

16

Chapter 1 JavaScript Objects

Creating objects

In JavaScript, objects are king: Almost everything is an object or acts like an object.
Understand objects and you will understand JavaScript. So let's examine the creation of
objects in JavaScript.

An object is just a container for a collection of named values (aka properties). Before we
look at any JavaScript code, let's first reason this out. Take myself, for example. Using
plain language, we can express in a table, a "cody":

cody

property property value

living True

age 33

gender Male

The word "cody" in the table is just a label for the group of property names and
corresponding values that make up exactly what a cody is. As you can see from the
table, I am living, 33, and a male.

JavaScript, however, does not speak in tables. It speaks in objects, which are similar to
the parts contained in the "cody” table. Translating the cody table into an actual
JavaScript object would look like this:

Sample: sample1.html

<!DOCTYPE html><html lang="en"><body><script>

 // Create the cody object
 var cody = new Object();

 // then fill the cody object with properties (using dot notation).
 cody.living = true;
 cody.age = 33;
 cody.gender = 'male';

17

 console.log(cody); // Logs Object {living = true, age = 33, gender =
'male'}

</script></body></html>

Keep this at the forefront of your mind: objects are really just containers for properties,
each of which has a name and a value. This notion of a container of properties with
named values (i.e. an object) is used by JavaScript as the building blocks for expressing
values in JavaScript. The cody object is a value which I expressed as a JavaScript

object by creating an object, giving the object a name, and then giving the object
properties.

Up to this point, the cody object we are discussing has only static information. Since we

are dealing with a programing language, we want to program our cody object to

actually do something. Otherwise, all we really have is a database akin to JSON. In
order to bring the cody object to life, I need to add a property method. Property

methods perform a function. To be precise, in JavaScript, methods are properties that
contain a Function() object, whose intent is to operate on the object the function is

contained within.

If I were to update the cody table with a getGender method, in plain English it would

look like this:

cody object

property property value

living True

age 33

gender Male

getGender return the value of gender

http://www.json.org/
http://bclary.com/2004/11/07/%23a-4.3.3

18

Using JavaScript, the getGender method from the updated cody table would look like

so:

Sample: sample2.html

<!DOCTYPE html><html lang="en"><body><script>

 var cody = new Object();
 cody.living = true;
 cody.age = 33;
 cody.gender = 'male';
 cody.getGender = function () { return cody.gender; };

 console.log(cody.getGender()); // Logs 'male'.

</script></body></html>

The getGender method, a property of the cody object, is used to return one of cody’s

other property values: the value "male" stored in the gender property. What you must

realize is that without methods, our object would not do much except store static
properties.

The cody object we have discussed thus far is what is known as an Object() object.

We created the cody object using a blank object that was provided to us by invoking

the Object() constructor function. Think of constructor functions as a template or

cookie cutter for producing predefined objects. In the case of the cody object, I used the

Object() constructor function to produce an empty object which I named cody.

Because cody is an object constructed from the Object() constructor, we call cody an

Object() object. What you really need to understand, beyond the creation of a simple

Object() object like cody, is that the majority of values expressed in JavaScript are

objects (primitive values like "foo", 5, and true are the exception but have equivalent

wrapper objects).

Consider that the cody object created from the Object() constructor function is not

really different from a string object created via the String() constructor function. To

drive this fact home, examine and contrast the following code:

Sample: sample3.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject = new Object(); // Produces an Object() object.
 myObject['0'] = 'f';
 myObject['1'] = 'o';
 myObject['2'] = 'o';

 console.log(myObject); // Logs Object { 0="f", 1="o", 2="o"}

19

 var myString = new String('foo'); // Produces a String() object.

 console.log(myString); // Logs foo { 0="f", 1="o", 2="o"}

</script></body></html>

As it turns out, myObject and myString are both . . . objects! They both can have

properties, inherit properties, and are produced from a constructor function. The
myString variable containing the 'foo' string value seems to be as simple as it goes,

but amazingly it’s got an object structure under its surface. If you examine both of the
objects produced you will see that they are identical objects in substance but not in
type. More importantly, I hope you begin to see that JavaScript uses objects to express
values.

Notes
You might find it odd to see the string value 'foo' in object form because typically a

string is represented in JavaScript as a primitive value (e.g., var myString = 'foo';).

I specifically used a string object value here to highlight that anything can be an object,
including values that we might not typically think of as an object (e.g., string, number,
Boolean). Also, I think this helps explain why some say that everything in JavaScript
can be an object.

JavaScript bakes the String() and Object() constructor functions into the language

itself to make the creation of a String() object and Object() object trivial. But you, as

a coder of the JavaScript language, can also create equally powerful constructor
functions. In the following sample, I demonstrate this by defining a non-native custom
Person() constructor function so that I can create people from it.

Sample: sample4.html

<!DOCTYPE html><html lang="en"><body><script>

 // Define Person constructor function in order to create custom Person()
objects later.
 var Person = function (living, age, gender) {
 this.living = living;
 this.age = age;
 this.gender = gender;
 this.getGender = function () { return this.gender; };
 };

 // Instantiate a Person object and store it in the cody variable.
 var cody = new Person(true, 33, 'male');

 console.log(cody);

20

 /* The String() constructor function that follows, having been defined by
JavaScript, has the same pattern. Because the string constructor is native to
JavaScript, all we have to do to get a string instance is instantiate it. But
the pattern is the same whether we use native constructors like String() or
user-defined constructors like Person(). */

 // Instantiate a String object stored in the myString variable.
 var myString = new String('foo');

 console.log(myString);

</script></body></html>

The user-defined Person() constructor function can produce Person objects, just as

the native String() constructor function can produce string objects. The Person()
constructor is no less capable, and is no more or less malleable, than the native
String() constructor or any of the native constructors found in JavaScript.

Remember how the cody object we first looked at was produced from an Object(). It’s

important to note that the Object() constructor function and the new Person()
constructor shown in the previous code example can give us identical outcomes. Both
can produce an identical object with the same properties and property methods.
Examine the two sections of code that follow, showing that codyA and codyB have

the same object values even though they are produced in different ways.

Sample: sample5.html

<!DOCTYPE html><html lang="en"><body><script>

 // Create a codyA object using the Object() constructor.

 var codyA = new Object();
 codyA.living = true;
 codyA.age = 33;
 codyA.gender = 'male';
 codyA.getGender = function () { return codyA.gender; };

 console.log(codyA); // Logs Object {living=true, age=33, gender="male",
...}

 /* The same cody object is created below, but instead of using the native
Object() constructor to create a one-off cody, we first define our own
Person() constructor that can create a cody object (and any other Person
object we like) and then instantiate it with "new". */

 var Person = function (living, age, gender) {
 this.living = living;

21

 this.age = age;
 this.gender = gender;
 this.getGender = function () { return this.gender; };
 };

 var codyB = new Person(true, 33, 'male');

 console.log(codyB); // Logs Object {living=true, age=33, gender="male",
...}

</script></body></html>

The main difference between the codyA and codyB objects is not found in the object

itself, but in the constructor functions used to produce the objects. The codyA object

was produced using an instance of the Object() constructor. The Person()

constructor produced codyB, but can also be used as a powerful, centrally defined

object "factory" to be used for creating more Person() objects. Crafting your own

constructors for producing custom objects also sets up prototypal inheritance for
Person() instances.

Both solutions resulted in the same complex object being created. It’s these two
patterns that are most commonly used for constructing objects.

JavaScript is really just a language that is prepackaged with a few native object
constructors used to produce complex objects which express a very specific type of
value (e.g., numbers, strings, functions, objects, arrays, etc.), as well as the raw
materials via Function() objects for crafting user-defined object constructors (e.g.,

Person()). The end result—no matter the pattern for creating the object—is typically

the creation of a complex object.

Understanding the creation, nature, and usage of objects and their primitive equivalents
is the focus of the rest of this book.

JavaScript constructors create and return object instances

The role of a constructor function is to create multiple objects that share certain qualities
and behaviors. Basically, a constructor function is a cookie cutter for producing objects
that have default properties and property methods.

If you said, "A constructor is nothing more than a function," then I would reply, "You are
correct—unless that function is invoked using the new keyword." (For example, new
String('foo')). When this happens, a function takes on a special role, and JavaScript

treats the function as special by setting the value of this for the function to the new

object that is being constructed. In addition to this special behavior, the function will
return the newly created object (i.e. this) by default instead of the value false. The

22

new object that is returned from the function is considered to be an instance of the
constructor function that constructs it.

Consider the Person() constructor again, but this time read the comments in the

following code sample carefully, as they highlight the effect of the new keyword.

Sample: sample6.html

<!DOCTYPE html><html lang="en"><body><script>

 /* Person is a constructor function. It was written with the intent of
being used with the new keyword. */
 var Person = function Person(living, age, gender) {
 // "this" below is the new object that is being created (i.e. this =
new Object();)
 this.living = living;
 this.age = age;
 this.gender = gender;
 this.getGender = function () { return this.gender; };
 // When the function is called with the new keyword, "this" is
returned instead of false.
 };

 // Instantiate a Person object named cody.
 var cody = new Person(true, 33, 'male');

 // cody is an object and an instance of Person()
 console.log(typeof cody); // Logs object.
 console.log(cody); // Logs the internal properties and values of cody.
 console.log(cody.constructor); // Logs the Person() function.

</script></body></html>

The sample6.html code leverages a user-defined constructor function (i.e. Person()) to

create the cody object. This is no different from the Array() constructor creating an

Array() object (e.g., new Array()) in the following code.

Sample: sample7.html

<!DOCTYPE html><html lang="en"><body><script>

 // Instantiate an Array object named myArray.
 var myArray = new Array(); // myArray is an instance of Array.

 // myArray is an object and an instance of the Array() constructor.
 console.log(typeof myArray); // Logs object! What? Yes, arrays are a type
of object.

23

 console.log(myArray); // Logs []

 console.log(myArray.constructor); // Logs Array()

</script></body></html>

In JavaScript, most values (excluding primitive values) involve objects being created, or
instantiated, from a constructor function. An object returned from a constructor is called
an instance. Make sure you are comfortable with these semantics, as well as the
pattern of leveraging constructors to produce objects.

The native JavaScript object constructors

The JavaScript language contains nine native (or built-in) object constructors. These
objects are used by JavaScript to construct the language, and by "construct" I mean
these objects are used to express object values in JavaScript code, as well as
orchestrate several features of the language. Thus, the native object constructors are
multifaceted in that they produce objects, but are also leveraged in facilitating many of
the language’s programming conventions. For example, functions are objects created
from the Function() constructor, but are also used to create other objects when called

as constructor functions using the new keyword.

The nine native object constructors that come prepackaged with JavaScript are:

 Number()

 String()

 Boolean()

 Object()

 Array()

 Function()

 Date()

 RegExp()

 Error()

JavaScript is mostly constructed from these nine objects (as well as string, number, and
Boolean primitive values). Understanding these objects in detail is key to taking
advantage of JavaScript’s unique programming power and language flexibility.

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Number
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/String
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Boolean
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Function
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Date
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/RegExp
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Error

24

Notes
The Math object is the oddball here. It's a static object rather than a constructor

function, meaning you can’t do this: var x = new Math(). But you can use it as if it

has already been instantiated (e.g., Math.PI). Truly, Math is just an object namespace

set up by JavaScript to house math functions.

The native objects are sometimes referred to as "global objects" since they are the
objects that JavaScript has made natively available for use. Do not confuse the term
global object with the "head" global object that is the topmost level of the scope chain,
for example, the window object in all web browsers.

The Number(), String(), and Boolean() constructors not only construct objects; they
also provide a primitive value for a string, number, and Boolean, depending upon how
the constructor is leveraged. If you call these constructors directly, then a complex
object is returned. If you simply express a number, string, or Boolean value in your code
(primitive values like 5, "foo", and true), then the constructor will return a primitive value

instead of a complex object value.

User-defined/non-native object constructor functions

As you saw with the Person() constructor, we can make our own constructor functions
from which we can produce not just one, but multiple custom objects.

In the following sample, I present the familiar Person() constructor function:

Sample: sample8.html

<!DOCTYPE html><html lang="en"><body><script>

 var Person = function (living, age, gender) {
 this.living = living;
 this.age = age;
 this.gender = gender;
 this.getGender = function () { return this.gender; };
 };

 var cody = new Person(true, 33, 'male');
 console.log(cody); // Logs Object {living=true, age=33, gender="male",
...}

 var lisa = new Person(true, 34, 'female');
 console.log(lisa); // Logs Object {living=true, age=34, gender="female",
...}

</script></body></html>

As you can see, by passing unique parameters and invoking the Person() constructor

function, you could easily create a vast number of unique people objects. This can be

