Temporary Tables Being Removed 

> select * from etl_progress; 

+----------------------+---------------------+---------------------------+- 

| etl_progress.status  | etl_progress.stage  | etl_progress.processedat  | 

etl_progress.rowcount  | 

+----------------------+---------------------+---------------------------+- 

| Done                 | Transform.1         | 2016-02-02 07:03:01.0     | 

328648                 | 

| Done                 | Transform.2         | 1970-01-17 20:01:23.674   | 

12435358               | 

+----------------------+---------------------+---------------------------+-

2 rows selected (0.091 seconds) 

> !close 

Closing: 0: jdbc:hive2://127.0.0.1:10000 

beeline> !connect jdbc:hive2://127.0.0.1:10000 -n root 

Connecting to jdbc:hive2://127.0.0.1:10000 

… 

> select * from etl_progress; 

Error: Error while compiling statement: FAILED: SemanticException [Error 
10001]: Line 1:14 Table not found 'etl_progress' (state=42S02,code=10001) 

In this example, when the Beeline user disconnects with the !close command, the session 

ends, and the Hive server deletes the temporary table. When the user connects again, a new 
session begins, and the temporary table will be gone.  
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Summary 

With the basic load, insert, and CTAS statements, Hive supports the major patterns for getting 
data into the warehouse. If you have existing processes for extracting and transforming data, 
you can load those directly into Hive tables. That fast operation will result in data being 

securely stored in HDFS and available for querying through Hive. 

For new data loads, an ELT process makes better use of Hive by initially using load to put the 

raw data into Hive tables and transforming it using HiveQL. The insert … select and create 
table … as select statements allow you to craft a complex query with functions to transform 

your data and have it populated in Hive through scalable map/reduce jobs. 

Once you have the data as tables in Hive, you can create views and indexes to make the 
information approachable. When your next set of data is extracted, simply repeat the inserts and 
the new data will be appended to the existing tables. 

In the next chapter we’ll look more closely at defining objects and modifying data using HiveQL, 
the Hive Query Language.  
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Chapter 7  DDL and DML in Hive 

HiveQL and ANSI-SQL 

We’ve looked at some HiveQL queries in previous chapters, and we can see that they are 
predominantly SQL, including some Hive-specific statements and clauses. HiveQL isn’t fully 
ANSI-SQL compatible (although achieving SQL-92 compatibility is an aim for future releases), 
but the differences are found around the edges—anyone with SQL experience can easily pick 
up HiveQL. 

As with SQL, HiveQL statements either define the structure of the database with Data Definition 
Language (DDL), change the content of the data queries with Data Modification Language 
(DML), or read data.  

Hive provides only table, view, and index objects, which means there are a limited number of 
DDL statements, and because its primary function is as a data warehouse, the standard SQL 
DML statements aren't supported in all cases. 

In this chapter we’ll cover the key parts of HiveQL for defining data structures and writing data. 
We'll also cover all the major statements, but the Language Manual on the Hive Wiki has 
excellent documentation for all statements, including the versions of Hive that support them. 

Data definition 

DDL statements are used to define or change Hive databases and database objects. The 
functionality of HiveQL has evolved with each release, which means not all statements, and not 
all clauses, are available in all versions. In this chapter we’ll cover the most commonly used 
DDL statements in the current version at the time of writing, 1.2.1. 

Databases and schemas 

All objects in Hive live inside a schema, but you need not specify a particular schema, in fact the 
default is often used. If you want to segregate your data, you can create different schemas and 
refer to objects by prefixing the schema name. 

The terms database and schema are interchangeable in Hive, so the following statements can 

be used with schema or database and work in the same way: 

 CREATE SCHEMA [name]—create a new schema. 

 USE [name]—switch to the named schema. 

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL
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Schemas can be created (or altered) using the with dbproperties clause in order to store a 

collection of key-value pairs as metadata about the schema. That can be useful for storing a 
database version, or any other informational values for the schema, which you can view with the 
extended describe statement, as in Code Listing 62. 

Code Listing 62: Schema Properties 

> create database iot with dbproperties('maintainer'='elton@sixeyed.com', 
'release'='2016R1'); 

No rows affected (0.249 seconds) 

> describe schema extended iot; 

+----------+----------+--------------------------------------------------- 

| db_name  | comment  |                     location                      | 

owner_name  | owner_type  |                 parameters                 | 

+----------+----------+--------------------------------------------------- 

| iot      |          | hdfs://localhost:9000/user/hive/warehouse/iot.db  | 

root        | USER        | {maintainer=elton@sixeyed.com, release=2016R1}  

| 

+----------+----------+--------------------------------------------------- 

Creating database objects 

The only database objects in Hive are tables, views, and indexes, which means the only create 

statements are the ones we already worked with in Chapter 1  Introducing Hive: 

 CREATE TABLE—create an internal Hive table. 

 CREATE EXTERNAL TABLE—create a table in which data is stored outside of Hive. 

 CREATE VIEW—create a view over one or more tables. 

 CREATE INDEX—create an index over an existing table (internal or external). 

Because all of those statements support the if not exists clause, Hive will only create them 

if they don’t already exist in the database. 

Tables are created specifying the column names and data types, the storage engine, and the 
data location. Internal tables can also be partitioned to improve scalability, which we'll cover 
more in Chapter 8  Partitioning Data. 

Views can be created for any HiveQL query that returns a value, which means you can create 
views to provide simple access to complex combinations of data using join or union constructs 

as required. 

Indexes are created for one or more columns over a single table. 
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 Tip: Defining objects means only that Hive saves the definition in its metadata 
store. The store is used when objects are queried, but at create time there's only 
basic validation of the DDL—Hive makes sure the HiveQL is valid, and the source for 
the data exists, but any column mappings are not verified. 

The create statements are broadly standard SQL, but Hive provides a time-saving option to 

create tables with the same structure as an existing table, create table like—as shown in 

Code Listing 63. 

Code Listing 63: Creating Tables like Other Tables 

> describe dual; 

+-----------+------------+----------+--+ 

| col_name  | data_type  | comment  | 

+-----------+------------+----------+--+ 

| c         | string     |          | 

+-----------+------------+----------+--+ 

> create table dual2 like dual; 

> describe dual2; 

+-----------+------------+----------+--+ 

| col_name  | data_type  | comment  | 

+-----------+------------+----------+--+ 

| c         | string     |          | 

+-----------+------------+----------+--+ 

The create table like statement is frequently useful for working with data in temporary 

tables or moving between internal and external tables in which the structure is the same. It does 
not copy any data, nor does it link the tables, which means changing the original table structure 
won't affect the new one. 

Modifying database objects 

Existing objects can be changed with alter statements, but typically these affect only the 

structure of the object in Hive's metadata store and will not change any of the existing data.  

For that reason, you must be careful when altering table definitions, as you can easily modify 
your table and make reading from it impossible. With alter table you can rename the table, 

change the file format, and add, remove, or change columns. 
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To change an existing column, the syntax is alter table … change, which allows you to 

change the column name, data type, and order in the table. Code Listing 64 shows an existing 
column in the syslogs table being changed from a timestamp to a string type and moved to a 
later position in the table. 

Code Listing 64: Altering Tables to Move Columns 

> describe syslogs; 

+-----------+------------+----------+--+ 

| col_name  | data_type  | comment  | 

+-----------+------------+----------+--+ 

| loggedat  | timestamp  |          | 

| host      | string     |          | 

| process   | string     |          | 

| pid       | int        |          | 

| message   | string     |          | 

+-----------+------------+----------+--+ 

> alter table syslogs change loggedat string after host; 

> describe syslogs; 

+-----------+------------+----------+--+ 

| col_name  | data_type  | comment  | 

+-----------+------------+----------+--+ 

| host      | string     |          | 

| loggedat  | string     |          | 

| process   | string     |          | 

| pid       | int        |          | 

| message   | string     |          | 

+-----------+------------+----------+--+ 

The change is made successfully, as we can see from the second describe statement, but 

Hive hasn't changed the data inside the table. The data files maintain the original structure, so 
that the first column is a timestamp (the original loggedAt column), and the second column is a 

string (the original host column). 

If we try to query this table, Hive reads the timestamp value in the first column, which contains 
the loggedAt timestamp, but tries to read it as a string. The formats are not compatible, so we 

get an error as in Code Listing 65. 
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Code Listing 65: Tables with Structural Mismatch 

> select * from syslogs limit 5; 

Error: java.io.IOException: 
org.apache.hadoop.hive.ql.metadata.HiveException: 
java.lang.ClassCastException: 
org.apache.hadoop.hive.serde2.io.TimestampWritable cannot be cast to 
org.apache.hadoop.io.Text (state=,code=0) 

We can still access the other columns in the table, but now the data is in the wrong place—the 
metadata says the loggedAt column is in the second position, but in the data files that position 

contains the host field, as we see in Code Listing 66. 

Code Listing 66: Fetching the Wrong Data 

0: jdcbc:hive2://127.0.0.1:10000> select loggedat, process, pid, message 
from syslogs limit 1; 

+------------+----------+------+------------------------------+--+ 

|  loggedat  | process  | pid  |           message            | 

+------------+----------+------+------------------------------+--+ 

| sc-ub-xps  | anacron  | 804  | Job `cron.daily' terminated  | 

+------------+----------+------+------------------------------+--+ 

Because alter table works at the metadata level, it’s easy to repair the damage by altering 

the table back to its original definition. If you do need to change the existing structure of a table 
(other than adding or renaming columns), a better approach is to define a new table and load it 
from the existing one, using whichever transforms you need. 

With alter view you can change the select statement that projects the view. You can change 

the column layout, data types, and order by changing the query, and, provided the HiveQL 
query is valid, the view will be valid. Views are not materialized in Hive, which means there is no 
data file sitting behind the view that can get out of sync with the definition. 

If the view does not already exist, alter view will raise an error. Code Listing 67 alters the 

existing view over the HBase device-events table, thereby removing the original rowkey 

column and adding a clause, so that only rows with a value in the period column will be 

returned. 
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Code Listing 67: Altering Views 

> alter view device_events_period as select split(rowkey, '\\|')[0] 
deviceid, split(ROWKEY, '\\|')[1] period, eventname, receivedat from 
device_events where split(ROWKEY, '\\|')[1] is not null; 

The alter index statement only allows you to rebuild an existing index—you can't change the 

column or table the index uses. Hive doesn't automatically rebuild indexes, which means you 
will need to manually rebuild using alter index whenever you modify data in the underlying 

table. 

Code Listing 68 rebuilds the index (which is materialized as an internal Hive table) over the 
external hbase_table. Note that the table for the index must be explicitly specified. 

Code Listing 68: Rebuilding Indexes 

> alter index ix_hbase_table_cf1_data on hbase_table rebuild; 

... 

No rows affected (51.917 seconds) 

Removing database objects 

You can remove objects from Hive with the drop table, drop view, and drop index 

statements while optionally using the if exists clause. 

When you drop an index, Hive removes both the index and the internal table used to store it. 
Removing indexes has no functional impact unless you have explicitly referenced the internal 
index table in any queries. Otherwise, any queries which implicitly use the index will run more 
slowly, but they will still produce the same results.  

When you drop a view, it gets removed from the database, and any queries using it will fail with 
a 'table not found' error from Hive, as in Code Listing 69. 

Code Listing 69: Dropping Views 

> drop view device_events_period; 

> select * from device_events_period; 

Error: Error while compiling statement: FAILED: SemanticException [Error 
10001]: Line 1:14 Table not found 'device_events_period' 
(state=42S02,code=10001) 

Because there are no materialized views in Hive, dropping a view will not remove any data. 
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When you drop a table, the effect on the data varies depending upon the type of table being 
used. With external tables, Hive doesn’t remove the source data, so that if you drop a table 
based on HDFS files or an HBase table, the underlying data will remain, although you will not be 
able to access it through your Hive table. 

Code Listing 70 shows the result of dropping the external device_events table in Hive and 

scanning the underlying device-events table in HBase. 

Code Listing 70: Dropping External Tables 

> drop table device_events; 

> select * from device_events; 

Error: Error while compiling statement: FAILED: SemanticException [Error 
10001]: Line 1:14 Table not found 'device_events' (state=42S02,code=10001) 

… 

hbase(main):004:0> scan 'device-events' 

ROW                                COLUMN+CELL                                                                                       

 uuid2                             column=e:n, timestamp=1454520396475, 

value=power.off                                              

With internal tables, Hive manages the storage so that when you drop them, all the data will be 
deleted. With some platform setups, the underlying files may be moved to a recoverable trash 
folder—but don't depend on it. 

To ensure permanent deletion, specify the purge clause, as in Code Listing 71, which shows 

the HDFS file listing before and after the syslog_sumaries table is dropped. 
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Code Listing 71: Dropping Internal Tables 

root@hive:/hive-setup# hdfs dfs -ls /user/hive/warehouse/syslog_summaries 

Found 1 items 

-rwxrwxr-x   1 root supergroup        423 2016-02-02 21:21 
/user/hive/warehouse/syslog_summaries/000000_0 

.. 

> drop table syslog_summaries purge; 

… 

root@hive:/hive-setup# hdfs dfs -ls /user/hive/warehouse/syslog_summaries 

ls: `/user/hive/warehouse/syslog_summaries': No such file or directory 

Hive will not warn about dependencies when you drop a table—it will let you drop tables that 
have views or indexes based on them. When you drop a table referenced by views, the views 
will remain but will error if you try to query them. When you drop an indexed table, the indexes 
and the underlying index tables will be silently deleted. If you want to remove the data from an 
internal Hive table but leave the table in place, the standard SQL truncate statement deletes 

all the rows, as in Code Listing 72. 
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Code Listing 72: Truncating Data 

> select count(*) from syslogs; 

+--------+--+ 

|  _c0   | 

+--------+--+ 

| 15695  | 

+--------+--+ 

> truncate table syslogs; 

No rows affected (0.09 seconds) 

> select count(*) from syslogs; 

+------+--+ 

| _c0  | 

+------+--+ 

| 0    | 

+------+--+ 

The truncate statement works by deleting the underlying files in HDFS while leaving the folder 

structure in place, so that the table can be populated again. Because it is only valid for internal 
tables, Hive will raise the error 'Cannot truncate non-managed table' if you try to truncate an 

external table. 

Data manipulation 

The full range of DML statements is a recent addition to Hive and isn't supported by all storage 
engines. From its origin as a data warehouse, Hive wasn't originally conceived to update or 
delete existing data; it only supported appending data with load and import statements. 

Since Hive 0.14, update and delete statements have been provided for storage engines that 

support them. The insert statement has also been extended in order to allow direct insertion of 

values, whereas in previous versions we could only insert the results of a select query. 

ACID storage and Hive transactions 

The full set of DML statements is only available on tables that support the ACID properties of 
typical RDBMS designs. The ACID principles ensure data consistency, so that simultaneous 
reads and writes to the same table won't cause conflicts.  

ACID principles are not inherent in HDFS, which doesn't allow data in files to be changed and 
doesn't lock files that are being appended. That means you can't update an existing data item in 
a file, and you can't stop readers from accessing new data as it's being written. 
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Hive works around the HDFS limitations by creating delta files—the Wiki page on Hive 
Transactions explains the complexity involved. Currently, only internal tables support Hive 
transactions, and only if they are stored in the correct file format and Hive is configured to 
support the transaction manager. 

As of Hive 1.2.1, tables must have the following attributes in order to support ACID: 

 Internal table. 

 ORC format storage. 

 Bucketed but not sorted (more on that in Chapter 8  Partitioning Data). 

 Flagged with the transactional property. 

Summary 

Because Hive has a smaller number of objects than SQL databases, so that there are very few 
DDL statements, the variety of table definitions means there are a large number of Hive-specific 
clauses. In this chapter we’ve looked at creating, altering, and dropping objects. 

Remembering the disconnect between the object structure, which is stored in the Hive 
metastore, and the actual structure of data in files, is the key takeaway concerning DDL. 
Because Hive typically doesn’t enforce the structure, if you alter tables the structure and content 
will be out of sync and the data will be unreachable. 

From its origins as an append-or-overwrite data warehouse, Hive has grown to support the 
majority of SQL DML statements, albeit for a limited subset of table types. The support for ACID 
table types and transactions is useful, but keep in mind that Hive is not intended as a 
transactional database. If you find your implementation is limited by the DML support in Hive, 
you may not be using Hive appropriately. 

In the next chapter, we’ll look at one of the major performance-boosting factors in Hive table 
design—partitioning data across multiple physical stores.  

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions


 
 

 

83  

Chapter 8  Partitioning Data 

Sharding data 

Splitting a logical database object across multiple physical storage locations is the key to 
achieving high performance and scalability. The more storage locations, the more compute 
nodes can concurrently access the files. Intensive jobs can be run with a high degree of 
parallelism, which means they will run more efficiently and finish more quickly. 

Some databases call this sharding, and the cost of the improved performance typically comes in 
the form of greater complexity in accessing the data. In some implementations you must specify 
which shard to insert or read from, and the administration—such as redistributing data if some 
shards become overloaded—is not trivial. 

Hive supports two different types of sharding for storing internal tables—partitions and buckets. 
The sharding approach is specified when the table is created, and Hive uses column values to 
decide which rows go into which shard. This action abstracts some of the complexity from the 
user. 

Sharding data is a key performance technique, and it is typically used in Hive for all but the 
smallest tables. We address it later in this book because we now have a good understanding of 
how Hive logically and physically stores and accesses data. Learning about sharding will be 
straightforward at this point.  

Partitioned tables 

Sharding a table into multiple partitions will physically split the storage into many folders in 
HDFS. If you create an internal Hive table without partitions, the data files will be stored (by 
default) in HDFS at /user/hive/warehouse/[table_name]. How you populate that table 

dictates how many files get created, but they will all be in the same folder. 

Figure 6 shows how the syslogs table can be physically stored when it has been populated. 
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Figure 6: Folder Structure for an Unpartitioned Table 

When we create a partitioned internal table, Hive creates subfolders for each branch of the 
partition, and the data files reside in the lowest-level subfolder. We specify how to partition the 
data, and the most efficient partition scheme will reflect the access patterns for the data. 

If we typically load and query logs in batches for a particular date and server, we can partition 
the table by period and server name. As the table gets populated, Hive will create a nested 
folder structure using /user/hive/warehouse/[table_name] as the root 

and./[period]/[server] for the subfolders, as in Figure 7. 
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Figure 7: Folder Structure for a Partitioned Table 

Creating partitioned tables 

The create table statement supports a partitioned by clause in which you specify the 

columns used to partition the data files. You can specify multiple columns, and each will add 
another level of nesting to the folder structure. 

For comparison, Code Listing 73 shows the structure of a table that is not partitioned, along with 
the structure of the folders in HDFS. 
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Code Listing 73: File Listing for an Unpartitioned Table 

> describe syslogs_no_partitions; 

+-----------+------------+----------+--+ 

| col_name  | data_type  | comment  | 

+-----------+------------+----------+--+ 

| period    | string     |          | 

| host      | string     |          | 

| loggedat  | timestamp  |          | 

| process   | string     |          | 

| pid       | int        |          | 

| message   | string     |          | 

+-----------+------------+----------+--+ 

… 

root@28b0162f637b:/hive-setup# hdfs dfs -ls 
/user/hive/warehouse/syslogs_no_partitions 

Found 2 items 

-rwxrwxr-x   1 root supergroup        692 2016-02-04 17:52 
/user/hive/warehouse/syslogs_no_partitions/000000_0 

-rwxrwxr-x   1 root supergroup        697 2016-02-04 17:53 
/user/hive/warehouse/syslogs_no_partitions/000000_0_copy_1 

The two files in this listing contain different combinations of period and host, but because the 
table is not partitioned, the files are in the root folder for the table, and any file could contain 
rows with any period and host name. 

Code Listing 74 shows how to create a partitioned version of the syslogs table. 

Code Listing 74: Creating a Partitioned Table 

> create table syslogs_with_partitions(loggedat timestamp, process string, 
pid int, message string) partitioned by (period string, host string) stored 
as ORC; 

No rows affected (0.222 seconds) 

 Note: The columns you use to partition a table are not part of the column list, 
which means that when you define your table, you specify columns for all the data 
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fields that are not part of the partitioning scheme, and you will specify partition 
columns separately. 

As data gets inserted into the table, Hive will create the nested folder structure. Code Listing 75 
shows how the folder looks after some inserts. 

Code Listing 75: File Listing for a Partitioned Table 

root@28b0162f637b:/hive-setup# hdfs dfs -ls 
/user/hive/warehouse/syslogs_with_partitions/*/* 

Found 1 items 

-rwxrwxr-x   1 root supergroup        502 2016-02-04 17:58 
/user/hive/warehouse/syslogs_with_partitions/period=201601/host=sc-ub-
xps/000000_0 

Found 1 items 

-rwxrwxr-x   1 root supergroup        502 2016-02-04 17:58 
/user/hive/warehouse/syslogs_with_partitions/period=201601/host=sc-win-
xps/000000_0 

Found 1 items 

-rwxrwxr-x   1 root supergroup        502 2016-02-04 17:56 
/user/hive/warehouse/syslogs_with_partitions/period=201602/host=sc-ub-
xps/000000_0 

Here we have two folders under the root folder, with names specifying the partition column 
name and value (period=201601 and period=201602); beneath those folders we have another 

folder level that specifies the next partition column (host=sc-ub-xps and host=sc-win-xps).  

In the partitioned table, the data files live under the period/host folder, and each file contains 
only rows for a specific combination of period and host.  

Populating partitioned tables 

Because rows in a partitioned table need to be located in a specific location, all the data 
population statements must tell Hive the destination target. This is done with the partition 

clause, which specifies the column name and value for all the rows being loaded. 

The data being loaded cannot contain values for the partition columns, which means Hive treats 
them as a different type of column.  

 

Code Listing 76 shows the description for the partitioned syslogs table in which the partition 

columns are shown as distinct from the data columns. 
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Code Listing 76: Describing a Partitioned Table 

> describe syslogs_with_partitions; 

+--------------------------+-----------------------+----------------------- 

|         col_name         |       data_type       |        comment        

| 

+--------------------------+-----------------------+----------------------- 

| loggedat                 | timestamp             |                        

| process                  | string                |                        

| pid                      | int                   |                        

| message                  | string                |                        

| period                   | string                |                        

| host                     | string                |                       

| 

| # Partition Information  | NULL                  | NULL                   

| # col_name               | data_type             | comment                

| period                   | string                |                        

| host                     | string                |                        

+--------------------------+-----------------------+----------------------- 

The data for the partition columns is still available to read in the normal way, but it must be 
written separately from other columns. Code Listing 77 shows how to insert a single row into the 
partitioned syslogs table. 

Code Listing 77: Inserting into a Partitioned Table 

> insert into syslogs_with_partitions partition(period='201601', host='sc-
win-xps') values('2016-01-04 17:52:01', 'manual', 123, 'msg2'); 

No rows affected (11.726 seconds) 

The data to be inserted is split between clauses: 

 PARTITION—contains the column names and values for the partition columns. 

 VALUES—contains the values for data columns (names can be omitted, as in this 
example, which uses positional ordering). 

If you try to populate a partitioned table without specifying the correct partition columns, Hive will 
raise an error. 

 Tip: This split between partition columns and data columns will add complexity to 
your data loading, but it ensures that every row goes into a file in the correct folder. If 
this seems odd at first, it's simply a case of remembering that columns in the 
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partition clause of the create statement need to go in the partition clause for inserts, 
and they aren't included in the normal column list. 

The partition syntax is the same for inserting multiple rows from query results, but here you 
need to ensure that you select only the appropriate rows for the target partition—you can't insert 
into many different partitions in a single load.  

Code Listing 78 populates syslogs_partitioned by selecting from the syslogs table. 

Code Listing 78: Selecting and Inserting into a Partitioned Table 

> insert into syslogs_partitioned partition(period='201601', host='sc-ub-
xps') select loggedat, process, pid, message from syslogs where 
year(date(loggedat)) = 2016 and month(date(loggedat)) = 01 and host = 'sc-
ub-xps'; 

… 

INFO  : Partition default.syslogs_partitioned{period=201601, host=sc-ub-
xps} stats: [numFiles=2, numRows=3942, totalSize=58111, 
rawDataSize=1143012] 

No rows affected (13.106 seconds) 

Similarly, if the target table is partitioned, the load statement requires the partition clause. Apart 

from the partition columns, load works in the same way as we noted in Chapter 6  ETL with 
Hive—essentially it copies the source file to HDFS, using the partition specification to decide the 
target folder. 

INSERT, UPDATE, DELETE 

The key DML statements are only supported for ACID tables, but where they are supported the 
syntax remains the same as standard SQL. As of release 1.2.1, Hive supports some DML 
statements for tables that it does not recognize as ACID, as shown in Error! Reference source 
not found.. 

Table 3: DML Statement Support 

Table Storage INSERT UPDATE DELETE 

Internal - ACID Yes Yes Yes 

Internal – not ACID Yes No No 

External - HDFS Yes No No 

External - HBase Yes No No 
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Code Listing 79 creates a table that supports Hive transactions and specifies the ORC format, 
bucketed partitioning, and a custom table property in order to identify it as transactional. 

Code Listing 79: Creating an ACID Table 

create table syslogs_acid  

(host string, loggedat timestamp, process string, pid int,  

 message string, hotspot boolean)  

clustered by(host) into 4 buckets  

stored as ORC  

tblproperties ("transactional" = "true"); 

In order to work with transactional tables, we need to set a range of configuration values. We 
can do this in hive-site.xml by making extensive use of transactional tables, or we can do 

this per session if we have only transactional tables.  

The hive-succinctly Docker image is already configured in hive-site.xml in order to support 

the transaction manager, and it uses the following settings:  

 "hive.support.concurrency" = "true". 

 "hive.enforce.bucketing" = "true". 

 "hive.exec.dynamic.partition.mode" = "nonstrict". 

 "hive.txn.manager" = "org.apache.hadoop.hive.ql.lockmgr.DbTxnManager". 

 "hive.compactor.initiator.on" = "true". 

 "hive.compactor.worker.threads" = "1". 

With the transaction settings configured, when we use DML statements with the ACID table, 
they will run under the transaction manager and we will be able to insert, update, and delete 
data. Code Listing 80: Inserting to an ACID TableCode Listing 80 shows the insertion of all the 
syslog data from the existing non-ACID table to the new ACID table. 

Code Listing 80: Inserting to an ACID Table 

> insert into syslogs_acid select host, loggedat, process, pid, message, 
false from syslogs; 

... 

INFO  : Table default.syslogs_acid stats: [numFiles=4, numRows=15695, 
totalSize=82283, rawDataSize=0] 

If we want to modify that data, we can use update and delete on the table. As with SQL, Hive 

accepts a where clause in order to specify the data to act on. In Hive, the updates will be made 

in a map/reduce job, so that we can use complex queries and act on large result sets.  
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In Code Listing 81 we populate the hotspot column to identify processes that do a lot of logging, 
using a count query. 

Code Listing 81: Updating an ACID Table 

> update syslogs_acid set hotspot = true where process in (select process 
from syslogs_acid group by process having count(process) > 1000); 

> select * from syslogs_acid where hotspot = true limit 1; 

+--------------------+--------------------------+-----------------------+-- 

| syslogs_acid.host  |  syslogs_acid.loggedat   | syslogs_acid.process  | 

syslogs_acid.pid  |   syslogs_acid.message   | syslogs_acid.hotspot  | 

+--------------------+--------------------------+-----------------------+-- 

| sc-ub-xps          | 1970-01-17 19:52:02.838  | systemd               | 1                 

| Started CUPS Scheduler.  | true                  | 

+--------------------+--------------------------+-----------------------+-- 

Now we can delete syslog entries for processes that are not hotspots, as in Code Listing 82. 

Code Listing 82: Deleting from an ACID Table 

> delete from syslogs_acid where hotspot = false; 

> select count(distinct(process)), count(*) from syslogs_acid; 

... 

+-----+--------+--+ 

| c0  |   c1   | 

+-----+--------+--+ 

| 4   | 13463  | 

+-----+--------+--+ 

This offers a straightforward way to identify that a minority of processes generates the majority 
of logs and leaves us with a table that contains the raw data for the main subset of processes.  
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Querying partitioned tables 

Reading from partitioned tables is simpler than populating them because the partition columns 
are treated in the same way as data columns for reads, which means you can use the partition 
values in queries as well as the data values. 

Code Listing 83 shows a basic select for all the columns in the syslogs_partitioned table, 

which will return all the partition columns and all the data columns without distinguishing 
between them. 

Code Listing 83: Selecting from a Partitioned Table 

> select * from syslogs_partitioned limit 2; 

+-------------------------------+------------------------------+----------- 

| syslogs_partitioned.loggedat  | syslogs_partitioned.process  | 

syslogs_partitioned.pid  |  syslogs_partitioned.message  | 

syslogs_partitioned.period  | syslogs_partitioned.host  | 

+-------------------------------+------------------------------+----------- 

| 2016-01-17 19:53:33.3         | thermald                     | 785                      

| Dropped below poll threshold  | 201601                      | sc-ub-xps                 

| 

| 2016-01-17 19:53:33.3         | thermald                     | 785                      

| thd_trip_cdev_state_reset     | 201601                      | sc-ub-xps                 

| 

+-------------------------------+------------------------------+-----------  

You can also use a combination of partition and data columns in the selection criteria, as in 
Code Listing 84. 

Code Listing 84: Filtering Based on Partition Columns 

> select host, pid, message from syslogs_partitioned where period = 

'201601' and host like 'sc-ub%' and process = 'anacron' limit 2; 

+------------+------+------------------------------+--+ 

|    host    | pid  |           message            | 

+------------+------+------------------------------+--+ 

| sc-ub-xps  | 781  | Job `cron.daily' terminated  | 

| sc-ub-xps  | 781  | Job `cron.weekly' started    | 

+------------+------+------------------------------+--+  

This query makes efficient use of the partitions in order to help distribute the workload. The 
where clause specifies a value for the period that will limit the source files to the folder 

period=201601 under the table root. There's a wildcard selection by host, so that all the files in 

all the host=sc-ub* folders will be included in the search. 

Hive can split this job into multiple map steps, one for each file. Hadoop will run as many of 
those map steps in parallel as it can, given its cluster capacity. When the map steps are 
finished, one or more reducer steps collate the interim results, then the query completes. 
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Using partitioned tables correctly will give you a good performance boost whenever you read or 
write from the table, but you should think carefully about your partition scheme. If you use a 
large number of partition columns or partition columns with a wide spread of values, you might 
end up with a heavily nested folder structure that includes large numbers of small files.  

It’s possible to reach a point at which having more files reduces performance because the extra 
overhead of running very large numbers of small map jobs outweighs the benefit of parallel 
processing. If you need to support multiple levels of sharding, you can use a combination of 
partitions and buckets. 

Bucketed tables 

Bucketing is an alternative data-sharding scheme provided by Hive. Tables can be partitioned or 
bucketed, or they can be partitioned and bucketed. This works differently from partitioning, and 
the storage structure is well suited to sampling data, which means you can work with small 
subsets of a large dataset. 

With partitions, the partition columns define the folder scheme, and populating data in Hive will 
create new folders as required. With buckets, you specify a fixed number of buckets when you 
create the table, and, when you populate data, Hive will allocate it to one of the existing buckets. 

Buckets shard data at the file level rather than the folder level, so that if you create a table 
syslogs_bucketed with five buckets, the folder structure will look like Figure 8. 

 

Figure 8: Folder Structure for a Bucketed Table 

Here we still have the benefit of sharding data, but we don't have the issue of heavily nested 
folders, and we have better control over how many files the data is split across. Bucketed tables 
are also easier to work with because the bucket columns are normal data columns, which 
means we don't have to specify a partition when we load data. 
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Creating bucketed tables 

The create table statement provides the clustered by … into buckets clause for 

sharding data into buckets. The columns used to identify the correct bucket are data columns in 
the table, which means they need to be specified in the usual way. 

Code Listing 85 creates a bucketed version of the syslogs table using the period and host 

columns for the buckets. In this example the file is in ORC format, but that is not a requirement. 

Code Listing 85: Creating a Bucketed Table 

> create table syslogs_bucketed(period string, host string, loggedat 
timestamp, process string, pid int, message string) clustered by(period, 
host) into 12 buckets stored as orc; 

No rows affected (0.226 seconds) 

 Note: The number of buckets is set to 12 here, which means Hive will allocate 
data between 12 storage locations. Rows with the same period and host will always 
be in the same location, but rows with different combinations of period and host can 
be in different buckets. 

Hive doesn't create any folders or files until we start to populate the table, but after inserting a 
single row, the file structure for all the buckets will be created, as we see in Code Listing 86. 
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Code Listing 86: Folder Listing for a Bucketed Table 

root@hive:/hive-setup# hdfs dfs -ls /user/hive/warehouse/*bucket*/* 

-rwxrwxr-x   1 root supergroup         49 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000000_0 

-rwxrwxr-x   1 root supergroup         49 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000001_0 

-rwxrwxr-x   1 root supergroup         49 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000002_0 

-rwxrwxr-x   1 root supergroup         49 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000003_0 

-rwxrwxr-x   1 root supergroup         49 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000004_0 

-rwxrwxr-x   1 root supergroup        646 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000005_0 

-rwxrwxr-x   1 root supergroup         49 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000006_0 

-rwxrwxr-x   1 root supergroup         49 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000007_0 

-rwxrwxr-x   1 root supergroup         49 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000008_0 

-rwxrwxr-x   1 root supergroup         49 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000009_0 

-rwxrwxr-x   1 root supergroup         49 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000010_0 

-rwxrwxr-x   1 root supergroup         49 2016-02-05 18:07 

/user/hive/warehouse/syslogs_bucketed/000011_0 

 Tip: You can change the number of buckets for an existing table using the alter 
table statement with the clustered by clause, but Hive will not reorganize the data in 
the existing files to match the new bucket specification. If you want to modify the 
bucket count, it is preferable to create a new table and populate it from the existing 
one. 

A subclause of clustered by directs Hive to create a sorted bucketed table. With sorted 

tables, the same physical bucket structure is used, but data within the files is sorted by a 
specified column value. In Code Listing 87 a variant of the syslogs table is created that is 

bucketed by period and host and is sorted by the process name. 
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Code Listing 87: Creating a Sorted Bucketed Table 

> create table syslogs_bucketed_sorted 

(period string, host string, loggedat timestamp, process string, pid int, 

message string)  

 clustered by(period, host) sorted by(process) into 12 buckets  

 stored as orc; 

Sorting the data in buckets gives a further optimization at read time. At write time, we can take 
advantage of Hive's enforced bucketing to ensure data enters the correct buckets. 

Populating bucketed tables 

When bucketed tables get populated, the storage structure is transparent, as far as the insert is 
concerned. Standard columns are used to determine the storage bucket, which means the 
standard insert statements work without any additional clauses. 

The load statement cannot be used with bucketed tables because load simply copies from the 

source into HDFS without modifying the file contents. In order to support load for bucketed 

tables, Hive needs to read the source files and distribute the data into the correct buckets, which 
will lose the performance benefit of load in any case. 

In order to populate bucketed tables, we need to use an insert. Code Listing 88 shows a 

simple insert into a bucketed table with specific values. Some key lines from Hive's output log 
are also shown. 

Code Listing 88: Inserting into a Bucketed Table 

> insert into syslogs_bucketed select '2015', 's2', unix_timestamp(), 

'kernel', 1, 'message' from dual; 

... 

INFO  : Hadoop job information for Stage-1: number of mappers: 1; number of 

reducers: 12 

... 

INFO  : Table default.syslogs_bucketed stats: [numFiles=12, numRows=1, 

totalSize=1185, rawDataSize=396] 

No rows affected (29.69 seconds) 

The log entries from Beeline tell us that Hive used a single map task and 12 reduce tasks—one 
for each bucket in the table, which ensures data will end up in the right location. (Hive uses a 
hash of the bucketed column values to decide on the target bucket.) The table stats in the last 
line tell us there are 12 files but only one row in the table.  

Data in a bucketed table can get out of sync, with rows in the wrong buckets, if the number of 
reducers for an insert job does not match the number of buckets. Hive will address that if the 
setting hive.enforce.bucketing is true in the Hive session (or in hive-site.xml, as is the 

case in the hive-succinctly Docker image). 
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With bucketing enforced by Hive, we don't have to specify which bucket to populate, and so we 
can insert data into multiple buckets from a single statement. In Code Listing 89 we take the 
formatted syslog rows from the previous ELT process in Chapter 6  ETL with Hive and insert 
them into the bucketed table. 

Code Listing 89: ELT into a Bucketed Table 

> insert into table syslogs_bucketed select date_format(loggedat, 

'yyyyMM'), host, loggedat, process, pid, message from syslogs; 

… 

INFO  : Table default.syslogs_bucketed stats: [numFiles=12, numRows=3942, 

totalSize=58903, rawDataSize=1864398] 

Querying bucketed tables 

Bucketed tables are queried like any other tables, but query execution is optimized if the bucket 
columns are included in the where clause. In that case, Hive will limit the map input files to 

those it knows will contain the data, so that the initial search space is restricted. 

There is no syntactical difference in queries over bucketed (or bucketed sorted) tables from 
tables which are not bucketed—Code Listing 90 shows a query using all the columns in the 
table. 

Code Listing 90: Querying Bucketed Tables 

> select period, process, pid from syslogs_bucketed where host = 'sc-ub-

xps' limit 2; 

+---------+----------------+-------+--+ 

| period  |    process     |  pid  | 

+---------+----------------+-------+--+ 

| 201601  | gnome-session  | 1544  | 

| 201601  | gnome-session  | 1544  | 

+---------+----------------+-------+--+ 

Columns can be used in any part of the select statement irrespective of whether or not they 

are plain data columns or they form part of the bucketing (or sorting) specification. 

Bucketed tables are particularly useful if you want to query a subset of the data. We've seen the 
limit clause in previous HiveQL queries, but that only constrains the amount of data that gets 

returned—typically the query will run over the entire table and return only a small portion. 

With bucketed tables, we can specify a query over a sample of the data using the tablesample 

clause. Because Hive provides a variety of ways to sample the data, we can pick from one or 
more buckets or from a percentage of the data. In Code Listing 91 we fetch data from the fifth 
bucket in the bucketed syslogs table. 
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Code Listing 91: Sampling from Table Buckets 

0> select count(*) from syslogs_bucketed; 

INFO  : MapReduce Total cumulative CPU time: 20 seconds 880 msec 

+-----------+--+ 

|    c0     | 

+-----------+--+ 

| 42553050  | 

+-----------+--+ 

> select count(*) from syslogs_bucketed tablesample(bucket 5 out of 12); 

INFO  : MapReduce Total cumulative CPU time: 2 seconds 930 msec 

+--------+--+ 

|  _c0   | 

+--------+--+ 

| 40695  | 

+--------+--+ 

The entire table count returned 42 million rows in 21 seconds, yet a single bucket count took 
only three seconds to return 40,000 rows, which is significantly faster and tells me my data isn’t 
evenly split between buckets (if it was, I’d have about 3.5 million rows per bucket). 

In order to sample a subset of data from multiple buckets, you can specify a percentage of the 
data size or a desired size for the sample. Hive reads from HDFS at the file block level, which 
means you might get a larger sample than you specified—if Hive fetches a block that takes it 
over the requested size, it will still use the entire block. Code Listing 92 fetches at least 3% of 
the data. 

Code Listing 92: Sampling a Portion of Data 

> select count(*) from syslogs_bucketed tablesample(3 percent); 

INFO  : MapReduce Total cumulative CPU time: 4 seconds 740 msec 

+-----------+--+ 

|    _c0    | 

+-----------+--+ 

| 10525740  | 

+-----------+--+ 

The efficient sampling returned with bucketed tables can be a huge timesaver when crafting a 
complex query. You can iterate over the query using a subset of data that will return quickly, 
and when you're happy with the query you can submit it to the cluster to run over the entire data 
set. 
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Summary 

Sharding data is the key to high performance, and, because Hive is based on Hadoop, its core 
foundations support very high levels of parallelism. With the correct sharding strategy, you can 
maximize the use of your cluster—even if you have hundreds of nodes, they can all run parts of 
a query concurrently provided the data can be stripped to support that. 

Hive provides two approaches to sharding that can be used independently or in combination. 
Which approach you choose depends on how your data is logically grouped and how you're 
likely to access it. Typically, the clauses you most frequently query over but which have a 
relatively small number of distinct values are good candidates for sharding—those might be time 
periods or the identifiers of source data or classifications for types of data. 

Partitioned tables shard data physically by using a nested folder structure with one level of 
nesting for each partitioned column. The number of partitions is not fixed, and as you insert data 
into new partition column values, Hive will create partitions for you. Partition columns are a 
separate part of the normal table structure, which means your data loads are made more 
complex as they need to be partition aware.  

The alternative to partitioned tables is bucketed tables that split data across many files rather 
than nested folders. The number of buckets is effectively fixed when the table is created, and 
standard data columns are used to decide the target bucket for new rows.  

Bucketed tables are easier to work with because there is no distinction between the data 
columns and the bucket columns, and as Hive allocates data to buckets using a hash there will 
be an even spread with no hotspots if your column values are evenly spread. With bucketed 
columns you get the added bonus of efficient sampling in which Hive can pull a subset of data 
from one or more buckets. 

Combining both approaches in a partitioned, bucketed table can provide the optimal solution, 
but you must select your sharding columns carefully.  

In the final chapter, we'll look more closely at querying Hive and covering the higher value 
functionality HiveQL provides for Big Data analysis.  
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Chapter 9  Querying with HiveQL 

The Hive Query Language 

Hive’s biggest drivers are the broad functionality of HiveQL and its easy adoption for anyone 
with SQL experience. The complexity of identifying, loading, and transforming data can be 
isolated in development or ops teams, which will leave analysts free to query huge amounts of 
data using a familiar syntax. 

HiveQL keeps expanding with new releases of Hive, and the language has even been 
integrated into Apache Spark, so that in-memory Big Data workloads can be based on HiveQL, 
too.  

The language statements we've seen so far have been fundamentally similar to their SQL 
counterparts, and the same is true for the more advanced HiveQL features. We'll cover those in 
this chapter, along with some of the functions Hive provides and the mechanism for 
incorporating custom functionality in Hive. 

Joining data sources 

HiveQL supports inner, outer, cross, and semi joins. However, joins are not as richly supported 
as in SQL databases, because Hive only supports joins in which the comparison is for equal 
values—you can't join tables based on columns that have different values (x <> y) in Hive. 

The basic joins use standard SQL syntax—Code Listing 93 joins the servers and server_logs 

tables and returns the first log entry. 
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Code Listing 93: Inner Joins 

> select s.name, s.ipaddresses[0], l.loggedat, l.loglevel from server_logs 

l join servers s on l.serverid = s.name limit 1; 

+---------+--------------+-------------+-------------+--+ 

| s.name  |     _c1      | l.loggedat  | l.loglevel  | 

+---------+--------------+-------------+-------------+--+ 

| SCSVR1  | 192.168.2.1  | 1439546226  | W           | 

+---------+--------------+-------------+-------------+--+ 

> select s.name, s.ipaddresses[0], l.loggedat, l.loglevel from server_logs 

l, servers s where l.serverid = s.name limit 1; 

+---------+--------------+-------------+-------------+--+ 

| s.name  |     _c1      | l.loggedat  | l.loglevel  | 

+---------+--------------+-------------+-------------+--+ 

| SCSVR1  | 192.168.2.1  | 1439546226  | W           | 

+---------+--------------+-------------+-------------+--+ 

Both queries return the same results, as the explicit syntax (join … on) is interchangeable with 

the implicit syntax (in which tables are named and the join specification is in the where clause). 

Similarly, outer joins are specified in the same way as SQL databases and have the same 

effect on the output—Code Listing 94 returns all the servers that have never recorded any logs. 

Code Listing 94: Left Outer Joins 

> select s.name, s.site["dc"] from servers s left outer join server_logs l 

on s.name = l.serverid where l.serverid is null;  

+---------+---------+--+ 

| s.name  |   _c1   | 

+---------+---------+--+ 

| SCSVR2  | london  | 

| SCSVR3  | dublin  | 

+---------+---------+--+ 

The cross join statement returns the Cartesian product of the tables, as in SQL, and only 

left semi join is unusual. Most SQL databases support this join, but they don’t use an 

explicit clause. This join is equivalent to fetching all the rows in one table from which a matching 
column value in another table exists. 

In SQL databases, that is usually done in a where exists clause, but HiveQL has an explicit 

join type for it. Code Listing 95 shows how that looks as it returns only those servers which have 
recorded logs. 
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Code Listing 95: Left Semi Joins 

> select s.name, s.site["dc"] from servers s left semi join server_logs l 

on s.name = l.serverid;  

+---------+---------+--+ 

| s.name  |   c1    | 

+---------+---------+--+ 

| SCSVR1  | london  | 

+---------+---------+--+ 

Provided your join is valid, you can join any database objects no matter what storage engine 
they use. The examples so far have joined the external table servers with the internal table 

server_logs. Code Listing 96 joins an internal table (all_devices), an external HDFS table in 

JSON format (devices), and a view over an external HBase table (device_events_period). 

Code Listing 96: Joining Hive and HBase Tables 

> select de.period, de.eventname, d.device.deviceclass from 

device_events_period de join all_devices ad on ad.deviceid = de.deviceid 

join devices d on ad.deviceclass = d.device.deviceclass where de.period 

like '201601%'; 

+------------+---------------+--------------+--+ 

| de.period  | de.eventname  | deviceclass  | 

+------------+---------------+--------------+--+ 

| 20160128   | power.off     | tablet       | 

+------------+---------------+--------------+--+ 

As with any SQL database, joining large tables has a performance implication. Hive optimizes 
the joins wherever it can. With releases since version 0.11, the Hive query engine is becoming 
increasingly sophisticated at join optimization, and although HiveQL supports query hints for 
explicit optimization, often they are not needed. 

For example, Hive can join onto small tables much more efficiently if the entire table is loaded 
into memory in a map task. This can be explicitly requested in a query with the mapjoin hint, 

but Hive can do this automatically if the setting hive.auto.convert.join is true. 

Joining results with the union clause will be the last join we'll cover. This lets us combine two 

result sets with the same column structure. The current version of Hive (1.2.1) supports union 
all, which includes duplicate rows, and union distinct, which omits duplicates. 

Code Listing 97 shows the result of two union clauses and also demonstrates an outer query 

(the count) with a subquery (the union)—showing that subqueries must be named in HiveQL. 
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Code Listing 97: Union All and Union Distinct 

> select count(1) from (select * from devices a union all select * from 

devices b) s; 

+-----+--+ 

| c0  | 

+-----+--+ 

| 4   | 

+-----+--+ 

> select count(1) from (select * from devices a union distinct select * 

from devices b) s; 

+-----+--+ 

| c0  | 

+-----+--+ 

| 2   | 

+-----+--+ 

Aggregation and windowing 

Hive supports basic aggregation to group results by one or more columns, as well as more 
advanced windowing functions.  

Basic aggregation in Hive is done with the group by clause, which defines one or more 

columns to aggregate by and supports standard SQL aggregation functions such as sum, avg, 

count, min, and max. You can use several functions for different columns in the same query. 

In Code Listing 98 we group syslog entries by the process that generated them, selecting only 
processes with more than 1,000 entries and showing the process name, number of entries, and 
size of the largest message logged by the process. 
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Code Listing 98: Group by Aggregation 

> select process, count(process) as entryCount, max(length(message)) 

largestMessage from syslogs group by process having count(process) > 1000 

order by largestMessage desc; 

... 

+-----------------+-------------+-----------------+--+ 

|     process     | entrycount  | largestmessage  | 

+-----------------+-------------+-----------------+--+ 

| NetworkManager  | 1863        | 201             | 

| kernel          | 7444        | 191             | 

| thermald        | 2224        | 136             | 

| systemd         | 1232        | 93              | 

+-----------------+-------------+-----------------+--+ 

 Tip: You can't include functions like count and max in the order by clause of a 
query, but if you alias the results of those functions in the select clause, you can 
order by the aliases. In this example we use order by largestMessage, but if we tried 
order by max(length(message)), we'd get an error from the Hive compiler. 

As in SQL, you cannot include columns in a group by query unless they are in the group clause 

or are an aggregate function over the grouped set. The SQL:2003 specification defines window 
functions that let you aggregate over multiple partitions of the data set in a single query.  

 Note: Hive supports SQL:2003 windowing, but beware of the terminology 
collision—partitions in window functions have no relation to Hive's table partitioning; 
they are separate features with the same name. 

With analytical functions, you can get row-level data and aggregates in the same query. Code 
Listing 99 shows a query over syslogs that tells us which processes and process IDs have log 

entries containing the word 'CRON' (with abbreviated results). 
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Code Listing 99: Partitioning Queries 

> select date_format(loggedat, 'HH:mm'), process, message, count() 

over(partition by message order by loggedat) from syslogs where 

upper(message) like '%CRON%'; 

… 

+--------+----------+------------------------------------------------------ 

|   c0   | process  |                                           message                                           

| c3  | 

+--------+----------+------------------------------------------------------

---------------------------------------+-----+--+ 

| 19:53  | cron     | (CRON) INFO (Running @reboot jobs)                                                          

| 5   | 

... 

| 19:53  | anacron  | Job `cron.daily' started                                                                    

| 1   | 

| 19:53  | anacron  | Job `cron.daily' terminated                                                                 

| 2   | 

| 19:52  | anacron  | Job `cron.daily' terminated                                                                 

| 2   | 

Here we get complex results from a straightforward query. The query selects the message text 
and information about the log entry, partitioning by the message text and counting at that level. 
The results show the same aggregation as grouping by text and counting, but they include row 
level details—we can see the 'anacron' processed the same message twice, and we can see 
the different times it was logged. 

Analytic partitions can occur over multiple columns, which is an interesting way to present the 
data. Adding an order by in the over clause for the above query lets us view the results in time 

order with a running total of how many of the same messages have been logged up to that 
point, as shown in Code Listing 100. 
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Code Listing 100: Partitioned and Ordered Queries 

> select date_format(loggedat, 'HH:mm:ss'), process, message, count() 

over(partition by message order by loggedat) from syslogs where 

upper(message) like '%CRON%REBOOT%'; 

... 

+-----------+----------+-------------------------------------+-----+--+ 

|    c0     | process  |               message               | c3  | 

+-----------+----------+-------------------------------------+-----+--+ 

| 19:52:21  | cron     | (CRON) INFO (Running @reboot jobs)  | 1   | 

| 19:52:43  | cron     | (CRON) INFO (Running @reboot jobs)  | 2   | 

| 19:53:21  | cron     | (CRON) INFO (Running @reboot jobs)  | 3   | 

| 19:53:32  | cron     | (CRON) INFO (Running @reboot jobs)  | 4   | 

| 19:54:09  | cron     | (CRON) INFO (Running @reboot jobs)  | 5   | 

+-----------+----------+-------------------------------------+-----+--+ 

Partitioning by message and ordering by the timestamp gives us an incremental view of when 
the message in question was logged. We can take that one stage further using windowing 
functions. 

Windowing functions let you produce a result set in which values for a row are compared to 
values in the rows that precede or follow the current row. You can set the range explicitly for a 
window, or you can use functions that implicitly define a window (usually defaulting to single row 
on either side of the current row). 

You can combine scalar values, row-level aggregates, and windowing functions in the same 
query. Code Listing 101 repeats the previous query, but for each row it specifies the distance in 
time from this row to the one before it and the one after it. 
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Code Listing 101: Windowing with Lag and Lead 

> select date_format(loggedat, 'HH:mm:ss'), process, message, count() 

over(partition by message order by loggedat), lag(loggedat) over(partition 

by message order by loggedat) - loggedat, lead(loggedat) over(partition by 

message order by loggedat) - loggedat from syslogs where upper(message) 

like '%CRON%REBOOT%'; 

... 

+-----------+----------+-------------------------------------+-----+------- 

|    c0     | process  |               message               | c3  |           

c4           |          c5           | 

+-----------+----------+-------------------------------------+-----+------- 

| 19:52:21  | cron     | (CRON) INFO (Running @reboot jobs)  | 1   | NULL                   

| 0 00:00:21.455000000  | 

| 19:52:43  | cron     | (CRON) INFO (Running @reboot jobs)  | 2   | -0 

00:00:21.455000000  | 0 00:00:37.773000000  | 

| 19:53:21  | cron     | (CRON) INFO (Running @reboot jobs)  | 3   | -0 

00:00:37.773000000  | 0 00:00:10.958000000  | 

| 19:53:32  | cron     | (CRON) INFO (Running @reboot jobs)  | 4   | -0 

00:00:10.958000000  | 0 00:00:37.695000000  | 

| 19:54:09  | cron     | (CRON) INFO (Running @reboot jobs)  | 5   | -0 

00:00:37.695000000  | NULL                  | 

+-----------+----------+-------------------------------------+-----+------- 

Here the lag function gets the loggedAt value for the previous row (which is NULL for the first 

row) and lead gets the loggedAt value for the next row. The current row's loggedAt value is 

subtracted, which gives us the time distance in the result set. 

Windowing functions are a relatively simple way to get powerful results—like finding the change 
of values over time periods, identifying trends, and computing percentiles and ranks. 

Built-in functions 

We've seen many examples of HiveQL's built-in functions already, and they are usually well-
named and syntactically clear, so that they stand without much introduction. Hive has a suite of 
built-in functions which ship with the runtime, which means they are the same no matter which 
platform you work with. 

The Language Manual for Built-in Functions is a comprehensive reference that lists all available 
functions by the data type they apply to and includes the version from which they were 
introduced. 

Hive includes more than 150 built-in functions; here I'll cover some of the most useful. 

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inFunctions
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Date and timestamp functions 

ETL and ELT processes almost always include date conversions, and Hive has good support for 
converting between the high-fidelity TIMESTAMP type and other common string or numeric 
representations of dates. 

In Code Listing 102 we fetch the current UNIX timestamp (in seconds, using the system clock) 
and convert between string and long-integer date values. 

Code Listing 102: Date Conversion Functions 

> select unix_timestamp() from_clock, unix_timestamp('2016-02-07 21:00:00') 

from_string, from_unixtime(1454878996L) from_long; 

+-------------+--------------+----------------------+--+ 

| from_clock  | from_string  |      from_long       | 

+-------------+--------------+----------------------+--+ 

| 1454879183  | 1454878800   | 2016-02-07 21:03:16  | 

+-------------+--------------+----------------------+--+ 

Once we have a TIMESTAMP, we can extract parts of it, add or subtract other dates, or get the 
number of days between dates, as in Code Listing 103. 

Code Listing 103: Date Manipulation Functions 

> select weekofyear(to_date(current_timestamp)) week, date_add('2016-02-07 
21:00:00', 10) addition, datediff('2016-02-07', '2016-01-31') difference; 

+-------+-------------+-------------+--+ 

| week  |  addition   | difference  | 

+-------+-------------+-------------+--+ 

| 5     | 2016-02-17  | 7           | 

+-------+-------------+-------------+--+ 

String functions 

Hive includes all the usual functions for finding text within string (instr), splitting strings 

(substr), and joining them (concat). It also includes some useful overloaded functions that 

allow for common tasks with a single statement, as in Code Listing 104, which manipulates a 
URL. 
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Code Listing 104: String Manipulation Functions 

> select concat_ws('.', 'blog', 'sixeyed', 'com') as blog, 
parse_url('https://blog.sixeyed.com', 'PROTOCOL') as protocol;  

+-------------------+-----------+--+ 

|       blog        | protocol  | 

+-------------------+-----------+--+ 

| blog.sixeyed.com  | https     | 

+-------------------+-----------+--+ 

String functions for rich semantic analysis (ngrams and context-ngrams provide textual 

analysis for word frequency in sentences) and standard language processing functions also 
exist. Code Listing 105 shows the distance between two words (using the common Levenshtein 
measure of similarity) and the phonetic representation of a word. 

Code Listing 105: Language Processing Functions 

> select levenshtein('hive', 'hbase'), soundex('hive'); 

+------+-------+--+ 

| _c0  |  _c1  | 

+------+-------+--+ 

| 3    | H100  | 

+------+-------+--+ 

Mathematical functions 

As with strings, Hive supports all the usual mathematical functions (round, floor, abs), along 

with more unusual ones—such as trigonometric functions (sin, cos, tan). Having a wide range 

of built-in math functions makes complex analysis possible with simple queries. 

Code Listing 106 shows some useful mathematical functions. 
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Code Listing 106: Mathematical Functions 

> select pmod(14, 3) modulus, sqrt(91) root, factorial(6) factorial; 

+----------+--------------------+------------+--+ 

| modulus  |        root        | factorial  | 

+----------+--------------------+------------+--+ 

| 2        | 9.539392014169456  | 720        | 

+----------+--------------------+------------+--+ 

Collection functions 

With its support for collection data types, Hive provides functions for working with arrays and 
maps. Only a small number of functions are provided, but they cover all the functionality you're 
likely to need. 

Code Listing 107 shows how to extract a value from an array and sort the array, then combine 
them to find the largest value (the array function is used to define the literal array). 

Code Listing 107: Collection Functions 

> select array(26, 54, 43)[0], sort_array(array(26, 54, 43)), 
sort_array(array(26, 54, 43))[size(array(26, 54, 43))-1]; 

+------+-------------+------+--+ 

| _c0  |     _c1     | _c2  | 

+------+-------------+------+--+ 

| 26   | [26,43,54]  | 54   | 

+------+-------------+------+--+ 

Similar functions can be used with MAP column types so that you can also extract the set of 
keys or the set of values as arrays. A key function suitable with either type is explode, which 

generates a table from a collection, as shown in Code Listing 108. 
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Code Listing 108: Exploding Collection Data 

> select explode(split('Hive Succinctly', ' ')); 

+-------------+--+ 

|     col     | 

+-------------+--+ 

| Hive        | 

| Succinctly  | 

+-------------+--+ 

With explode, you can extract multiple rows from a single column value and use that to join 

against other tables. 

Other functions 

Standard SQL functions are available in Hive, such as converting between types (cast), 

checking for nulls (isnull, isnotnull), and making comparisons (if). Functions that return 

one value from a range are also standard SQL, as shown in Code Listing 109. 

Code Listing 109: Choosing between Values 

> select nvl(NULL, 'default') `nvl`, coalesce('first', 'second', NULL) 
`coalesce`, case true when cast(1 as boolean) then 'expected' else 
'unexpected' end `case`; 

+----------+-----------+-----------+--+ 

|   nvl    | coalesce  |   case    | 

+----------+-----------+-----------+--+ 

| default  | first     | expected  | 

+----------+-----------+-----------+--+ 

More unusual functions are also occasionally useful, as shown in Code Listing 110. 

Code Listing 110: Miscellaneous Functions 

> select pi() `pi`, current_user() `whoami`, hash('@eltonstoneman') `hash`; 

+--------------------+---------+-------------+--+ 

|         pi         | whoami  |    hash     | 

+--------------------+---------+-------------+--+ 

| 3.141592653589793  | root    | 1326977505  | 

+--------------------+---------+-------------+--+ 

Hive continues to add functions to the built-in set with AES encryption, SHA, and MD5 hashing, 
and CRC32 calculations available in Hive 2.0.0. 
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User defined functions 

You can extend Hive yourself with your own User Defined Functions (UDFs). This is a neat way 
of encapsulating commonly used logic in a language outside of HiveQL. The native language is 
Java, but Hive supports Hadoop streaming so you can write functions in any language that can 
be invoked through the operating system command-line. 

That means you can write functions in your preferred language and ensure the quality of custom 
components with unit testing and versioning. Provided you can wrap functions in a command 
line that reads from standard input and writes to standard output, you can also use existing 
libraries of code. 

A UDF consists of two aspects—making the library available to the Hive runtime and registering 
the function so you can use it in Hive queries.  

Java UDFs are the simplest operation. You write a class that extends 
org.apache.hadoop.hive.ql.exec.UDF, then build a JAR and copy it to Hive's auxiliary folder 

(specified with the HIVE_AUX_JARS_PATH setting). Next, you register the class with create 
temporary function [alias] as [UDF_class_name]. With that, you can call the function 

using the UDF alias. 

Streaming console apps are a little more involved. We'll use Python, a simple app that adds 
Value Added Tax to an integer amount, as an example in Code Listing 111. 

Code Listing 111: A Simple Python Script 

#!/usr/bin/python 

import sys 

for line in sys.stdin: 

  line = line.strip() 

  print int(line) * 1.2 

Next we need to copy the .py file to Hive using the add file command in Code Listing 112. 

Code Listing 112: Adding the Python Script to Hive 

> add file /tmp/add_vat_udf.py; 

INFO  : Added resources: [/tmp/add_vat_udf.py] 

And now we can access the UDF with the transform … using clause, which will invoke the 

command once for each row in the ResultSet of the Hive query. Code Listing 113 shows the 
UDF being invoked. 
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Code Listing 113: Invoking the Python Script in HiveQL 

> select transform(input) using 'python add_vat_udf.py' as vat_added from 
(select explode(array(10, 120, 1400)) as input) a; 

+------------+--+ 

| vat_added  | 

+------------+--+ 

| 12.0       | 

| 144.0      | 

| 1680.0     | 

 Note: You can't include columns from the result set and transformed column— 
the final result has to come entirely from the transform. So if I wanted to include the 
original net value in my query, I couldn't add it to the select statement before the 
transform, I'd need to write out the input in my Python script and tab-separate it from 
the output. 

Summary 

The familiarity of SQL, combined with complex analytical functions and the ability to make 
functions of your own code, make HiveQL a powerful and extensible query language.  

For the most part, you can run the exact same queries over any data source—whether that's an 
internal Hive table, a HDFS folder structure containing thousands of TSV files, or an HBase 
table with billions of rows.  

The Hive compiler generates the most efficient set of map/reduce jobs that it can in order to 
represent the HiveQL query in a format that can be executed on Hadoop. Presenting a simple 
interface that can trigger hundreds of compute hours behind the scenes with no further user 
interaction makes Hive an attractive component in the Big Data stack. 

Next steps 

We've covered a lot of ground in this short book, but there's plenty more to learn. In order to 
address Hive succinctly, I've focused on the functional parts of the language and the runtime, 
which means I haven't even touched on performance, query optimization, or use of Hive with 
other clients. Those are the obvious next steps if you want to learn more about Hive. 

The hive-succinctly Docker image is a good place to get started. It's set up with Hadoop 

running in pseudo-distributed mode and configured for YARN, which means it's suitable for 
testing long-running queries. You can drop your own data onto the container using Docker's 
copy command, then load it into Hive using the tools we saw in Chapter 6  ETL with Hive. 
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After that, if you want to try out Hive in production to see how it performs with your data at a 
much bigger scale, you can easily fire up a Hadoop cluster running Hive in the cloud. The 
Elastic Map Reduce platform in Amazon Web Services and the HDInsight platform in Microsoft 
Azure both support Hive, and both will get you up and running in no time.  
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