

 1

 13

Chapter 1 Hello, iOS!

In this chapter, we’ll introduce the three main design patterns underlying all iOS app
development: model-view-controller, delegate objects, and target-action. The model-view-
controller pattern is used to separate the user interface from its underlying data and logic. The
delegate object pattern makes it easy to react to important events by abstracting the handling
code into a separate object. Finally, the target-action pattern encapsulates a behavior, which
provides a very flexible way to perform actions based on user input.

We’ll talk about all of these patterns in more detail while we’re building up a simple example
application. This will also give us some experience with basic user interface components like
buttons, labels, and text fields. By the end of this chapter, you should be able to configure basic
layouts and capture user input on your own.

Creating a New Project

First, we need to create a new Xcode project. Open Xcode and navigate to File > New >
Project, or press Cmd+Shift+N to open the template selection screen. In this chapter, we’ll be
creating the simplest possible program: a Single View Application. Select the template, and then
click Next.

Figure 2: Selecting the Single View Application template

Use HelloWorld for the Product Name, anything you like for Organization Name, and edu.self
for the Company Identifier. Make sure that Devices is set to iPhone and that the Use
Storyboards and Use Automatic Reference Counting options are selected:

 14

Figure 3: Configuration for our HelloWorld app

Then, choose a location to save the file, and you’ll have your very first iOS app to experiment
with.

Compiling the App

As with the command-line application from Objective-C Succinctly, you can compile the project
by clicking the Run button in the upper-left corner of Xcode or using the Cmd+R keyboard
shortcut. But, unlike Objective-C Succinctly, our application is a graphical program that is
destined for an iPhone. Instead of simply compiling the code and executing it, Xcode launches it
using the iOS Simulator application. This allows us to see what our app will look like on the
iPhone without having to upload it to an actual device every time we make the slightest change.
The template we used is a blank project, so you’ll just see a white screen when you run it:

 15

Figure 4: Running the HelloWorld project in the iOS Simulator

While we can’t really tell with our current app, the simulator is a pretty detailed replica of the
actual iPhone environment. You can click the home button, which will display all the apps that
we’ve launched in the simulator, along with a few built-in ones. As we’ll see in a moment, this
lets us test the various states of our application.

App Structure Overview

Before we start writing any code, let’s take a brief tour of the files provided by the template. This
section introduces the most important aspects of our HelloWorld project.

main.m

As with any Objective-C program, an application starts in the main() function of main.m. The

main.m file for our HelloWorld project can be found in the Supporting Files folder in Xcode’s
Project Navigator panel. The default code provided by your template should look like the
following:

#import <UIKit/UIKit.h>

#import "AppDelegate.h"

 16

int main(int argc, char *argv[]) {
 @autoreleasepool {
 return UIApplicationMain(argc,
 argv,
 nil,
 NSStringFromClass([AppDelegate class]));
 }
}

This launches your application by calling the UIApplicationMain() function, and passing

[AppDelegate class] as the last argument tells the application to transfer control over to our

custom AppDelegate class. We’ll discuss this more in the next section.

For most applications, you’ll never have to change the default main.m—any custom setup can
be deferred to the AppDelegate or ViewController classes.

AppDelegate.h and AppDelegate.m

The iOS architecture relies heavily on the delegate design pattern. This pattern lets an object
transfer control over some of its tasks to another object. For example, every iOS application is
internally represented as a UIApplication object, but developers rarely create a UIApplication

instance directly. Instead, the UIApplicationMain() function in main.m creates one for you

and points it to a delegate object, which then serves as the root of the application. In the case of
our HelloWorld project, an instance of the custom AppDelegate class acts as the delegate

object.

This creates a convenient separation of concerns: the UIApplication object deals with the

nitty-gritty details that happen behind the scenes, and it simply informs our custom
AppDelegate class when important things happen. This gives you as a developer the

opportunity to react to important events in the app’s life cycle without worrying about how those
events are detected or processed. The relationship between the built-in UIApplication

instance and our AppDelegate class can be visualized as follows:

http://developer.apple.com/library/ios/#DOCUMENTATION/UIKit/Reference/UIApplication_Class/Reference/Reference.html

 17

Figure 5: Using AppDelegate as the delegate object for UIApplication

Recall from Objective-C Succinctly that a protocol declares an arbitrary group of methods or
properties that any class can implement. Since a delegate is designed to take control over an
arbitrary set of tasks, this makes protocols the logical choice for representing delegates. The
UIApplicationDelegate protocol declares the methods that a delegate for UIApplication

should define, and we can see that our AppDelegate class adopts it in AppDelegate.h:

@interface AppDelegate : UIResponder <UIApplicationDelegate>

This is what formally turns our AppDelegate class into the delegate for the main

UIApplication instance. If you open AppDelegate.m, you’ll also see implementation stubs for

the following methods:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions;
- (void)applicationWillResignActive:(UIApplication *)application;
- (void)applicationDidEnterBackground:(UIApplication *)application;
- (void)applicationWillEnterForeground:(UIApplication *)application;
- (void)applicationDidBecomeActive:(UIApplication *)application;
- (void)applicationWillTerminate:(UIApplication *)application;

These methods are called by UIApplication when certain events occur internally. For

example, the application:didFinishLaunchingWithOptions: method is called immediately

after the application launches. Let’s take a look at how this works by adding an NSLog() call to

some of these methods:

- (BOOL)application:(UIApplication *)application

http://developer.apple.com/library/ios/#documentation/uikit/reference/UIApplicationDelegate_Protocol/Reference/Reference.html

 18

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 NSLog(@"Application has been launched");
 return YES;
}
- (void)applicationDidEnterBackground:(UIApplication *)application {
 NSLog(@"Entering background");
}
- (void)applicationWillEnterForeground:(UIApplication *)application {
 NSLog(@"Entering foreground");
}

Now, when you compile the project and run it in the iOS Simulator, you should see the
Application has been launched message as soon as it opens. You can click the simulator’s

home button to move the application to the background, and click the application icon on the
home screen to move it back to the foreground. Internally, clicking the home button makes the
UIApplication instance call applicationDidEnterBackground::

Figure 6: Moving the HelloWorld application to the background

This should display the following messages in Xcode’s output panel:

Figure 7: Xcode output after clicking the home button in the iOS Simulator

These NSLog() messages show us the basic mechanics behind an application delegate, but in

 19

the real world, you would write custom setup and cleanup code to these methods. For example,
if you were creating a 3-D application with OpenGL, you would need to stop rendering content
and free up any associated resources in the applicationDidEnterBackground: method. This

makes sure that your application isn’t hogging memory after the user closes it.

To summarize, our AppDelegate class serves as the practical entry point into our application.

Its job is to define what happens when an application opens, closes, or goes into a number of
other states. It accomplishes this by acting as a delegate for the UIApplication instance,

which is the internal representation of the entire application.

ViewController.h and ViewController.m

Outside of the application delegate, iOS applications follow a model-view-controller (MVC)
design pattern. The model encapsulates the application data, the view is the graphical
representation of that data, and the controller manages the model/view components and
processes user input.

Figure 8: The model-view-controller pattern used by iOS applications

Model data is typically represented as files, objects from the CoreData framework, or custom
objects. The application we’re building in this chapter doesn’t need a dedicated model
component; we’ll be focusing on the view and controller aspects of the MVC pattern until the
next chapter.

View components are represented by the UIView class. Its UIButton, UILabel, UITextField

and other subclasses represent specific types of user interface components, and UIView itself

can act as a generic container for all of these objects. This means that assembling a user

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/CoreData_ObjC/_index.html
http://developer.apple.com/library/ios/documentation/uikit/reference/uiview_class/uiview/uiview.html

