
 
1 

  



 
2 

 

By  
Lyle Luppes 

 

Foreword by Daniel Jebaraj 
 

 

 

 

 

 

 

 

 

 

 

  



 
3 

Copyright © 2012 by Syncfusion Inc. 

2501 Aerial Center Parkway 

Suite 200 

Morrisville, NC 27560 

USA 

All rights reserved. 

 

mportant licensing information. Please read. 

This book is available for free download from www.syncfusion.com on completion of a 

registration form. 

If you obtained this book from any other source, please register and download a free copy from 

www.syncfusion.com. 

This book is licensed for reading only if obtained from www.syncfusion.com. 

This book is licensed strictly for personal, educational use. 

Redistribution in any form is prohibited. 

The authors and copyright holders provide absolutely no warranty for any information provided. 

The authors and copyright holders shall not be liable for any claim, damages, or any other 

liability arising from, out of, or in connection with the information in this book. 

Please do not use this book if the listed terms are unacceptable. 

Use shall constitute acceptance of the terms listed. 

 

dited by 

This publication was edited by Jay Natarajan, senior product manager, Syncfusion, Inc. 

I 

E 

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/


 
4 

Table of Contents 

The Story behind the Succinctly Series  of Books .............................................................. 8 

About the Author ................................................................................................................. 10 

Preface .................................................................................................................................. 11 

Target Audience ................................................................................................................. 11 

Tools Needed ..................................................................................................................... 11 

Formatting .......................................................................................................................... 11 

Using Code Examples ........................................................................................................ 11 

Language Choices .............................................................................................................. 12 

Chapter 1   I Love MVC 4! .................................................................................................... 13 

Chapter 2   Why a Book about Mobile-Friendly Websites? ............................................... 14 

Chapter 3   Designing Mobile-Friendly Websites ............................................................... 15 

Desktop Layout versus Mobile Layout ................................................................................ 15 

Multicolumn versus Single-Column Design ..................................................................... 16 

Tapping versus Hovering and Clicking ............................................................................ 17 

Large Screens and Collapsible Containers ..................................................................... 17 

Desktop != Tablet != Phone ................................................................................................ 19 

Chapter 4   Building an MVC Mobile Website ..................................................................... 20 

The Mobile Application Template ........................................................................................ 20 

The Internet Application Template ...................................................................................... 22 

Simulating a Mobile Device for Testing ........................................................................... 23 

Recognizing Mobile Devices ........................................................................................... 25 

Including jQuery.Mobile ................................................................................................... 27 

Creating a Mobile Layout Page ....................................................................................... 27 

MVC 4 Bundles ............................................................................................................... 28 



 
5 

Creating a Custom Bundle .............................................................................................. 28 

Using Our New Layout Files ........................................................................................... 31 

Chapter 5   Making It Mobile-Friendly ................................................................................. 34 

Fixing the Headers ............................................................................................................. 34 

Styling Our List Objects ...................................................................................................... 34 

Detour: Why do we need three copies of everything? ......................................................... 35 

Adding Home and Back Buttons ......................................................................................... 36 

Chapter 6   Making It Look Good ........................................................................................ 39 

jQuery.Mobile Sections ....................................................................................................... 39 

The Page Section ........................................................................................................... 39 

The Header Section ........................................................................................................ 39 

The Content Section ....................................................................................................... 39 

The Footer Section ......................................................................................................... 40 

The Navbar Section ........................................................................................................ 40 

Putting Your Menu into a Tab Bar ....................................................................................... 40 

Other Tab Bar Considerations ......................................................................................... 42 

Alternate Syntax for the Navbar Links ............................................................................. 42 

Yet Another Alternate Navbar Syntax .............................................................................. 43 

Creating Custom Themes and Colors ................................................................................. 43 

Chapter 7   Using Mobile Device Meta Tags ....................................................................... 46 

The Viewport Tag ............................................................................................................... 46 

The Web Application Tags .................................................................................................. 47 

Use Caution When Using Web App Mode ....................................................................... 47 

Creating a Nice Icon on Your Desktop ............................................................................ 48 

Prompting the User to Create a Shortcut ........................................................................ 50 

Creating a Splash Screen ................................................................................................... 51 



 
6 

Chapter 8   Tips and Tricks ................................................................................................. 54 

Using Partial Views to Minimize Duplication ....................................................................... 54 

Collapsible Containers and Reusable Content .................................................................... 56 

Desktop/Mobile ViewSwitcher............................................................................................. 58 

HTML 5 Tags ...................................................................................................................... 60 

Editor Templates ............................................................................................................. 60 

Search Fields .................................................................................................................. 64 

Special HTML 5 Attributes .............................................................................................. 64 

The MVC 4 Tilde Tidbit ....................................................................................................... 65 

Chapter 9   More jQuery.Mobile Features ........................................................................... 66 

jQuery.Mobile Container Objects ........................................................................................ 66 

Nested Collapsible Containers ........................................................................................ 66 

Field Container ............................................................................................................... 67 

List View ......................................................................................................................... 67 

Columns ......................................................................................................................... 70 

Button ............................................................................................................................. 70 

Dialogs ............................................................................................................................ 71 

NoJS ............................................................................................................................... 71 

Multipage Documents ......................................................................................................... 72 

Custom Icons ..................................................................................................................... 72 

Mini UI Elements ................................................................................................................ 75 

jQuery.Mobile Startup Options ............................................................................................ 75 

Chapter 10   Enhancing Performance ................................................................................. 76 

Measuring Performance ..................................................................................................... 76 

Enabling Client Caching with Web.config ........................................................................... 76 

Using a CDN ...................................................................................................................... 77 



 
7 

Data Prefetch Tag .............................................................................................................. 78 

Chapter 11   Still Using MVC 3? .......................................................................................... 79 

Speed Bump: MVC 3 and MVC 4 side by side .................................................................... 79 

Back to the MVC 3 Project .................................................................................................. 80 

Chapter 12   Conclusion ...................................................................................................... 86 

Endnotes .............................................................................................................................. 87 



 
8 

The Story behind the Succinctly Series 
 of Books 

Daniel Jebaraj, Vice President 
Syncfusion, Inc. 

taying on the cutting edge 

As many of you may know, Syncfusion is a provider of software components for the 
Microsoft platform. This puts us in the exciting but challenging position of always 
being on the cutting edge. 

Whenever platforms or tools are shipping out of Microsoft, which seems to be about 
every other week these days, we have to educate ourselves, quickly. 

Information is plentiful but harder to digest 

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.  

While more information is becoming available on the Internet and more and more books are 
being published, even on topics that are relatively new, one aspect that continues to inhibit us is 
the inability to find concise technology overview books.  

We are usually faced with two options: read several 500+ page books or scour the web for 
relevant blog posts and other articles. Just as everyone else who has a job to do and customers 
to serve, we find this quite frustrating. 

The Succinctly series 

This frustration translated into a deep desire to produce a series of concise technical books that 
would be targeted at developers working on the Microsoft platform.  

We firmly believe, given the background knowledge such developers have, that most topics can 
be translated into books that are between 50 and 100 pages.  

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything 
wonderful born out of a deep desire to change things for the better? 

The best authors, the best content 

Each author was carefully chosen from a pool of talented experts who shared our vision. The 
book you now hold in your hands, and the others available in this series, are a result of the 
authors’ tireless work. You will find original content that is guaranteed to get you up and running 
in about the time it takes to drink a few cups of coffee. 

S 



 
9 

Free forever  

Syncfusion will be working to produce books on several topics. The books will always be free. 
Any updates we publish will also be free.  

Free? What is the catch? 

There is no catch here. Syncfusion has a vested interest in this effort.  

As a component vendor, our unique claim has always been that we offer deeper and broader 
frameworks than anyone else on the market. Developer education greatly helps us market and 
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn 
the moon to cheese!” 

Let us know what you think 

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at 
succinctly-series@syncfusion.com.  

We sincerely hope you enjoy reading this book and that it helps you better understand the topic 
of study. Thank you for reading. 

 

 

 

 

 

 

 

 

 

 

Please follow us on Twitter and “Like” us on Facebook to help us spread the  
word about the Succinctly series! 

                      

mailto:succinctly-series@syncfusion.com
https://twitter.com/syncfusion
https://www.facebook.com/Syncfusion


 
10 

About the Author 

Lyle Luppes has been developing applications for more than 25 years now, starting on 
mainframes and AS/400s, then moving to client-server and Windows applications, and then on 
to web development. After working at very large companies and very small consulting firms, he 
started his own business in 2000, doing just about everything from building servers to wiring 
networks to being a database administrator. He enjoys doing a wide variety of tasks, but likes 
pure creative development best. Lyle has taught classes at corporations and at the college 
level, and has mentored many developers along the way. Now that his kids are grown and out 
of the house, he’s looking for new opportunities to share what he has learned. 



 
11 

Preface 

Target Audience 

This book is for developers who are currently using Microsoft ASP.NET and MVC to create 
websites, and who are interested in creating websites that play nicely with mobile devices or 
want to update their existing site. If that‘s you, I‘m assuming that you already have a working 
knowledge of MVC, so this book will not give you introductory lessons of what MVC is or tell you 
how to use it. It‘s designed to be a quick read for developers and to help them understand the 
concepts they need to know to improve their websites when it comes to dealing with mobile 
devices. 

Tools Needed 

In order to be able to follow along with all of the examples in this book, you will need the 
following: 

 Microsoft Visual Studio 2010 or Visual Studio 2012 

 MVC 4 (Although most of this book targets MVC 4, Chapter 11 addresses how you can 
implement these concepts in MVC 3). This book is based on the MVC 4 RTM version. 

If you have something less than this list, you may or may not be able to run all of the examples.  

Formatting 

Throughout the book, I have used several formatting conventions. 

Code Blocks 

protected void Application_Start() 

Personal Comments 

This is a comment related to the current section. 

Using Code Examples 

The sample projects are available at https://bitbucket.org/syncfusion/mobilemvc-succinctly.  

This book is designed to help you learn the techniques quickly and get your job done, so you 
are free to use the code in this book for your programs or documentation. You do not need to 
contact the author for permission unless you are reproducing major portions of the code or 
writing a program based on one of the example projects. Answering a question by citing this 
book and quoting examples does not require permission. 

https://bitbucket.org/syncfusion/mobilemvc-succinctly


 
12 

Similarly, you are free to use the icons and images in the samples. The images are designed to 
be a placeholder so that you know what size and shape you need to have for icons and start-up 
splash screens. Feel free to use the Photoshop files as a starting place to create your own 
images that actually look nice. I‘ve intentionally made them look kind of ugly to discourage you 
from actually using them in a real app.  

Language Choices 

To all of you Visual Basic lovers out there: I sympathize with you. I developed using VB for 
almost 15 years and loved it, starting with VB3, but I made the jump to C# a few years ago 
because of my clients. All of the samples in this book are in C# because it seems to be the 
prevalent language nowadays. 



 
13 

Chapter 1   I Love MVC 4! 

“This is your last chance. After this, there is no turning back. You take the blue 
pill—the story ends, you wake up in your bed and believe whatever you want to 

believe. You take the red pill—you stay in Wonderland and I show you how deep 
the rabbit hole goes.” 
    Morpheus in The Matrix 

I’ve been writing websites for many years. Back in 1997, I wrote my first e-commerce website 
for a local printing company using Cold Fusion 1.0 and I thought that product was awesome at 
the time. I moved on to a company that developed a lot of websites during the infamous dot-
com bubble which went bankrupt a few years later. During that time, we did a lot of Classic ASP 
development and I found a lot to like in that model. We alternated back and forth between ASP 
and Cold Fusion depending on what we needed. During those early years of websites and e-
commerce 1.0, we learned a lot about how to streamline websites. With people hitting sites 
using a 9600 baud modem, it had to be as small and efficient as possible, and 100 KB was our 
upper limit for page size.  

In 2002, Microsoft released ASP.NET, and developers had to learn a totally new system that 
was very different than the ASP we had just mastered. This new model looked a lot like the 
Windows Forms programming model and once we got over the learning curve, life was good for 
a while. We learned about the evils of the ViewState and Session management and all the 
things that could trip you up and bloat your page. But as connections got faster, it really didn’t 
bother us too much that our pages started to put on a little extra weight. 

One of the things that has always bothered me about ASP.NET Web Forms is the HTML it 
generates—have you ever taken a good look at that? Trying to trace through that code was a 
nightmare. When creating JavaScript, the field names and IDs were always an issue. You 
always had to ask yourself, “Do I have to put a ‘ctl100_’ in front of this field?“ But we put up with 
it because that’s how ASP.NET worked and it was better than the alternative. 

When the first versions of MVC came along, I wasn’t too excited about them. It wasn’t until I 
looked at MVC 3 and the new Razor syntax that I began to get interested. As I researched it 
more, I learned more about the new programming model that MVC projects bring to ASP.NET. 
There was a style and simplicity that reminded me of the good old days of Classic ASP, but with 
all of the new functionality and richness of a modern application.  

Along with MVC 3 came the Entity Framework and Code First, and those particular ideas really 
resonated with me. My philosophy of programming tends to be what I refer to as “DDD”—
Database-Driven Development. As I approach a project, I tend to think of things in terms of 
databases, models, and entities. I usually have a good idea in my head of how I can store the 
data for the application about the same time I start having a semi-rough screen design. MVC 
allowed me to follow my usual development path and opened up my development to many other 
possibilities. I fell in love.  

I realize that MVC is not the ultimate development tool, and not everyone is going to love it. But 
as someone who has worked in web development in Microsoft-centered shops for many years, I 
have to say this is the best we’ve had it in a long time. 



 
14 

Chapter 2   Why a Book about Mobile-Friendly 
Websites? 

“Toto, I’ve got a feeling we’re not in Kansas anymore.” 
     Dorothy in The Wizard of Oz 

A few years ago, mobile websites were just an afterthought unless you had a company that was 
developing an application designed specifically for a phone. It’s hard to believe that the first 
iPhone was just released in 2007 (it seems longer than that)! Before then, our phones were 
used as, well, phones. Now they’ve become much more. Think of all the things that our cell 
phones have replaced: wristwatch, stopwatch, calendar, datebook, flashlight, email, map, 
gaming device, dictionary, encyclopedia, etc. 

Google estimates that by 2013, more people will use mobile phones than PCs to get online.1   
Wow!  That’s not far away. They also estimate that by 2015, there will be one mobile device for 
every person on Earth! 

If you haven’t started making your website mobile-friendly, you’re already behind the curve. You 
need to start now. I recently had a friend tell me about how his company just had its website 
redesigned by a marketing firm. I asked him if it was mobile-friendly and he just looked at me 
with a blank stare. I whipped out my iPhone and typed in the site. It was a nice-looking site if 
you were sitting at a PC. Unfortunately, on my iPhone the font looked like it was about 0.5-point 
font, and much of the graphics were done in Flash so there were big blocks of nothing on the 
screen. The company just wasted a lot of money on that fancy new site and it will have to 
rebuild it again soon, probably shortly after its CEO gets an iPhone! 

So what can you do to make sure that your website doesn’t suffer the same fate? I’m going to 
show you how you can make your website more mobile-friendly if you are using MVC. If you are 
using other technologies, this may not be the book for you. You will probably learn a few things, 
but most of what I have to say is for MVC programmers. If that is your current paradigm, this 
book should help you tremendously. Most of the content is centered on MVC 4, but I’ll also 
show you how you can use these techniques in MVC 3 in case you’re stuck in that environment. 

This isn’t a book about learning MVC—I’m assuming you already know a fair bit about MVC and 
have done a little bit of programming with it. You don’t have to be an expert in MVC, but this 
book isn’t really going to explain how MVC works. The focus will be on honing your MVC 
techniques so that your sites look good on mobile devices. 

 

 

 

 

 

 

 



 
15 

Chapter 3   Designing Mobile-Friendly Websites 

“Mama always said life was like a box of chocolates. You never know what you’re 
gonna get.” 

    Forrest Gump in Forrest Gump 

Designing mobile websites is a big topic these days. Every conference you go to has several 
sessions on this topic, and there is an abundance of books on the topic. With all that noise, it’s 
hard to know who to listen to.  

Some folks are saying that you need to use a dedicated site for mobile and a separate site for 
desktop. This is sometimes referred to as the “mdot” strategy, because many sites put an “m.” 
on the front of their mobile URL. However, this strategy causes a problem because you end up 
with two (or three!) different sites that you must maintain, each with duplicate content and web 
configurations. 

Other sites rely on what is commonly known as Responsive Web Design. The theory is that if 
you design your site right with style sheets that adapt, you will be able to have one site with one 
URL, and it will adapt to many screen sizes, scaling the size up or down, shifting columns 
around, and making it look nice on all sorts of different sizes. One place this strategy fails 
miserably is page bloat. Even though you have a small screen with less visible content, you 
typically don’t have less content. Less visible content does NOT equal fewer bytes 
downloaded. Phones have data caps and lower download speeds, so using that strategy is not 
the most optimal design for mobile devices. 

If you design a website using the responsive design strategy, you need to decide if you are 
going to start with a mobile design as your bias and then do progressive enhancement as the 
screen gets larger, or if you want to start with the desktop design, and then do graceful 
degradation. Both approaches suffer from some serious issues.  

What if you could create a site that took good parts from both of these strategies? Rather than 
relying on the Responsive Web Design strategy, I prefer to use a pattern that I refer to as 
“Adaptive View Design.” By using the Adaptive View Design patterns in this book, you can have 
parts of the best of both of these strategies in your project. 

Desktop Layout versus Mobile Layout  

Before we get into the actual code, there are several design concepts that need to be 
understood when you are designing a mobile layout. There are some obvious differences when 
you compare a desktop screen to a small phone screen, and there are some that are not as 
obvious when you are designing for a medium-sized screen like a tablet. 



 
16 

Multicolumn versus Single-Column Design 

When you design a typical desktop website, you tend to work with a multicolumn layout with the 
three-column layout being the most common approach. Such a layout utilizes banner images, 
menu bars, ads to grab your attention, etc., like this: 

 

Desktop Layout 

When laying out a mobile website, a better approach is to design for a single-column layout. 
Using just one column makes it easy to scale between differently sized devices and makes it 
simple to switch between portrait and landscape mode. Consider the layout of most phone 
applications: 

 

Phone Layout 

On the other hand, tablets tend to have a little bit of both approaches. A tablet tends to favor the 
one column approach common to phones, but then it will switch to a two-column layout when 
rotated to landscape mode, and only occasionally will it use a three-column layout. 



 
17 

 

Tablet Layout 

Each of the designs has a different approach, and it would be a mistake to assume that we 
could create one page that will work well in all three of these form factors. It’s not just the layout 
that changes, either; there are other considerations. 

Tapping versus Hovering and Clicking 

Another issue to consider is that on a desktop people are used to clicking on little text links that 
take them to the next page, and a mouse is a very precise tool for doing that. On a mobile 
device, people are tapping with their fingers and thumbs, and a small text link doesn’t really 
work when you are trying to do that. Your mobile-friendly design needs to incorporate larger 
buttons and icons wherever possible, and use links that let you tap anywhere on the whole line 
to activate a choice, not just on the actual word that contains the link.  

In addition, on many desktop applications and websites, developers tend to use information that 
is hidden until the pointer hovers over an object. That concept simply doesn’t exist on a touch-
based input device like a phone or tablet. 

Large Screens and Collapsible Containers 

In addition to scaling back the number of columns in your design, you need to think about the 
content containers themselves. On a desktop there is plenty of real estate, so it makes sense to 
expand and show as much data as you can inside many visually distinct containers. On the 
small screen of a mobile device, you want to show the least amount of data that makes sense, 
and then have the user decide what to show next, and on a tablet it’s somewhere between. One 
of the options that is most sensible for this paradigm is the collapsible container. The following 
three screenshots are the exact same URL with the exact same contents, but each of them is 
organized and optimized for the platform it is targeting.  



 
18 

 

Desktop View 

In this example, the desktop shows all of the content, and it’s organized into nice containers with 
appropriate styling.  

 

Tablet and Phone Views 

The tablet view shows the same content, but it is placed inside containers that have a minus 
sign in the header that allow you to collapse them if you want. The phone view uses those same 
containers, but starts with everything collapsed so you can easily scan the document for what 
interests you. 



 
19 

In Chapter 8, we’ll look at a pattern that we can use where you can have three distinct 
layouts, but reuse the same content in each of the layouts so that you don’t end up with 
duplicate content. We’ll also look at the collapsible containers in more detail in Chapters 
8 and 9. 

Desktop != Tablet != Phone 

Hopefully this chapter has made you think just a little bit about the different design paradigms 
that need to be addressed when building mobile websites. Good desktop design is not the same 
as good tablet design, and that’s not the same thing as good phone design. The key here is to 
try to optimize the design to match the device requesting the content, and at the same time not 
have to maintain duplicate content in multiple sites and files.  

When it comes to designing websites, Forrest Gump was right—we don’t really know what we’re 
going to get. We might think we know how we should design our site, but before we know it, a 
new device is going to come along and surprise us. As someone once said, “If you make 
something idiot proof, they’ll just make a better idiot.” 



 
20 

Chapter 4   Building an MVC Mobile Website 

Frodo: “Go back, Sam. I’m going to Mordor alone.” 
Sam: “Of course you are. And I’m coming with you.”    

    From The Lord of the Rings: The Fellowship of the Ring 

MVC 3 has the ability to create mobile-friendly code, but it isn’t a built-in feature. You have to 
write your own custom code and put it in the project, and it isn’t straightforward.  

We’ll discuss how to create a mobile-friendly website using MVC 3 in Chapter 11, but our 
main focus here is MVC 4. 

MVC 4 comes with the ability to turn on mobile support with just a few little lines of code in your 
application startup—it’s really simple to do. Let’s take a journey into the world of MVC 4 and 
mobile.  

The Mobile Application Template 

When you install MVC 42 and create your first project, you will immediately gravitate toward the 
Mobile Application template. It seems like the first thing you would go to, and you might be 
right. Let’s take a look at what it generates and see how that works out. 

When you select this option, the template will generate a mobile website for you, and it will 
include the jQuery and jQuery.Mobile environments. jQuery.Mobile is one of the key 
components to easily making your website mobile-friendly. jQuery.Mobile is a framework built 
on top of jQuery that is designed to help you make mobile user interfaces. It doesn’t replace 
jQuery—it builds on it and enhances it. Spend a little time browsing the jQuery.Mobile site3, and 
you will find that they have spent a lot of time making it very easy to create mobile-friendly 
websites that play nicely on a variety of devices. The Microsoft team was wise to adopt this 
open-source project.  

The examples in this book are designed with jQuery.Mobile version 1.1, which was 
released in April, 2012. If you have a newer version (or even a slightly older like version 
1.0.1), the concepts in this book should still apply, as most of the changes are 
enhancements and not breaking changes. 

If you take this default project template and run it, you’ll see something like this: 



 
21 

 

Website Created with the Mobile Template 

That’s not bad for a first start. However, there is one small problem with this approach: there is 
no desktop version!  This one serves up the mobile version to each and every device that 
comes to this website. It’s not mobile-friendly; it’s mobile-only. 

If you think back to the previous chapter, and consider what you are trying to accomplish when 
building a mobile-friendly website, you will soon come to realize that you need to pay attention 
to three different form factors: small, medium, and large. 

 

Form Factors to Consider for Mobile-Friendly Websites 

And let’s not forget what’s coming your way in 2013!  Like it or not, you may have to think about 
this new format sooner than you think... 

 

Project Glass, Anyone? 

Trying to create one design that is going to work for all of these is usually an exercise in futility 
and will produce something that doesn’t work well on two out of three. We need some way to 
optimize our designs for each of the different platforms. Fortunately, that’s not too hard to do 
with the MVC platform. 



 
22 

The Internet Application Template 

Let’s start again, and this time we’ll pick the Internet Application template. What we will get 
now is a website that is primarily optimized for the desktop platform. We’ll work with that and 
then enhance it to make it more mobile-friendly. 

When you build and run this website, it will look almost exactly the same on your mobile device 
as it does on your desktop, as shown in the following pictures. Notice that in the mobile device 
view, the content has used a bit of responsive web design and re-flowed itself a bit to make it 
look a little bit better in that format.  

 

Website Created with the Internet Application Template 

For some websites, your mobile phone only shows a version of the site shrunk down to fit the 
screen of your mobile device (like my friend’s website that I mentioned in the first chapter). So 
why doesn’t our site based on the Internet Application template shrink down to a tiny version 
of itself? This template has avoided that problem by including one little line of magic code in its 
main layout page (look at \Views\Shared\_Layout.cshtml): 

<meta name="viewport" content="width=device-width" /> 

That’s it!  The WebKit-based browsers used in the majority of mobile phones (like Android and 
iPhones) will respect that tag and will automatically try to resize and reflow the content to fit on 
the width of the current device. That’s one little tidbit you can apply to just about any website 
you are working on right now. (Go ahead. Go try it now on your current project. This book can 
wait. I know you want to.) 

OK—are you back? Did it work? There are several other <meta> tags that we’ll discuss in 

Chapter 7 that can make your website more mobile-friendly—this is the first of many. 

Our goal was to return different content to different types of devices. To do that, we will have to 
know what type of device is making the request, and for that we will look at the user agent. You 
probably already know that every time a browser sends a request to our server, it also sends a 
User-Agent string along with that request which identifies to the server what application is 

requesting the information. There are many different strings you might see. Here are a few 
examples: 



 
23 

 Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_3 like Mac OS X; en-us) 
AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5 

 Mozilla/5.0 (iPad; U; CPU OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 
(KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5 

 Mozilla/5.0 (Linux; U; Android 2.3.5; en-us; HTC Vision Build/GRI40) AppleWebKit/533.1 
(KHTML, like Gecko) Version/4.0 Mobile Safari/533.1 

 Mozilla/5.0 (BlackBerry; U; BlackBerry 9850; en-US) AppleWebKit/534.11+ (KHTML, like 
Gecko) Version/7.0.0.115 Mobile Safari/534.11+ 

 BlackBerry9700/5.0.0.862 Profile/MIDP-2.1 Configuration/CLDC-1.1 VendorID/167 

 Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 7.1; Trident/5.0) 

 Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; 
Media Center PC 6.0; InfoPath.3; MS-RTC LM 8; Zune 4.7) 

We can use this information to make our website respond to different devices in a different way. 
In the next section, I’ll walk through all of the code needed to make this work. 

Simulating a Mobile Device for Testing 

Before we start on that, let’s take a detour and see how you can easily simulate a mobile device 
on your desktop. The easiest way that I have found is to use the Apple Safari browser. Once 
you’ve installed it, go to the Preferences settings and select the Advanced tab. 

 

Advanced Tab under Preferences in Safari 

Make sure that the Show Develop menu check box is selected and you’re almost ready. 
Remember discussing different user agent strings previously? Here is where you put them to 
use. Safari will let you easily change the user agent that it supplies to a website if you have the 
Develop menu setting turned on. Just go to the newly enabled Develop menu item and pick 
one.  



 
24 

 

User Agents Available in Safari 

If you are interested in seeing the details for one of the user agent strings, just select it and let it 
refresh your page, then come back to this menu and select the Other… option. Your currently 
selected user agent will be displayed and you can edit it. 

 

Customize User Agent String 

If you want to emulate an Android or BlackBerry device, you won’t find those options in the 
menu items of Apple’s browser, but you can simply go find the user agent string you want and 
paste it into this box and you’ll be in business. Remember, this is no substitute for testing your 
website on the actual device. It does provide a quick and dirty way to test your site, but there 
are some subtle differences in behavior on the mobile device that will come back to haunt you if 
you don’t do your final testing on an actual device. 

Visual Studio 2012 features a convenient toolbar option for choosing a browser to run 
your application. 



 
25 

 

Choosing a Browser in Visual Studio 2012 

Recognizing Mobile Devices 

Let’s get back to our main topic and enable our code to recognize different types of mobile 
devices. Open the Global.asax.cs file and go to the Application_Start method, and then 

insert the DisplayModeProvider code below that is shown after the 

BundleConfig.RegisterRoutes line: 

using System.Web.WebPages; 

 

protected void Application_Start() 

{ 

  AreaRegistration.RegisterAllAreas(); 

  FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters); 

  RouteConfig.RegisterRoutes(RouteTable.Routes); 

  BundleConfig.RegisterBundles(BundleTable.Bundles); 

 

  DisplayModeProvider.Instance.Modes.Insert(0,  

    new DefaultDisplayMode("Phone") 

  { 

    ContextCondition = (context => ( 

      (context.GetOverriddenUserAgent() != null) && 

      ( 

        (context.GetOverriddenUserAgent().IndexOf("iPhone",  

            StringComparison.OrdinalIgnoreCase) >= 0) || 

        (context.GetOverriddenUserAgent().IndexOf("iPod",  

            StringComparison.OrdinalIgnoreCase) >= 0) || 

        (context.GetOverriddenUserAgent().IndexOf("Droid",  

            StringComparison.OrdinalIgnoreCase) >= 0) || 

        (context.GetOverriddenUserAgent().IndexOf("Blackberry",  



 
26 

            StringComparison.OrdinalIgnoreCase) >= 0) || 

        (context.GetOverriddenUserAgent() 

          .StartsWith("Blackberry", 

             StringComparison.OrdinalIgnoreCase)) 

      ) 

    )) 

  }); 

 

  DisplayModeProvider.Instance.Modes.Insert(0,  

    new DefaultDisplayMode("Tablet") 

  { 

    ContextCondition = (context => ( 

      (context.GetOverriddenUserAgent() != null) && 

      ( 

        (context.GetOverriddenUserAgent().IndexOf("iPad",  

            StringComparison.OrdinalIgnoreCase) >= 0) || 

        (context.GetOverriddenUserAgent().IndexOf("Playbook",  

            StringComparison.OrdinalIgnoreCase) >= 0) || 

        (context.GetOverriddenUserAgent() 

          .IndexOf("Transformer",  

            StringComparison.OrdinalIgnoreCase) >= 0) || 

        (context.GetOverriddenUserAgent().IndexOf("Xoom",  

            StringComparison.OrdinalIgnoreCase) >= 0) 

      ) 

    )) 

  }); 

 

} 

I’ve inserted the two blocks of code that start with DisplayModeProvider (plus a using 
System.Web.WebPages; statement at the top of the file). These lines set up a new entry in the 

available DisplayModes table for this application. Each time a request is received by the 

application, it is evaluated to determine how that request should be formatted when it is 
processed. In this case, if the conditions are matched for one of these custom modes, then the 
name of that mode is injected into the name of the file. The conditions specified in the previous 
code sample look at the user agent string and check to see if there is a match. 

For instance, if the client is an iPhone, it would send in a user agent string similar to this: 

Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_3 like Mac OS X; en-us) 

AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5 

Our application would then match that up and determine that it should use the Phone display 

mode. The MVC engine would then look at the view it was creating and slightly modify the file it 
was looking for: 

What the client requested: /YourApp/SomeController/ 
 



 
27 

The view a PC would get is based on: /Views/SomeController/Index.cshtml 
 

The view an iPhone would get is based on: /Views/SomeController/Index.Phone.cshtml 

When the controller builds up the HTML to return to the phone, it will base the request on the 
Index.Phone.cshtml file. With that information, we can easily create unique views that are 
designed specifically for the type of device that is browsing our site. Make two copies of the 
Home/Index.cshtml file and rename them to Index.Phone.cshtml and Index.Tablet.cshtml. 

Some purists will be certain to point out that there are libraries out there like WURFL or 
51Degrees that do a much better job of determining exactly which device is requesting 
the page and what capabilities it has, rather than the user-agent sniffing code listed 
previously, and they have a good point. However, this code hits about 99% of what is 
needed with extremely small overhead and very limited maintenance upkeep. If you’re 
worried about that other 1%, go ahead and investigate other options. Otherwise, this 
code will do the job fairly well with a lot less muss and fuss. 

Including jQuery.Mobile 

The first step in creating a truly different look and feel for each mobile device is to include the 
jQuery.Mobile package in our project. You can do this by opening up the Package Manager 
Console under Tools > Library Package Manager > Package Manager Console, and typing 
the following line: Install-Package jQuery.Mobile. 

PM> Install-Package jQuery.Mobile 

Attempting to resolve dependency 'jquery (≥ 1.6.4)'. 

Successfully installed 'jQuery 1.6.4'. 

Successfully installed 'jquery.mobile 1.1.0'. 

Successfully removed 'jQuery 1.6.2' from Chapter4. 

Successfully added 'jQuery 1.6.4' to Chapter4. 

Successfully added 'jquery.mobile 1.1.0' to Chapter4. 

Successfully uninstalled 'jQuery 1.6.2'. 

 If you’re not a command line junkie like me, you can use the GUI under Tools > Library 
Package Manager > Manage NuGet Packages for Solution and search for 
jQuery.Mobile. They both do exactly the same thing. 

That’s step one, but it doesn’t do much for you yet. If you run your project now, it will look 
exactly the same, with one minor difference: you should see a sliding transition animation when 
you switch between pages. Ignore that for now and we will come back to fix that in a few 
minutes. 

Creating a Mobile Layout Page 

The next step is to set up a unique Layout page for those mobile devices. In your 
\Views\Shared folder, you should find a _Layout.cshtml file, which is what all of your pages 
are based off of at this point. (This is analogous to the master page for all you ASP.NET Web 



 
28 

Forms programmers out there.)  Copy that file to a new \Views\Shared\_Layout.Phone.cshtml 
file and that’s where we will start our customization.  

When you open that up, you will see a few lines that look like this: 

@Styles.Render("~/Content/themes/base/css", "~/Content/css") 

@Scripts.Render("~/bundles/modernizr") 

MVC 4 Bundles 

The bundling feature is one of the new features of MVC 4 that you will really appreciate. If you 
have ever tried to optimize your website performance in previous versions of MVC 3 and 
ASP.NET, one of the things that you had to focus on was to minimize the number of web 
requests and to reduce the size of the data that was requested. In order to do this, there were 
several programs available that could minimize and concatenate any JavaScript or style sheets 
into one smaller file. For example, you might use the following scripts: jquery-1.6.4.min.js, 
jquery-ui.js, jquery.validate.js, and jquery.validate.unobtrusive.js. You could use the 
minimized versions of each of these (*.min.js) and considerably reduce the amount of data that 
you would download to your device, but it would still make four HTTP requests for these four 
files. By concatenating these files together, you could reduce it to one HTTP request. If you are 
running a PC on a local network, such as a developer using his or her desktop or testing against 
a local server, you would never notice the time it took to load those four files. On a mobile 
device that is running on a 3G (or 1G) network, this could amount to a huge increase in load 
time for the page. 

MVC 4 attempts to alleviate this problem by providing you with a simple built-in way of 
combining and minifying files through use of a Bundle. By using the BundleUrl option, you can 

simply point to a directory and tell the page that you want everything in that directory lumped 
together into one file, and MVC will do it for you automatically.  

That’s awesome—I love new features that do something for me that I used to have to do 
manually! However… 

Creating a Custom Bundle 

Sometimes those helpful things for your production site make it more difficult for you to develop. 
In our project, we have just included the jQuery.Mobile package. I mentioned that once we 
included jQuery.Mobile in our project, the desktop views would have sliding transitions, and we 
may not want that. We want those scripts to apply to our mobile pages, but not to change our 
desktop pages. So the question is how do we separate those files out into desktop and mobile 
versions and load only the files that we want? 

Let’s see how we can create some custom bundles in our application by adding a bit of custom 
code in the new MVC 4 BundleConfig.cs file located in the App_Start folder. We’ll modify the 
RegisterBundles function to handle that. We’ll create a couple of custom bundles for our 

mobile version and specify only the files we are interested in. 

Here is the code: 

public static void RegisterBundles(BundleCollection bundles) 



 
29 

{ 

  [… existing bundle code goes here… ] 

 

  bundles.Add(new ScriptBundle("~/bundles/MobileJS").Include( 

    "~/Scripts/jquery.mobile-1.*", 

    "~/Scripts/jquery-1.*")); 

 

  bundles.Add(new StyleBundle("~/Content/MobileCSS").Include( 

    "~/Content/jquery.mobile.structure-1.1.0.min.css", 

    "~/Content/jquery.mobile-1.1.0.css")); 

#if DEBUG 

  BundleTable.EnableOptimizations = false; 

#else 

  BundleTable.EnableOptimizations = true; 

#endif 

} 

If you are writing and debugging your own JavaScript and including those files in your bundles, 
you may want to control when that code gets minified so that it’s easier to debug. If the 
compilation tag in your Web.config is set to debug=true, no minification will take place. 

Alternatively, you can explicitly set the BundleTable.EnableOptimizations tag in your code 

in RegisterBundles, and that will control it as well and will override the Web.config settings. 

Web.config Setting 

<system.web> 

    <compilation debug="true" /> 

</system.web> 

Now that we have our bundles created, let’s put them into our layout files. Open your 
_Layout.Phone.cshtml file and replace the bundles/jquery tag with the new MobileJS tag 

and replace the css bundle with the new MobileCSS tag, like this: 

Before 

<!DOCTYPE html> 

<html lang="en"> 

    <head> 

        <meta charset="utf-8" /> 

   … 

  … 

        @Styles.Render("~/Content/css") 

        @Scripts.Render("~/bundles/modernizr") 

    </head> 

    <body> 

   … 

  … 

        @Scripts.Render("~/bundles/jquery") 



 
30 

        @RenderSection("scripts", required: false) 

    </body> 

</html> 

 

After 

<!DOCTYPE html> 

<html lang="en"> 

    <head> 

        <meta charset="utf-8" /> 

        … 

  … 

 

  @Styles.Render("~/Content/MobileCSS") 

        @Scripts.Render("~/bundles/modernizr") 

        @Scripts.Render("~/bundles/MobileJS") 

    </head> 

    <body>        

  … 

  … 

        @RenderSection("scripts", required: false) 

    </body> 

</html> 

Save these changes, and then copy the _Layout.Phone.cshtml file and rename the copy 
_Layout.Tablet.cshtml. We’ll update it later with more features to differentiate the two types of 
layouts, but this will work for now. Let’s run our application and see what we have so far. 

 

Desktop and Mobile Application Views 



 
31 

Using Our New Layout Files 

Why hasn’t our site changed? It hasn’t changed because although we have created new layout 
files, we aren’t using them yet in any of our pages. To use a custom layout for any of your 
views, you need to add one line of code to the top of your view. In this case, edit the 
Index.Phone.cshtml file and add this line at the top: 

@{ Layout = "../Shared/_Layout.Phone.cshtml"; } 

Then edit the Index.Tablet.cshtml file and add this line at the top: 

@{ Layout = "../Shared/_Layout.Tablet.cshtml"; } 

Now try running it again while using a phone or tablet user agent, and you should see 
something that looks like this: 

 

Application with New Layout Files 

You still see the text that we saw before, but the formatting is gone, and we STILL don’t have a 
page that looks much like a mobile-friendly website. That’s because we are still dealing with the 
layout of a website targeting desktops. 

Let’s replace the HTML in the body of the mobile layout page (_Layout.Phone.cshtml) with 
some code that is much simpler and is designed for mobile devices and jQuery.Mobile: 

  <body> 

    <div data-role="page" data-theme="b"> 

      <div data-role="header" data-theme="b"> 

        <h1>@ViewBag.Title</h1> 

      </div> 

      <div data-role="content" data-theme="d"> 

        <nav> 

          <ul id="menu"> 

            <li>@Html.ActionLink("Home", "Index", "Home")</li> 

            <li>@Html.ActionLink("About", "About", "Home")</li> 



 
32 

            <li>@Html.ActionLink("Contact", "Contact", "Home")</li> 

          </ul> 

        </nav> 

@RenderSection("featured", false) 

@RenderBody() 

      </div> 

    </div> 

  </body> 

This page has most of the same content sections as the _Layout.cshtml page but is formatted 
quite differently. Pay special attention to the data tags on the page, header, and content 
divs. Those are special tags to jQuery.Mobile. They give jQuery.Mobile more information about 

how to deal with these sections. There will be many data tags that you can use to customize 

your page, and we’ll see some of them shortly. 

With this new layout in place, let’s try once more and see if our site is starting to take shape: 

 

Application with Improved Appearance for Mobile Devices 

That’s much better. It’s still not quite 100% there yet, but it’s starting to get there. We can see 
from this quick example that we are getting a page that is starting to look different from our 
desktop version. In the next section, we’ll continue customizing this page to enhance the look 
even further. 

To sum this up, here is a short checklist of what we have done so far to make all this work: 

1. Created an MVC 4 project based on the Internet Template. 
2. Added the DisplayModeProvider code to the Global.asax to detect a phone or a tablet 

user agent. 
3. Included jQuery.Mobile in the project. 
4. Created a custom bundle so the mobile scripts wouldn’t affect the desktop pages. 
5. Created a custom Layout page in the Shared folder for a phone and a tablet. 
6. Created a phone and tablet version of each page and changed them to use the new 

layouts. 
7. Tested the site with Safari and a custom user agent. 



 
33 

That’s quite a list, isn’t it? I bet you’re thinking that this isn’t as easy as I promised it was going 
to be. In this chapter, you’ve been learning to walk so that later you can run. This process works 
much better if you understand the steps that need to take place so you don’t trip and fall when 
you start to run. 

One of the nice new features in Visual Studio introduced with MVC 4 is the addition of recipes, 
which can help you automate many of these steps. By using a recipe like Lyle’s MVC 4 
FoodTruck Recipe (available at http://nuget.org/packages/LCI.FoodTruck.MVC4/), you can 
automate most of these steps and make this entire process painless. I’ve done demos with this 
recipe where I’ve created a SQL Server database, added a table and data (by running a SQL 
script), then created a full website with desktop and mobile views in about 10 minutes. However, 
before you can do that, you need to understand all the steps involved first. 

http://nuget.org/packages/LCI.FoodTruck.MVC4/


 
34 

Chapter 5   Making It Mobile-Friendly 

“Make everything as simple as possible, but not simpler.” 
    Albert Einstein 

With the changes we made in the previous chapter, we now have a site that is starting to look a 
little bit more like a mobile-friendly website, but there are still several issues that remain. If we 
use our demo site and scroll the page up and down, you’ll see that the header scrolls off the 
page and disappears, and the list doesn’t really have any graphical flair like a mobile-styled list 
should have. There are many things we could address, but let’s start by fixing those two things. 

Fixing the Headers 

Currently the header is attached to the top of the page. If you scroll the page, the header 
disappears. Adding a data-position tag to the header makes that header stick at the top of 

the page when you scroll up or down.  

<div data-role="header" data-position="fixed" data-theme="b"> 

That’s it!  One of the great things about using jQuery.Mobile is that it has a lot of built-in features 
like this that you can use easily. With this tag in place, the header will stay at the top of the 
screen. If the user taps the screen, he or she can also make the header appear or disappear. 

Styling Our List Objects 

Next let’s take a look at the menu and give that a little bit of visual pizazz. Adding the data-
role and data-inset tags to the list header will make that list take on a new style. In addition, 

we can add a header to the list by using a list-divider item to give it a little more visual 

interest: 

 <nav> 

   <ul data-role="listview" data-inset="true"> 

      <li data-role="list-divider">Menu Items</li> 

      <li>@Html.ActionLink("Home", "Index", "Home")</li> 

      <li>@Html.ActionLink("About", "About", "Home")</li> 

      <li>@Html.ActionLink("Contact", "Contact", "Home")</li> 

    </ul> 

  </nav> 

By making these extremely small changes, we will have a much nicer looking page: 



 
35 

 

Improved Headers and Styling of List Items 

Now we’re making some progress toward making this site mobile-friendly. While viewing the 
home page, click on the About page link and see what happens. One thing you will notice is 
that you can click anywhere on that line and the action will happen. You don’t have to be 
restricted to just clicking on the word About.  

If you’ve been following along (and not forging ahead on your own), when you click on the 
About link, you should see something like the right half of the previous image. Notice anything 
missing? You should notice that there is no back button in the header bar. Most mobile 
applications keep track of their context and provide you with a way to go back easily. You might 
be tempted to reply that the user can always just use the Back button in the browser, and that 
would work in many cases. But what if this goes into a full-screen web app mode? As you’ll see 
in Chapter 7, we can set up our applications to take over the screen and emulate a native app, 
and in that case, there is no Back button, so we do need to deal with this. 

Another thing that’s very noticeable is that we’re also showing the menu on the Home page and 
the About page, which is redundant. On a desktop, users expect to have that menu bar at the 
top of the screen. But you have to remember that this is a mobile device with a tiny screen—we 
want to maximize our real estate and only show information that is absolutely necessary on 
each page. Our goal here is to create a mobile-friendly site and also a desktop-friendly site at 
the same time, so we need to customize that as well. Our next step would be to remove that 
menu and add in the Back button functionality. 

Detour: Why do we need three copies of 
everything? 

Before we head down the path of adding in a Back button, let’s take a quick side trip. Take a 
look at the Views folder and see if you notice anything that seems a bit unusual: 



 
36 

 

Views Folder Contents 

When we created a mobile-friendly view of the Index page, we copied that file to 
Index.Phone.cshtml and Index.Tablet.cshtml, and put in special layout commands in each of 
those. We haven’t done that yet with the About view, so how did that get a mobile view? And 
why do we even need these two extra files if the About page worked without them? 

The answer is that by simply putting the layout files out there, any page that does not have a 
*.Phone or *.Tablet counterpart will load the default page, and if it matches up with our 
DisplayMode definitions it will use the _Layout.Phone or _Layout.Tablet layout file. That may 

or may not be what we want. If our goal is to create a unique experience across all three 
platforms, we’ll want to supply a unique version of each file. That does lead to some 
maintenance issues if you have your content replicated three times, but we’ll touch on how to 
address that in Chapter 8. 

Adding Home and Back Buttons 

For now, our number one goal is to put a Back button in our toolbar, so let’s get back to that. 
Typically, there are two basic buttons you will expect to find in the upper left corner: a Back 
button or a Home button. Many times a Back button is all you need, but there are times when 
you don’t want to go back to the previous screen so you want a fixed-behavior Home button. 
For example, if you present a list of editable items to a user, and then he or she edits an item 
and clicks Save, you don’t want the user to click the Back button and be taken back to the edit 
screen they just left. The old data would still be present in the list, so we’ll have to handle that 
scenario. (Whew! We’re getting a lot of things on our to-do list!) 

Let’s start by editing our Layout file and adding code for an optional Back or Home button in 
the header. Open this file in the editor and insert the following code in the div with the data-
role=header: 

<div data-role="header" data-position="fixed" data-theme="b"> 

  <h1>@ViewBag.Title</h1> 

@{ 

  bool ShowBackButton = false; 

  bool ShowHomeButton = false; 

  if (ViewBag.ShowBackButton != null &&  



 
37 

      ViewBag.ShowBackButton == true) 

  { 

    ShowBackButton = true; 

  } 

  if (ViewBag.ShowHomeButton != null &&  

      ViewBag.ShowHomeButton == true) 

  { 

    ShowHomeButton = true; 

  } 

  if (ShowBackButton) 

  { 

    <a data-rel="back" data-role="button"  

       data-transition="slide" data-direction="reverse"  

       data-icon="back">Back</a> 

  } 

  if (ShowHomeButton) 

  { 

    <a href="@Url.Action("Index", "Home")" data-role="button" 

       data-transition="slide" data-direction="reverse"  

       data-icon="home">Home</a> 

  } 

} 

</div> 

The data-rel="back" tag is another special tag for jQuery.Mobile and prompts it to keep track 

of the current stack of pages. When you click on this button it will go back to the previous page 
(this is very similar to onclick="history.back()" in JavaScript that you are probably familiar 

with). The transition, direction, and icon tags decorate the button a bit more and give it 

some default behaviors. 

There is also an alternative way of doing this. You can actually add a “data-add-back-btn” tag 

on the page div like this: 

<div data-role="page" data-theme="b" data-add-back-btn="true"> 

  <div data-role="header" data-position="fixed" data-theme="b"> 

  <h1>@ViewBag.Title</h1> 

</div> 

Both of these work, but they do have one small gotcha: they use the stack within jQuery.Mobile, 
which changes depending on how the user arrives at the page. If the user bookmarks your 
secondary page then comes back to it later—guess what? The Back button in the second 
version will be gone if they navigate directly to the page, and if you use the first technique, the 
Back button will be there but it may not do anything. If that’s a concern, you may want to use 
the Home button to link directly back to the home page. 

Next we’ll create a unique version of About.cshtml for our phone and tablet. Copy that file and 
paste it twice into the Home directory, and then rename those files to About.Phone.cshtml and 
About.Tablet.cshtml. Open them in the editor and insert the Layout assignment and the 



 
38 

ViewBag setting (for either the ShowBackButton or the ShowHomeButton) so that the start of the 

file looks like the following code sample: 

@{  

  Layout = "../Shared/_Layout.Phone.cshtml"; 

  ViewBag.ShowBackButton = true;  

} 

@{ ViewBag.Title = "About"; } 

<hgroup class="title"> 

  <h1>@ViewBag.Title.</h1> 

  <h2>@ViewBag.Message</h2> 

</hgroup> 

...the rest of the file... 

Do the same with the tablet version by inserting the following lines at the top so that it looks like 
the following code sample: 

@{  

  Layout = "../Shared/_Layout.Tablet.cshtml";  

  ViewBag.ShowBackButton = true;  

} 

@{ ViewBag.Title = "About"; } 

<hgroup class="title"> 

  <h1>@ViewBag.Title.</h1> 

  <h2>@ViewBag.Message</h2> 

</hgroup> 

...the rest of the file... 

That’s it. Now when you try running it, you have a website that’s finally starting to look a bit like 
a mobile application.  

 

Application with Home and Back Buttons 

In this chapter, we’ve added fixed headers, nice-looking menus, back and home buttons, and a 
few other things that make our website look a little bit more like a mobile app. We can extend it 
even further with a few more enhancements, but this is a good start with only a few lines of 
code. 



 
39 

Chapter 6   Making It Look Good 

Marty: “Wait a minute, Doc. Ah... Are you telling me that you built a time 
machine...out of a DeLorean?” 

Doc: “The way I see it, if you’re gonna build a time machine into a car, why not do 
it with some style? ” 
    From Back to the Future 

jQuery.Mobile Sections 

jQuery.Mobile uses a fairly simple structure for defining its page elements. By using data-role 

tags on a <div>, they define these basic areas: page, header, content, footer, and navbar. 

There are other areas that are defined and we’ll talk about them in Chapter 9, but these are the 
basic ones that you will use often. 

The Page Section 

<div data-role="page" data-theme="b"> 

This is the main section of the document that jQuery.Mobile uses to wrap around all of the 
following sections. Typically it will include a header, content, and footer section, but only the 

content section is required. The page element itself is not actually required. However, if you do 

not supply one the framework will add one, so it is a best practice to go ahead and define it. 

The Header Section 

<div data-role="header" data-position="fixed" data-theme="b"> 

  <h1>@ViewBag.Title</h1> 

</div> 

This section contains the information that should be shown in the header of the page. The 
optional data-position element can make this element stick to the top when the user scrolls 

the page. You can see here that I’ve shown the typical MVC Title tag so it will automatically 

display the page title in the header. Space is limited, so the title will be cropped if it doesn’t fit. 
We can insert any HTML we want here, but best practice is to use an <h1> for the title (You can 

also replace this with an image if you want something fancier). If you add one button in the 
header div, it will automatically move to the left side. If you add a second button, it will move to 

the right side automatically. You probably don’t want more than two buttons as any others will 
move to the second line and make the header bigger (use a navbar instead). 

The Content Section 

<div data-role="content" data-theme="d"> 

  @RenderBody() 

</div> 



 
40 

This is the section where you will put most of your content. In the code sample I’ve shown the 
typical MVC tag that will render your view content. 

The Footer Section 

<div data-role="footer" data-position="fixed" data-theme="b"> 

The footer is very similar to the header, except maybe a little more flexible. We can put more 

than two buttons here, and they will be added inline, one after the other (not left aligned and 
right aligned like the header). By default, the footer isn’t formatted much, so you may have to 
add some other tags to make it look nice. 

The Navbar Section 

<div data-role="navbar"> 

This is a great place to put your navigation items. If you think about the normal desktop or 
Windows application design, we tended to use a lot of tab controls to group together related tab 
pages. This section provides you with a similar way of linking those pages together easily. If you 
put this into a partial view file, you can easily include it on any page that needs it. We’ll discuss 
this in more detail in the next section. 

Putting Your Menu into a Tab Bar 

Let’s convert the menu we started with into a fixed tab bar like you see at the bottom of most 
mobile applications, complete with icons. Currently, we have the following code on the home 
page of the mobile application for our menu items:  

<ul data-role="listview" data-inset="true"> 

  <li data-role="list-divider">Menu Items</li> 

  <li>@Html.ActionLink("Home", "Index", "Home")</li> 

  <li>@Html.ActionLink("About", "About", "Home")</li> 

  <li>@Html.ActionLink("Contact", "Contact", "Home")</li> 

</ul> 

Copy that code into a new file in our Shared folder and name it _NavBar.cshtml. Remove the 
fancy <ul> tag attributes and the list-divider row, and then wrap that in a div with the 

navbar tag we just looked at. 

<div data-role="navbar" data-theme="b"> 

  <ul> 

    <li>@Html.ActionLink("Home", "Index", "Home")</li> 

    <li>@Html.ActionLink("About", "About", "Home")</li> 

    <li>@Html.ActionLink("Contact", "Contact", "Home")</li> 

  </ul> 

</div> 



 
41 

Remove the original menu code from the _Layout.Phone.cshtml and _Layout.Tablet.cshtml 
and add in your new partial view to insert the new navbar we just created in the header. 

<div data-role="header" data-position="fixed" data-theme="b"> 

  <h1>@ViewBag.Title</h1> 

  @Html.Partial("_NavBar") 

</div> 

Since we already have the data-position=fixed on the header tag, this header and 

navigation bar will always remain at the top of the page.  

If you want to add icons to your navigation, simply add a data-icon tag to each of the links. 

jQuery.Mobile contains several built-in icons that you can use: arrow-l, arrow-r, arrow-u, 

arrow-d, delete, plus, minus, check, gear, refresh, forward, back, grid, star, alert, 

info, home, or search. You can add a data-iconpos tag on the navbar div to determine 

where to show the icons. Valid values for the iconpos tag include top, bottom, left, or right.  

To make this example a little easier to read when putting this extra tag into our links, we’ll 
change them from @Html.ActionLinks to hrefs with @URL.Action tags, like this: 

<div data-role="navbar" data-theme="b" data-iconpos="top"> 

  <ul> 

    <li><a href="@Url.Action("Index", "Home")"  

      data-icon="home">Home</a></li> 

    <li><a href="@Url.Action("About", "Home")"  

      data-icon="info">About Us</a></li> 

    <li><a href="@Url.Action("Contact", "Home")"  

      data-icon="check">Contact Us</a></li> 

  </ul> 

</div> 

And that’s it—we’re all set to run the app and see how it works. 

 

Menu Added in a Tab Bar 

If you’d prefer to put your tab bar at the bottom of the page, you can put it in a footer section 

as shown in the following code sample: 



 
42 

<div data-role="footer" data-position="fixed" data-theme="b"> 

  @Html.Partial("_NavBar") 

</div> 

Either way works just fine—it’s more of a style preference for your website. 

Other Tab Bar Considerations 

There are a few limitations for the tab bar that you need to know about. If you specify up to five 
buttons, you should be fine (although your text may be cut off on a phone, so keep the text 
short). If you have more than six buttons, the navbar will switch to a mode where it has multiple 
lines with two buttons on each line. It is usually a good idea to keep a tab bar to five buttons or 
less. 

If you want to use your own custom icons that are not in the standard jQuery.Mobile set, that’s 
actually fairly easy to do. We’ll talk about how to do that in Chapter 9. 

If you want to have one of the icons light up when you are on that page, you can use the tag 
class="ui-btn-active" on that link.  

If you are using a shared partial view navbar, this gets a little more difficult but can be 
done by querying the Model.GetType() attribute. Using that, you can determine what 

type of model is being passed to the page and therefore what page you are on and 
which button should be highlighted. 

Alternate Syntax for the Navbar Links 

In our previous example, we used the @Url.Action verb instead of @HTML.ActionLink 

because it makes it a little simpler to understand the example at first glance. It is possible to use 
either verb, but the ActionLink ends up being a little more complicated. Let’s see an example 

of it in action: 

<div data-role="navbar" data-theme="b" data-iconpos="top"> 

  <ul> 

    <li>@Html.ActionLink("Home", "Index", "Home", null,  

      new Dictionary<string, object> {{ "data-icon", "home" }})</li> 

    <li>@Html.ActionLink("About Us", "About", "Home", null,  

      new Dictionary<string, object> {{ "data-icon", "info" }})</li> 

    <li>@Html.ActionLink("Contact Us", "Contact", "Home", null,  

      new Dictionary<string, object> {{ "data-icon", "check" }})</li> 

  </ul> 

</div> 

If you’ve used MVC before, you’re probably wondering why we don’t use the simpler notation 
shown in the following code sample: 

<li>@Html.ActionLink("About", "Home", null,  

    new { data-icon = "home" })</li> 



 
43 

This is the notation MVC programmers frequently use to pass an ID value into an action. 
However, if you try to do this with a name like data-icon, you get the error “Invalid anonymous 

type member declarator.” If you translate that into English, that means, “You can’t use a name 
with hyphens.” Behind the scenes, our shortcut "new {}" code actually creates a dictionary for 

the ActionLink method. So in this case we can just go ahead and create a dictionary ourselves 

and then everything works just fine. Either method creates the same end product so it’s really a 
matter of personal preference.  

Yet Another Alternate Navbar Syntax 

There is one other possibility worth considering in this discussion of how to format these links.  

<div data-role="navbar" data-theme="b" data-iconpos="top"> 

  <ul> 

    <li>@Html.ActionLink("Home", "Index", "Home", null,  

      new { data_icon = "home" })</li> 

    <li>@Html.ActionLink("About Us", "About", "Home", null,  

      new { data_icon = "info" })</li> 

    <li>@Html.ActionLink("Contact Us", "Contact", "Home", null,  

      new { data_icon = "check" })</li> 

  </ul> 

</div> 

In MVC 3 and MVC 4, there is a feature that will automatically convert underscore characters (_) 

to hyphen characters (-) when they are specified in HTML attribute properties, since 

underscores are not legal in HTML attributes. Therefore, in this example, it would change our 
data_icon to data-icon in the final HTML. As with the last example, either method creates the 

same end product so it’s a matter of personal preference.  

My personal opinion is that the trick with the underscore works but is a bit misleading. 
When using it, you are assuming that other programmers know this little tidbit of 
knowledge; otherwise they would be a bit confused looking at this code. In reality they all 
generate the exact same HTML, so it comes down to personal preference. 

Creating Custom Themes and Colors 

One of the really nice features in jQuery.Mobile is the support for themes. You can theme 
almost any section of your page by adding in the tag data-theme="x", where x is the style that 

you want to use, from A-E. The default themes are shown in the following figure. 



 
44 

 

Default jQuery.Mobile Themes 

These themes use a cascading system. If you specify a theme for a container, the items within 
that container will use the color scheme specified unless another theme is chosen for them.  

Even if you only use the default theme set, you have a nice-looking set of options and several 
choices you can make. But what if you want to use your own colors to match with your graphics 
or your company logo? Fortunately, jQuery.Mobile has teamed up with Adobe to create the 
jQuery.Mobile ThemeRoller site. If you want to see some good examples of what you can do, 
check out http://jqmgallery.com.  

To get started with the ThemeRoller, navigate your browser to 
http://jquerymobile.com/themeroller/ and you will see the theme editor, but with a very bland 
gray palette. However, it’s easy to fix that. Click the Import button in the toolbar, click on the 
Import Default Theme link in the resulting pop-up, and then click the Import button, and 
voila—now you have the standard jQuery.Mobile themes to work with. 

Now you can start customizing your palette of colors to match your perfect website. Make sure 
you have the appropriate swatch selected in the panel on the left, and then use the color pickers 
to adjust and fine-tune them. If you don’t make sure you have the correct swatch selected in the 
panel, you may end up changing the global colors and have to start all over again. 

Here is my tribute to the good old “Hot Dog Stand“ theme (those of you old enough to remember 
Windows 3.1 may understand that reference, and you youngsters can Google it!): 

 

Re-creation of the “Hot Dog Stand” Theme 

http://jqmgallery.com/
http://jquerymobile.com/themeroller/


 
45 

If you are reading this on a Kindle e Ink device, it won’t be obvious, but this is a hideous 
red and yellow color. 

When you are happy with your color choices, you’re ready to download it to your computer to 
use. Click the Download Theme link at the top and give it a name—in this case we’ll use 
HotDogStand. The download will give you a zip file that contains the style sheets plus some 
extra files, but we’re really just interested in two files: HotDogStand.css and 
HotDogStand.min.css. Extract those two files to your Content folder and then include them in 
your project. 

If you were following along earlier, we created a custom bundle that would be minimized for our 
mobile pages in the BundleConfig.cs file. Go back into that code and comment out the existing 
jquery.mobile-1.1.0.css file and replace it with the file you just downloaded while keeping the 
jquery.mobile.structure file in the bundle: 

public static void RegisterBundles(BundleCollection bundles) 

{ 

  [… existing bundle code goes here… ] 

 

  bundles.Add(new StyleBundle("~/Content/MobileCSS").Include( 

    "~/Content/HotDogStand.css", 

    "~/Content/jquery.mobile.structure-1.1.0.min.css", 

    //"~/Content/jquery.mobile-1.1.0.css" 

  )); 

 

With these minor changes, you should be ready to go. 

If you didn’t do a custom bundle, then you’ll have to edit the mobile layout files and put a 
reference in there to your new file.  

If you’re still using the standard bundle that came as the project default, you’ll have to 
remove the jquery.mobile-1.1.0.css file from the directory (or rename it to end in 
something other than .css.) 

As with any sharp tool, the ThemeRoller can be dangerous in the untrained hand, so make sure 
you consult with your graphic designer. Show your graphic designer how to use this tool and 
you can simply import the style sheet he or she produces directly.  



 
46 

Chapter 7   Using Mobile Device Meta Tags 

“The difference between the right word and the almost right word is the difference 
between lightning and a lightning bug.” 

    Mark Twain 

There are several easy options for enhancing your website to make it function more like a 
mobile application. Earlier we looked at the viewport tag briefly. We’ll look at it in more detail in 

this chapter, along with other special tags shown in the following code sample: 

<meta name="viewport" content="width=device-width" /> 

<meta name="apple-touch-fullscreen" content="no" /> 

<meta name="apple-mobile-web-app-capable" content="no" /> 

<link rel="apple-touch-icon"  

  href="~/Content/images/apple-touch-icon.png" /> 

<link rel="apple-touch-startup-image" 

  href="~/Content/images/iPhone_Startup.png" /> 

The Viewport Tag 

We briefly looked at the viewport tag previously, and it looked like this: 

<meta name="viewport" content="width=device-width" /> 

This tag is fairly simple. It tells the webpage to always try to use the width of the device that is 
requesting the page. For example, the iPhone has a resolution of either 320 × 480 pixels or 
640 × 960 pixels (depending on which model you are using—see the chart later in this chapter 
for more detailed iOS screen resolutions). Therefore, a request from an iPhone will use a width 
of 320 or 640, and it will try not to exceed that width. If your content is structured properly, then 
it will reformat to fit that dimension. If you go to a normal website that doesn’t have this tag and 
the site is formatted to be 900 pixels or 1024 pixels wide (like most desktop-targeted sites), it 
will look tiny on a phone. Unless it has this tag, it will continue to zoom out until the content fits 
on the screen. 

If you use a header image wider than your device, then you may have a problem. If you specify 
a style tag on your image like <img style="width: 100%;"… /> you should be okay. If you 

don’t have that type of style tag, your page size will expand to the size of the image (even if 

you have a viewport tag), and the user may end up scrolling left and right. 

There are a few other attributes on the viewport tag that you can use if needed: 

<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-

scale=1.0, user-scalable=no"/>   

The user-scalable tag determines whether you will allow the user to pinch-zoom at all. The 

initial-scale sets the size of the page when it loads, and the maximum-scale defines how 



 
47 

much the user will be able to zoom in. Both tags are set on a scale from 0 to 10.0. Typically 
you’ll either set them to 1.0, or set the maximum-scale to a value like 3.0.  

For more info, search the Apple Developer website4 for viewport where they have a full 

specification on this tag. 

The Web Application Tags 

The next two tags, apple-mobile-web-app-capable and apple-touch-fullscreen, go 

together and should be set in conjunction with each other: 

<meta name="apple-mobile-web-app-capable" content="no" /> 

<meta name="apple-touch-fullscreen" content="no" /> 

Typically you’ll set both to yes or no, depending on your application. During your normal 

browsing within the browser, these tags do very little for you. They come into play once a user 
sets a shortcut on his or her home page while using an Apple device like an iPhone or iPad. 
When using such a shortcut, and if you have these tags set to yes, your webpage will run in a 

web application mode. All of the browser bling like the address bar and back buttons will 
disappear and your app will take up the entire screen, just like a native app (sweet!).  

Why are there two of these tags? You could probably get away with just setting the 
“apple-mobile-web-app-capable” tag for iOS devices, since that is the only one 
documented on the Apple Developer site. The apple-touch-fullscreen appears to be from 
an earlier version of the framework. It’s probably not needed in most cases, but it doesn’t 
hurt anything to include it. 

Closely related to the apple-mobile-web-app-capable tag is the apple-mobile-web-app-
status-bar-style tag. If you set apple-mobile-web-app-capable to yes, you can change 

the color of the status bar. 

<meta name="apple-mobile-web-app-status-bar-style" content="black" /> 

You can set that tag to default (which turns it to gray), black, or black-translucent. This 

tag is totally optional and you don’t see it used very often. 

Warning: If you choose black-translucent, the header will bleed over on top of your 
normal jQuery.Mobile header bar, so you will have to account for that by putting 20 
pixels of dead space in your header, so that setting is not recommended. 

By setting these two simple values, you’ve made a webpage that looks and functions almost like 
a native application. You are still running a webpage and running a browser, but all of the things 
that make it look like a browser are hidden. 

Use Caution When Using Web App Mode 

When you first see these tags, you may be tempted to use them all the time on all of your 
sites—after all, they make your webpage look like a native app without any of the problems of 



 
48 

creating a native app. However, there are a few gotchas to be aware of when using web app 
mode. The biggest problem comes when you try to link to an external item like a PDF file or an 
external website. When you do that, the link will open up in the Safari browser, so users will see 
a new window open and will lose their context in the app. Worse yet, when users return to your 
app, it will start all over at the beginning: splash screen, login, home page, etc. You won’t notice 
this behavior when you test this in Safari on your desktop, but it will definitely be noticeable on a 
mobile device. Make sure you’ve tested all of your links before you commit to using this tag in 
your app. 

Creating a Nice Icon on Your Desktop 

As a web developer, you have probably used this tag before to create icons in the browser for 
your desktop websites: 

<link rel="shortcut icon" href="~/favicon.ico" type="image/x-icon" /> 

<link rel="icon" href="~/favicon.ico" type="image/x-icon" /> 

You use the icon tags to have your browser shortcuts, tab bar, and header use your icon. 

Creating a good favicon.ico file has been kind of tricky in the past, but Microsoft has a really 
nice website to help you create one. Go to http://www.xiconeditor.com/ where you can easily 
upload any image (preferably 64 × 64 pixels), and the editor will create a perfectly formatted 
favicon.ico file for you. When you are done, you can save the file and place it in the root of your 
website. 

Even though the icon tags work great on a desktop, they don’t have the same effect on mobile 

devices. The following tag is essentially the mobile browser equivalent to the shortcut icon tag: 

<link rel="apple-touch-icon" href="~/Content/images/apple-touch-icon.png"/>   

This tag will allow users to create a shortcut and have your pretty icon displayed as their 
desktop shortcut to your app. If you don’t supply this tag, when users create a desktop shortcut, 
iOS devices will take a thumbnail snapshot of the app screen and use that. Android devices will 
use the system-defined bookmark icon.  

At first glance, this tag seems simple, but there are many permutations of this tag that you will 
need to use. It works okay in most instances, but won’t give you optimal results with the basic 
version. On an iOS device, using the basic version of this tag will add the highlight shadow on 
the upper half of your image. If you don’t want to have that white shadow on your image, you 
can remove it by using a slightly modified tag (adding -precomposed to the name): 

<link rel="apple-touch-icon-precomposed"  

  href="~/Content/images/apple-touch-icon.png"/>   

The deceptive part of this tag is that each of the mobile operating systems has its own 
specification for how big an icon should be. This tag supports an attribute that specifies different 
icons for different sizes.  

Start by saving copies of your application icon image in each of the following sizes, putting them 
in your Content/Images folder, and using a naming scheme like this: 

http://www.xiconeditor.com/


 
49 

apple-touch-icon-57x57.png 

apple-touch-icon-72x72.png 

apple-touch-icon-114x114.png 

apple-touch-icon-144x144.png 

 

Multiple Sizes of Icons 

The phone and the tablet use different sizes of icons, so we’ll have to add unique lines to each 
of the layout files. Add the following tags to your _Layout.Phone.cshtml file: 

<!-- iPhone Low-Res --> 

<link rel="apple-touch-icon-precomposed" sizes="57x57"    

  href="~/Content/images/apple-touch-icon-57x57.png" /> 

<!-- iPhone Hi-Res --> 

<link rel="apple-touch-icon-precomposed" sizes="114x114" 

  href="~/Content/images/apple-touch-icon-114x114.png" />  

<!-- Android --> 

<link rel="apple-touch-icon-precomposed" sizes="android-only" 

  href="~/Content/images/apple-touch-icon-57x57.png" />    

<!-- default --> 

<link rel="apple-touch-icon-precomposed" 

  href="~/Content/images/apple-touch-icon-57x57.png" />    

The Android browser doesn’t support the size tag so we will put in a value of android-only in 

one tag so that other browsers don’t try to use this one. iOS versions before 4.2 don’t support 
the size tag either, so they will use the last one specified in the list, which is why you see a 

default version without a size listed at the end of the code. 

Do the same thing in your _Layout.Tablet.cshtml file by adding the following code (note that 
these tags are similar to but different than what we used in the _Layout.Phone page): 

<!-- iPad Low-Res --> 

<link rel="apple-touch-icon-precomposed" sizes="72x72" 

  href="~/Content/images/apple-touch-icon-72x72.png" />    

<!-- iPad Hi-Res --> 

<link rel="apple-touch-icon-precomposed" sizes="144x144" 

  href="~/Content/images/apple-touch-icon-144x144.png" />  

<!-- Android --> 

<link rel="apple-touch-icon-precomposed" sizes="android-only" 

  href="~/Content/images/apple-touch-icon-57x57.png" />    



 
50 

<!-- default --> 

<link rel="apple-touch-icon-precomposed" 

  href="~/Content/images/apple-touch-icon-57x57.png" />    

With these settings, you should be able to create shortcuts on a variety of iOS and Android 
devices and have a properly formatted and sized icon show up on the desktop. 

Prompting the User to Create a Shortcut 

Even though we now have the properly formatted HTML to create nice desktop shortcuts and 
icons, that does not mean that users will actually take the time to create the shortcut—it doesn’t 
happen automatically!  Let’s look at a way that we can prompt users to create a desktop 
shortcut the first time they start our app. When using an iOS device, the 
navigator.standalone property will tell us whether a page is operating in full-screen mode.  

Android devices don’t really need this check as they don’t fully support the full-screen 
app mode. They can still create a home screen bookmark, but it’s not as important 
because it still opens the browser and looks exactly the same. 

Here is some JavaScript we can use to perform this check. Save this JavaScript in the 
/Scripts/PromptForBookmark.js file: 

// Contents of file "/Scripts/PromptForBookmark.js" 

$(document).ready(function () { 

  // This script should only be enabled if you are using the  

  // apple-mobile-web-app-capable=yes option. 

  var cookie_name = "PromptForBookmarkCookie"; 

  var cookie_exists = false; 

  documentCookies = document.cookie; 

  if (documentCookies.length > 0) { 

    cookie_exists = (documentCookies.indexOf(cookie_name + "=")  

     != -1); 

  } 

  if (cookie_exists == false) { 

    // If it's an iOS device, then we check if we are in a  

    // full-screen mode, otherwise just move on. 

    if ((navigator.userAgent.indexOf("iPhone") > 0 ||  

         navigator.userAgent.indexOf("iPad") > 0 ||  

         navigator.userAgent.indexOf("iPod") > 0)) { 

      if (!navigator.standalone) { 

        window.alert('This app is designed to be used in full screen mode. For best 

results, click on the Create Bookmark icon in your toolbar and select the Add to Home 

Screen option and start this app from the resulting icon.'); 

      } 

    } 

    //Now that we've warned the user, set a cookie so that  

    //the user won't be asked again. 



 
51 

    document.cookie = cookie_name +  

       "=Told You So;expires=Monday, 31-Dec-2029 05:00:00 GMT"; 

  } 

}); 

This script checks to see if the user has already been warned by checking for the existence of a 
cookie. If the user has not been warned before, the script will first make sure this is an iOS 
device by looking at the user agent, and then it will open an alert to notify the user that he or she 
should really use a desktop shortcut to start this application. Finally, it will store a cookie with a 
long expiration date so that the user won’t be bothered by this again. 

You may want to come up with a more elegant looking solution other than a pop-up 
message. I’ll leave that implementation detail up to you! 

To enable this feature, enable the apple-mobile-web-app-capable option, and then add the 

following script line in your _Layout.Phone.cshtml and _Layout.Tablet.cshtml files: 

<meta name="apple-touch-fullscreen" content="yes" />  

<meta name="apple-mobile-web-app-capable" content="yes" />  

<script type="text/javascript" 

  src="@Url.Content("~/Scripts/PromptForBookmark.js")" ></script> 

These tags will tell iOS devices to run the application in full-screen mode. They will also enable 
the script that informs the user that he or she should create a shortcut for this application the 
first time the application is run.  

Creating a Splash Screen 

Most applications show a nice-looking startup screen while you are loading the application. If 
you want to have a nice splash screen when the application is run in full screen mode, you will 
need to add the following tag: 

<link rel="apple-touch-startup-image" href="startup.png">   

At first glance, this tag also seems simple, but once again, looks can be deceiving. In this first 
very simple example, this tag specifies the startup image that will be displayed when you start 
your app from a desktop shortcut and you have it set to use the web app mode. Unfortunately, 
most of the time this tag will have no effect at all. Your image needs to be EXACTLY the right 
size for your specific device, so there are many possible options. If the conditions are not 
exactly right, then the image just doesn’t show up. You can even have the image just right in 
portrait mode, and then if the user changes the device to landscape mode, the image will not 
appear.  

To make things even more complicated, there are two versions of displays you have to worry 
about: the original iPhone and iPad, and the newer Retina displays for the iPhone and iPad. The 
following table lists the sizes for the startup image: 



 
52 

 

As you can see from the chart, on the original devices we have to subtract 20 pixels from one 
side to account for the header bar, and on the Retina devices we have to subtract 40 pixels. 
You may want to make your images different sizes, but don’t give in to that temptation. These 
devices are very fussy and if you don’t make your images EXACTLY one of these sizes they 
simply won’t show up. To account for all of these possible situations, you will need to create 
each of the following images and put them in your Content\Images folder: 

startup_image_320x460.png (iPhone Low-Res) 

startup_image_640x920.png (iPhone Retina) 

 

startup_image_480x300.png (iPhone Low-Res Landscape) 

startup_image_960x600.png (iPhone Retina Landscape) 

 

startup_image_768x1004.png (iPad Low-Res) 

startup_image_1536x2008.png (iPad Retina) 

 

startup_image_1024x748.png (iPad Low-Res Landscape) 

startup_image_2048x1496.png (iPad Retina Landscape) 

You can name them whatever you want, but these names are what are used in the 
HTML samples that follow. 

In order to get your images to show up on all the different devices at the right times, you’ll need 
a variety of different versions of the apple-touch-startup-image tags in your page. Adding 

CSS media rules will help to determine which image to use in each situation. 

The best place to put this code is in your layout pages. Add the following tags to your 
_Layout.Phone.cshtml: 

<!-- iPhone Low-Res --> 

<link rel="apple-touch-startup-image" 

  href="~/Content/images/startup_image_320x460.png"  

  media="(device-width: 320px)" />  

<!-- iPhone Retina --> 

<link rel="apple-touch-startup-image"  

  href="~/Content/images/startup_image_640x920.png"  

  media="(device-width: 640px) and  



 
53 

 (-webkit-device-pixel-ratio: 2)" />  

<!-- iPhone Low-Res Landscape --> 

<link rel="apple-touch-startup-image"  

  href="~/Content/images/startup_image_480x300.png"  

  media="(device-width: 320px) and (orientation: landscape)" />  

<!-- iPhone Retina Landscape --> 

<link rel="apple-touch-startup-image"  

  href="~/Content/images/startup_image_960x600.png"  

  media="(device-width: 640px) and (orientation: landscape) and  

  (-webkit-device-pixel-ratio: 2)" />  

<!-- (iPhone default) --> 

<link rel="apple-touch-startup-image"  

  href="~/Content/images/startup_image_320x460.png" />  

Do the same thing for your tablet layout pages by creating the following tags (note that once 
again these are similar to but different than the tags we used in the phone pages): 

<!-- iPad Low-Res --> 

<link rel="apple-touch-startup-image"  

  href="~/Content/images/startup_image_768x1004.png"  

  media="(device-width: 768px) and (orientation: portrait)" />  

<!-- iPad Retina --> 

<link rel="apple-touch-startup-image"  

  href="~/Content/images/startup_image_1536x2008.png"  

  media="(device-width: 1536px) and (orientation: portrait)  

  and (-webkit-device-pixel-ratio: 2)" />  

<!-- iPad Low-Res Landscape --> 

<link rel="apple-touch-startup-image"  

  href="~/Content/images/startup_image_1024x748.png"  

  media="(device-width: 768px) and (orientation: landscape)" />  

<!-- iPad Retina Landscape --> 

<link rel="apple-touch-startup-image"  

  href="~/Content/images/startup_image_2048x1496.png"  

  media="(device-width: 1536px) and (orientation: landscape)  

  and (-webkit-device-pixel-ratio: 2)" />  

<!-- (iPad default) --> 

<link rel="apple-touch-startup-image"  

  href="~/Content/images/startup_image_768x1004.png" />  

With these tags in place, you should have a startup image that will display for all of the iOS 
devices currently on the market. Although you can use the web app mode and create desktop 
icons on an Android device, these startup images will be ignored on Android devices. 

Note: I still have not been able to get the startup image to work perfectly on the new iPad 
Retina display when it is in landscape mode. The image does display, but shows up in 
the lower quarter of the screen with the other three quarters of the screen showing up 
white. I’m hoping that this is a bug that will be addressed in a future update. 



 
54 

Chapter 8   Tips and Tricks 

“Do not try and bend the spoon. That’s impossible. Instead...only try to realize the 
truth. There is no spoon. Then you’ll see that it is not the spoon that bends, it is 

only yourself.” 
    Young boy in The Matrix 

Using Partial Views to Minimize Duplication 

One of the major problems with the type of website that we have been creating so far is that we 
are replicating pages in our site, and with that comes the curse of duplicate content. One way 
you can avoid replicating your content is by creating partial views that you share between the 
different device pages. The following three screenshots are the exact same URL with the exact 
same content, but each is organized and optimized for the platform it is targeting, and each 
shares the same content file.  

 

Desktop View 



 
55 

 

Tablet and Phone Views 

Let’s look at the source code for each of these pages, starting with the desktop view: 

@{ ViewBag.Title = "Home Page"; } 

@section featured { 

  @Html.Partial("_Index_SubPage1") 

} 

<ul > 

  @Html.Partial("_Index_SubPage2") 

</ul> 

<h3>We suggest the following:</h3> 

@Html.Partial("_Index_SubPage3") 

<section class="features"> 

  @Html.Partial("_Index_SubPage4") 

</section> 

That’s it—that’s the entire page. For each of the main areas on the page, you can see that the 
content has been moved to a partial view file, so there is very little left on the actual page. 

Let’s start by creating the mobile views with a very similar layout. Here is the phone page: 

@{ Layout = "../Shared/_Layout.Phone.cshtml"; } 

@{ ViewBag.Title = "Phone Home Page"; } 

 

<h2>Home Page</h2> 

@Html.Partial("_Index_SubPage1") 

 

@* -- Moved to the Shared/_Layout.Phone.cshtml *@ 



 
56 

@*    @Html.Partial("_Index_SubPage2")*@ 

 

<h2>We suggest the following:</h2> 

@Html.Partial("_Index_SubPage3") 

 

<h2>Features</h2> 

@Html.Partial("_Index_SubPage4") 

And here is the tablet page: 

@{ Layout = "../Shared/_Layout.Tablet.cshtml"; } 

@{ ViewBag.Title = "Tablet Home Page"; } 

<h2>Home Page</h2> 

@Html.Partial("_Index_SubPage1") 

 

@* -- Moved to the Shared/_Layout.Tablet.cshtml *@ 

@*    @Html.Partial("_Index_SubPage2")*@ 

 

<h2>We suggest the following:</h2> 

@Html.Partial("_Index_SubPage3") 

 

<h2>Features</h2> 

@Html.Partial("_Index_SubPage4") 

Note that we removed the _Index_SubPage2 because that is the menu that we already have in 

the base layout page. This code won’t produce the sleek page shown in the previous 
screenshot quite yet, but it will have all of the content on the page. We’ll look at adding the 
collapsible containers in just a minute. 

Using this type of coding pattern raises your chances of success tremendously because you 
can optimize the design of your pages to match the device, but at the same time save yourself 
from having to maintain content in three different places at once. With this model, when you 
change the content in one place, it’s changed on all three platforms at the same time! 

Collapsible Containers and Reusable Content 

Let’s go back to the collapsible containers we referenced briefly in Chapter 3. jQuery.Mobile 
makes it very easy to create these. Let’s look at an example of this in action. 

Let’s modify the mobile views we just created to put the partial view content inside of a div with 

a role of collapsible. If you use that type of div container and you have to add a header tag 

at the top of your content, you’ll end up with a nice-looking bar with a plus or minus sign at the 
top of the container. You can see that we’ve set the phone containers to be collapsed and the 
tablet containers to be expanded by default since we have different device specifications. 

 

 



 
57 

Here is the finished code for the phone page: 

@{ Layout = "../Shared/_Layout.Phone.cshtml"; } 

@{ ViewBag.Title = "Phone Home Page"; } 

 

<div data-role="collapsible" data-theme="b" data-content-theme="b"  

  data-collapsed="true"> 

  <h2>Home Page</h2> 

  @Html.Partial("_Index_SubPage1") 

</div> 

 

@* -- Moved to the Shared/_Layout.Phone.cshtml *@ 

@*    @Html.Partial("_Index_SubPage2")*@ 

 

<div data-role="collapsible" data-theme="b"  

  data-content-theme="b" data-collapsed="true"> 

  <h2>We suggest the following:</h2> 

  @Html.Partial("_Index_SubPage3") 

</div> 

 

<div data-role="collapsible" data-theme="b"  

  data-content-theme="b" data-collapsed="true"> 

  <h2>Features</h2> 

  @Html.Partial("_Index_SubPage4") 

</div> 

And here is the code for the finished tablet page: 

@{ Layout = "../Shared/_Layout.Tablet.cshtml"; } 

@{ ViewBag.Title = "Tablet Home Page"; } 

<div data-role="collapsible" data-theme="b"  

  data-content-theme="b" data-collapsed="false"> 

  <h2>Home Page</h2> 

  @Html.Partial("_Index_SubPage1") 

</div> 

 

@* -- Moved to the Shared/_Layout.Tablet.cshtml *@ 

@*    @Html.Partial("_Index_SubPage2")*@ 

 

<div data-role="collapsible" data-theme="b"  

  data-content-theme="b" data-collapsed="false"> 

  <h2>We suggest the following:</h2> 

  @Html.Partial("_Index_SubPage3") 

</div> 

 

<div data-role="collapsible" data-theme="b"  



 
58 

  data-content-theme="b" data-collapsed="false"> 

  <h2>Features</h2> 

  @Html.Partial("_Index_SubPage4") 

</div> 

This source code will now produce pages that look like the screenshots at the beginning of the 
chapter. With this code, you now have three pages that look distinctly different and behave 
differently, but they all share the exact same URL and content. The only difference is in the 
device that requests the page. 

Desktop/Mobile ViewSwitcher 

MVC 4 has a new feature available called browser overriding, which lets users override their 
normal user agent string and view your page as if they were using a different browser. Using 
this, you can allow users to come to your site on their phone and get your mobile optimized 
view, and then they can request to see what it would look like on a desktop or a tablet.  

Note: This feature only affects the views and layouts in MVC, and doesn’t affect any 
other ASP.NET feature that looks at the Request.Browser object. 

There are several options available to you for this feature. There is actually a NuGet package 
that you can download to enable this, but the following code has been customized to work with 
the mobile framework concepts that we have been developing in this book.  

There are two components that you need to enable this feature: a view and the corresponding 
controller. Let’s look at the view first: 

<span style="font-size: 0.7em;"> 

Switch To:  

@Html.ActionLink("Desktop View", "SwitchView", "ViewSwitcher",  

  new { mobile = false, mobileType = "Desktop",  

  returnUrl = Request.Url.PathAndQuery },  

  new { rel = "external" })  

@Html.ActionLink("Tablet View", "SwitchView", "ViewSwitcher",  

  new { mobile = true, mobileType = "Tablet",  

  returnUrl = Request.Url.PathAndQuery },  

  new { rel = "external" })  

@Html.ActionLink("Phone View", "SwitchView", "ViewSwitcher",  

  new { mobile = true, mobileType = "Phone",  

  returnUrl = Request.Url.PathAndQuery },  

  new { rel = "external" })  

@Html.ActionLink("Default View", "SwitchView", "ViewSwitcher",  

  new { mobile = false, mobileType = "Default",  

  returnUrl = Request.Url.PathAndQuery },  

  new { rel = "external" })  

</span> 



 
59 

 

View Options 

So far, we have been working to develop three distinct views for our site: a desktop, tablet, and 
phone version. The links shown in the previous screenshot let users choose any of the three 
display options, or reset to the default view that their device would normally request. 

The controller that catches this link and processes it looks like this: 

using System.Web.Mvc; 

using System.Web.WebPages; 

 

namespace Demo.Controllers 

{ 

  public class ViewSwitcherController : Controller 

  { 

    public RedirectResult SwitchView(bool mobile, string mobileType,  

      string returnUrl) 

    { 

      mobileType = (mobileType == null) ?  

        string.Empty : mobileType.Trim().ToLower(); 

      if (mobileType == "default") 

      { 

        HttpContext.ClearOverriddenBrowser(); 

      } 

      else 

      { 

        if (mobileType == string.Empty) mobileType = "mobile"; 

        switch (mobileType) 

        { 

          case "desktop": 

            HttpContext.SetOverriddenBrowser("Mozilla/5.0 (Macintosh; U; Intel Mac OS 

X 10_6_8; en-us) AppleWebKit/534.55.3 (KHTML, like Gecko) Version/5.1.5 

Safari/534.55.3"); 

            break; 

          case "tablet": 

          case "ipad": 

            HttpContext.SetOverriddenBrowser("Mozilla/5.0 (iPad; U; CPU OS 4_3_3 like 

Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 

Safari/6533.18.5"); 

            break; 

          case "phone": 

          case "iphone": 



 
60 

            HttpContext.SetOverriddenBrowser("Mozilla/5.0 (iPhone; U; CPU iPhone OS 

4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 

Mobile/8J2 Safari/6533.18.5"); 

            break; 

          default: 

            HttpContext.SetOverriddenBrowser(BrowserOverride.Mobile); 

            break; 

        } 

      } 

      return Redirect(returnUrl); 

    } 

  } 

} 

The new functions provided by MVC 4 that this controller uses are SetOverriddenBrowser and 

ClearOverriddenBrowser. In this case, if a user requests a desktop view, the user agent is set 

to simulate a Macintosh desktop, but you can easily set it to whatever user agent you want. In 
our framework, it really doesn’t make much difference what desktop user agent you specify as 
any of them will return the default desktop view. 

With this code in place, all you have to do is to add the following line into your layout pages to 
include the ViewSwitcher code: 

@Html.Partial("_ViewSwitcher") 

Some designers believe this should be at the top of the page above your mobile view, and 
others like to put it at the bottom, but it’s really a matter of personal preference where you 
display these links. 

Having this link gives your users a degree of control that they didn’t have before by letting them 
use the desktop site if the mobile pages are not functioning properly for some reason. 

HTML 5 Tags 

There are a variety of new HTML 5 tags that can be very useful on a mobile device. You can 
specify HTML 5 tags in your app by setting the <input type= parameter. These tags include 

(but are not limited to): email, tel, url, number, search, time, date, month, datetime, and 

datetime-local. Many of these have very limited support on mobile browsers (especially on 

Android browsers), and there are some, such as week and color, that don’t work at all on 

certain mobile platforms like iOS, and others that work on current versions of iOS (5.x) but not 
earlier versions (4.x). We’ll discuss a few of them here and see how you can easily use these in 
your MVC project.  

Editor Templates 

Here is an example of the HTML that would create a Phone field: 

<input class="text-box single-line" name="Phone" type="tel" value="" /> 



 
61 

This code will generate a screen on an iOS phone that looks like this: 

 

Phone Screen 

Notice that the standard keyboard has been replaced with one that consists of only numbers 
which gives the user much larger buttons and a greater chance of entering the proper 
information. In a similar fashion, the email and url attributes will display a keyboard that has 

letters and common web address characters like the @ sign, which doesn’t appear on the 
default keyboard for normal text fields.  

Remember what I said in Chapter 4 about some things not working when you are using 
Safari as a mobile emulator? The email and url tags (as well as some others) are one of 
those things. These special keyboards won’t pop up in the desktop version of Safari. 

Also, most of the number and date picker tags in this section do not work on Android 
devices at this time. 

You can manually create the HTML to put in that special input type attribute, but in MVC 

there is a much better way to do this: data annotations. Let’s start by modifying a model 
definition: 

public class SampleModel 

{ 

  // -- Other fields omitted here for brevity. 

  [DataType(DataType.PhoneNumber)] 

  [Display(Name = "Phone", Prompt = "Phone:")] 

  public string Phone { get; set; } 

} 

When we add the DataType annotation, this will tell MVC that this is a special type of string, and 

it will be treated differently when composing a view. However, if all you do is add this data 
annotation, you won’t see anything different; you need one more piece to this puzzle: editor 
templates.  

These templates are not supplied with the standard MVC project template, so you must go get 
them yourself and add them to your project. These templates must reside in a folder named 



 
62 

EditorTemplates under the Shared folder. The templates can be found by fetching a NuGet 
package (Install-Package MvcHtml5Templates). 

In our model definition, we’ve specified that our Phone field has a DataType of PhoneNumber, 

so MVC will look for and use the PhoneNumber template when creating the HTML for editing 
this field. The PhoneNumber.cshtml file is very simple, and contains only the following code: 

@Html.TextBox("", ViewData.TemplateInfo.FormattedModelValue,  

  new { @class = "text-box single-line", type = "tel" }) 

In your view file, all you need to do is use the EditorFor helper on your field and it will 

automatically generate the updated HTML now. (Note that if you use the TextBoxFor helper 

without any special parameters, it won’t work automatically.) 

@Html.EditorFor(m => m.Phone) 

This combination of model data annotation, editor templates, and the EditorFor helper will 

generate the code that we started with earlier. MVC does all the hard stuff for us—pretty sweet, 
huh? 

<input class="text-box single-line" name="Phone" type="tel" value="" /> 

Let’s look at another example: the DateTime helper. Let’s edit our model again and add a 

DateTime field: 

public class SampleModel 

{ 

  // -- Other fields omitted here. 

  [DataType(DataType.DateTime)] 

  public DateTime ContactDateTime { get; set; } 

} 

Next we’ll add a DateTime.cshtml editor template in the Shared folder: 

@Html.TextBox("", ViewData.TemplateInfo.FormattedModelValue,  

  new { @class = "text-box single-line", type = "datetime" }) 

While we’re at it, let’s create a Month.cshtml editor template too: 

@Html.TextBox("", ViewData.TemplateInfo.FormattedModelValue,  

  new { @class = "text-box single-line", type = "month" }) 

After adding this field to our view, we can use any of the following EditorFor statements: 

@Html.EditorFor(m => m.ContactDateTime) 

@Html.EditorFor(m => m.ContactDateTime, "DateTime") 

@Html.EditorFor(m => m.ContactDateTime, "Month") 

When you run this code on an iOS phone, you will get one of these editors: 



 
63 

 

Date Pickers in iOS 

It looks like a native app and behaves like a native app, but it’s all HTML!  

If you want to get this to work on all mobile platforms right now, you will have to try using 
a third-party tool like Mobiscroll which can be found at http://mobiscroll.com/. 

On your desktop, you won’t notice any difference yet. If you want a nice date picker on your 
desktop, you will need to install the jQuery.UI components if they are not already in your project. 
If you have already added the DateType.Date data annotation in your model, and you have 

included the Date.cshtml editor template, then there are only a few small changes that you 
need to make. In your _Layout.cshtml page (or in your desktop bundles in the Global.asax if 
you are using minification), you will need to include the jquery-ui.min.js and the jquery-
ui.min.css files, and you will need to add the following script in the header of the _Layout file to 
enable the fields: 

<script type="text/javascript"> 

  $(document).ready(function () { 

    $('.date').datepicker({ dateFormat: "mm/dd/yy" }); 

  }); 

</script> 

That’s it—now you will have a nice fancy date picker pop-up in your application that looks like 
this (with almost no work on your part!): 

 

Date Picker 

http://mobiscroll.com/


 
64 

Before you commit to using these features, you should make sure they are supported on the 
devices that you want to target. A couple of good resources to check are: 

 http://mobilehtml5.org/: This site lists many HTML 5 features and which browsers and 
operating systems support them. 

 http://www.quirksmode.org/html5/inputs_mobile.html: This site lists some of the specific 
HTML tags and attributes (like the ones shown in this chapter), and details which mobile 
operating systems support those tags. 

Search Fields 

Another useful field type is the search type. If you want a field that looks like a search field, just 

add the Search template type on a string field. In the following code sample we don’t have a 
Search data annotation that we can add to our model, so we’ll tell the EditorFor helper to use 

a specific template: 

@Html.EditorFor(m => m.SearchTxt, "Search") 

The code in the Search Editor Template looks like this: 

@Html.TextBox("", ViewData.TemplateInfo.FormattedModelValue,  

  new { @class = "text-box single-line", type = "search" }) 

 

 

Search Field 

Notice how the field corners are much more rounded than a normal text box, and how it has a 
magnifying glass inside the text field? These are just subtle hints to the user that this is a special 
field. 

We won’t go into all of the editor templates here because there are several with many options 
each. Some work with the EditorFor and data annotations, and some will need a little more 

manual tweaking. 

Special HTML 5 Attributes 

There are a few other special attributes that you will appreciate. The Required attribute is a 

nice HTML 5 attribute, but that should be handled by the Required data annotation in your 

model, so we won’t address it here.  

One attribute that is very useful is the placeholder attribute. This will place light gray text in the 

text box field to give users a hint of what to type, and then the text disappears when they click in 

http://mobilehtml5.org/
http://www.quirksmode.org/html5/inputs_mobile.html


 
65 

the box. Let’s go back and enhance our Search box by using the TextBoxFor helper so we can 

easily add an extra attribute. Remember that I mentioned the default TextBoxFor helper 

wouldn’t use a template from the data annotation? You can specify one by editing the 
HtmlAttributes. Since that is how we need to specify the placeholder tag, we’ll specify both 

the editor template and the placeholder attribute using the TextBoxFor command. 

@Html.TextBoxFor(m => m.SearchTxt,  

  new { type= "search", placeholder = "enter search terms" }) 

 

 

Placeholder in a Search Field 

Now you’ve got the enter search terms placeholder text in your search field. When you click 
inside the field and start typing, the placeholder goes away. In addition, the user gets a nice little 
clear button on the right of the text box. Not bad for one simple little attribute! 

Other attributes you may want to investigate adding to your text boxes are 
autocorrect="off", autocomplete="off", and autocapitalize="off". 

The MVC 4 Tilde Tidbit 

Here is one awesome feature of MVC 4 that we have been using through all of the examples so 
far, but you may not have noticed. Take a look at this code: 

<img src="~/Content/images/icon.png"/> 

If you were coding in MVC 3, you would expect to see a tag like this: 

<img src="@Url.Content("~/Content/images/icon.png")"/> 

This is one of the small, overlooked features of MVC 4 that is really useful. If you look at the 
HTML that is generated, these two statements will both generate exactly the same HTML, but 
the first is much cleaner. It doesn’t seem like much, but anything that makes your code more 
readable is a nice feature in my book. 



 
66 

Chapter 9   More jQuery.Mobile Features 

“You know nothing for sure, except the fact that you know nothing for sure.” 
    John F. Kennedy 

One thing I’ve learned over the years is that the more I learn, the more that I realize there is to 
learn. In this chapter, we’ll look at some of the things that are important to know about 
jQuery.Mobile. There are other books that explore many of these concepts in more depth, and I 
would encourage you to read them if the concepts discussed here pique your interest. This 
chapter is intended to give you a good overview of some of the more important topics of 
jQuery.Mobile. 

jQuery.Mobile Container Objects 

In Chapter 6, we discussed the main jQuery.Mobile sections: page, header, content, footer, 

and navbar. There are many other sections available which we will briefly discuss here. 

Nested Collapsible Containers 

We talked about the collapsible container object in the Tips and Tricks section already, but one 
thing we didn’t talk about was nesting containers. You can nest collapsible containers inside of 
other collapsible containers. However, using more than two levels is not recommended because 
of the complexity that ensues. 

In addition to nesting, one other thing you can do with collapsible containers is create an 
accordion-type effect using the data-role="collapsible-set" attribute. If you wrap a set of 

collapsible containers inside this attribute, you get a nice, space-saving effect. Only one of the 
containers in the set will open at one time, so when you click on any of the plus signs, all of the 
other containers will automatically close. 

<div data-role="collapsible-set">  

  <div data-role="collapsible" data-collapsed="false"> 

    <h2>Section 1 Title</h2> 

    Section 1 Content 

  </div> 

  <div data-role="collapsible" data-collapsed="false"> 

    <h2>Section 2 Title</h2> 

    Section 2 Content 

  </div> 

  <div data-role="collapsible" data-collapsed="false"> 

    <h2>Section 3 Title</h2> 

    Section 3 Content 

  </div> 

</div> 



 
67 

Here is an example with plain collapsible containers on the left and containers using the 
accordion effect on the right. 

 

Plain Collapsible Containers (Left) and Containers with Accordion Effect (Right) 

Field Container 

If you are creating forms, you will probably want to wrap your fields inside a field container as 
done in the following code sample: 

<div data-role="fieldcontain"> 

  @Html.LabelFor(m => m.UserName) 

  @Html.TextBoxFor(m => m.UserName)<br /> 

  <span style="Color: Red;">@Html.ValidationMessageFor(m =>  

    m.UserName)</span> 

</div> 

This tag helps mostly when you are working with wider screens. The framework will align the 
input and label side by side if the screen width is greater than 480 pixels, or it will stack them 
vertically if it is smaller than that. This tag will also add a thin bottom line below each of the 
fields to help break up the screen visually. 

List View 

You have probably used list components many times in your projects. jQuery.Mobile has many 
features that can enhance lists, and we could have an entire chapter just for that topic. 
However, we will cover only the most frequently used here, and will create a short cheat sheet 
of options that you will come back to often. 



 
68 

Simple Unordered List: Full Screen Width 

<ul data-role="listview"> 

This example creates a simple unordered list that uses the full screen width. 

Inset List 

<ul data-role="listview" data-inset="true"> 

This example creates a simple unordered list that is in a bubble with rounded corners, and is inset 
from the borders a little bit. 

Ordered List 

<ol data-role="listview"> 

This example creates a simple ordered list with a number for each list item. 

List with Search Header 

<ul data-role="listview" data-filter="true"> 

This example creates an unordered list with a search bar at the top of the screen that will let users 
filter the contents of the list easily. 

List Header or Divider  

<li data-role="list-divider">@ViewBag.Title</li> 

This example creates a header item in your list, which separates the content visually. 

Simple List Item 

<li>Home</li> 

This example creates a simple list item. 

Bold List Item 

<li><h1>Home</h1></li> 

This example creates an item which will appear much larger in the list. You can adjust the size by 
using different header level tags, or even use a <p> tag to decrease the size of the row. 

List Item with Link 

 

<li>@Html.ActionLink(Movie.MovieName, "Details",  

    new { id = Movie.MovieId })</li> 

This example creates an interactive list item. Users can click anywhere in the row to activate the link.  

 



 
69 

List Item with Link and Icon 

 

<li> 

  <a href="@Url.Action("Details",  

    new { id = Movie.MovieId })" > 

    <img src="@string.Format("images/{0}.png",  

      Movie.Genre)"  

    alt="Email" class="ui-li-icon" />@Movie.MovieName</a> 

</li> 

This example creates an item with an icon on the left that is part of the clickable area for this item. 
You can specify any icon you want or make it data driven. 

Complex Split Button List Item  

 

<li> 

  <a href="@Url.Action("Details",  

    new { id = Movie.MovieId })" > 

    <img src="@string.Format("images/{0}",  

      Movie.MovieIconURL)" /> 

    <h3>@Movie.MovieName</h3> 

    <p>@Movie.MovieDscr</p> 

  </a> 

  <a href="@Url.Action("Purchase",  

    new { id = Movie.MovieId })">Purchase Movie</a> 

</li> 

This example creates a moderately complicated split-button view. The first link controls the left portion 
of the item, and encompasses an icon, title, and description. The second link automatically creates a 
small section on the right with an icon and ignores any text you put in there. A bordered arrow icon is 
used as the default, but you can specify any of the jQuery.Mobile icons by putting the data-split-
icon tag on the <ul> tag at the top of the section that defines your list. 

List Item with Count Bubble 

 

<li> 

  <a href="@Url.Action("GenreDetails",  



 
70 

    new { id = Genre.GenreId })" >@Genre.GenreName 

  <span class="ui-li-count">@Genre.MovieCount</span> 

  </a> 

</li> 

This tag creates a list item with a count bubble number on the right. Typically this will show you the 
number of items you would expect to see if you clicked on this row. In this particular example, we’re 
showing the number of movies in a single genre. 

Columns 

jQuery.Mobile offers a convenient way to lay out the screen with a grid-based system of two, 
three, four, or five columns. However, as we discussed in previous chapters, try to think about 
mobile devices in more of a single column format (or two columns), so don’t get carried away 
with this and return to the table-driven HTML design mentality of years past! There is a place for 
tables, such as when trying to put a few items side by side, especially when they are in a 
container like a footer, but use restraint. Here is an example of a simple two column grid: 

<div class="ui-grid-a"> 

  <div class="ui-block-a"><strong>I'm Block A</strong>  

    and text inside will wrap</div> 

  <div class="ui-block-b"><strong>I'm Block B</strong>  

    and text inside will wrap</div> 

</div> 

The class name will determine how many columns are created. In this case, we’ve used the ui-
grid-a class, which signifies that we want two columns, and those columns are labeled ui-
block-a and ui-block-b. If you want three columns, use the ui-grid-b tag and add a ui-
block-c div. For four columns, use the ui-grid-c tag and add a ui-block-d div. And 

finally, for five columns, use the ui-grid-d tag and add a ui-block-e div; however, for most 

screens you’ll probably be better off just avoiding this one. 

Button 

Buttons seem relatively simple, but there are several ways to render them in jQuery.Mobile. 
Normally any element of type button will render as a jQuery.Mobile button, as will input 

elements with the attributes of type=button, type=submit, type=reset, or type=image. To 

turn any <a href> link into a button, all you have to do is add the data-role="button" tag to 

that link. Note that any link in a header or footer gets that treatment also, whether or not you add 
the data-role=button tag. By default, buttons are rendered as the entire width of the page. To 

make the button auto-size to fit its content, add the tag data-inline="true" to the button. As 

we mentioned in previous chapters, you can also add icons to the button using the data-icon 

attribute, and you can set the position of that icon using the data-iconpos attribute. 

If you want to group several buttons together into one compact container, you can use the 
controlgroup container. By default, the container lists the buttons vertically, but you can 

change that by setting the data-type attribute. Starting with jQuery.Mobile version 1.1, you can 

also add the data-mini attribute so that your buttons are rendered in a smaller format. 



 
71 

 

Control Group 

 

<div data-role="controlgroup" data-type="horizontal"  

  data-mini="true"> 

  <a href="index.html" data-role="button">Yes</a> 

  <a href="index.html" data-role="button">No</a> 

  <a href="index.html" data-role="button">Maybe</a> 

</div> 

Dialogs 

jQuery.Mobile supports a pop-up dialog item which operates in a modal fashion (i.e. you have to 
close the dialog before you move on to something else). You will want to use these when asking 
for confirmation from a user (“Are you sure want to delete this?”), requiring the user to choose 
between a couple of choices (“Black or Blue?”), or giving the user information (“Your order has 
been submitted!”). 

A dialog is very simple to create. Just create your page as a view like any other view, and then 
when you link to that view, add the data-rel="dialog" tag to the link as shown in the following 

code sample: 

<a href="@Url.Action("Delete", new { id = Movie.MovieId })"   

  data-rel="dialog">Delete @Movie.MovieName</a> 

 

You can also add the data-role="dialog" tag in your page instead of using the data-
role="page" tag, and then you won’t have to include it on every link referencing your page. In 

our case, since we are using shared layout pages, that means you would set up a 
LayoutDialog.Phone.cshtml file and a LayoutDialog.Tablet.cshtml file. 

When a user clicks on a link in the dialog page, the dialog page is automatically closed and the 
link is opened. If you want to go back to the previous page, just include the data-rel="back" 

attribute on the link.  

NoJS 

jQuery.Mobile rates its browser support on a scale from A to C, with A meaning full support, B 
meaning full support minus AJAX, and C meaning support for basic HTML only. If you want to 
provide content for browsers that are not A-grade supported, you can add a special section that 
is just for them as shown in the following code sample: 

<div data-role="nojs"> 

  Please upgrade your phone! 

</div> 

 



 
72 

Multipage Documents 

All of the examples we’ve seen so far in our MVC projects have used single-page templates. In 
other words, there is one and only one <div data-role="page"> element on a page. 

jQuery.Mobile supports the concept of a multipage document in which you can define multiple 
<div data-role="page"> elements, each with a different page. Each page element must have 

a unique ID such as <div id="divExample">. When you switch pages, you must specify a link 

with that ID <a href="#divExample">, which will cause the browser to look for that internal 

page and then transition it into view. 

This idea is very attractive because it makes your site extremely fast when switching between 
pages. However, one drawback is that if you make your home page a multipage document with 
all of your pages on it, your entire site is loaded the first time a user hits the page, including all 
of the images and content on all of the sub-pages. This can make your page very slow to load, 
and it also makes it hard to track any sort of website analytics on a page-level basis. 

In addition, if you start on a single-page document and then link to a multipage document, you 
must use the data-ajax="false" attribute on the link. If you don’t, the framework will only load 

the first page node when it does an AJAX request. 

If you are considering using multipage documents, make sure you test it thoroughly on actual 
devices. Mixing that with "apple-mobile-web-app-capable" tags can cause a lot of 

frustration when debugging your app. 

I have developed full sites using multipage documents, but have converted some of 
them back to single-page sites. Some of those sites are still live with multipage design, 
but I’ll probably switch those back over to single-page the next time I have to make a 
major change. 

Custom Icons 

In a previous section we discussed how you can put icons on your buttons using the standard 
built-in icons. However, the selection is limited and it won’t be long before you will find yourself 
saying, “I wish they had an icon that looked like an ice cream sandwich,” or something equally 
absurd. 

jQuery.Mobile makes it easy to create your own custom icons that you can use in your project. 
The standard jQuery.Mobile icons use a CSS sprite technique to combine all of their images into 
one image, and then display a portion of that image using a CSS style sheet tag. Take a look at 
the /Content/Images/icons-36-white.png file to see the file with all the standard icons. 

You can create your own icons in a file similar to that one and then reference it the same way in 
your code. Let’s look at an example. The following is an image file (displayed over a dark 
background) with five custom icons: 

 

Custom Icon Sprite 



 
73 

Note the spacing in this sprite. It’s got alternating sections of 36 pixels of content, and 36 pixels 
of transparent background, which make it cleaner and easier to use in CSS.  

To use these custom icons, you will need to create the following CSS styles: 

/* create multiple icons using a sprite with multiple images */ 

.ui-icon-custom-bell,  

.ui-icon-custom-donot,  

.ui-icon-custom-asterick,  

.ui-icon-custom-thought,  

.ui-icon-custom-bug { 

  background-image: url(images/CustomIcons-36-white.png); 

  -moz-background-size: 180px 18px; 

  -o-background-size: 180px 18px; 

  -webkit-background-size: 180px 18px; 

  background-size: 180px 18px; 

} 

 

.ui-icon-custom-bell { 

  background-position:   -0 50%; 

} 

.ui-icon-custom-donot { 

  background-position:   -36px 50%; 

} 

.ui-icon-custom-asterick { 

  background-position:   -72px 50%; 

} 

.ui-icon-custom-thought { 

  background-position:   -108px 50%; 

} 

.ui-icon-custom-bug { 

  background-position:   -144px 50%; 

} 

/* Create an icon using a single image without sprites. */ 

.ui-icon-custom-bugimage {  

  background-image: url(images/Bug18.png);  

} 

/* Hi-res version. */ 

@media only screen and (-webkit-min-device-pixel-ratio: 2)  

{ 

  .ui-icon-custom-bugimage {  

    background-image: url(images/Bug36.png) !important; 

    background-size: 18px 18px;  

  } 

} 



 
74 

It may seem a bit counterintuitive that we show the background position as a negative number. 
What we are doing is telling our page to shift the image that many pixels to the left. In other 
words, for the custom-thought icon, we have the page chop off the first 108 pixels from the left 
side of the image and then show the result. 

The last two styles demonstrate how you can reference a single image without using the sprite 
technique, and how you can target Retina displays with a high-resolution image by setting the 
pixel-ratio attribute to 2 when you are using a high-resolution Apple screen. 

This style sheet should be saved and referenced in your layout pages. You can embed these 
style tags in your page if you want, but I’d recommend creating a site-specific style sheet. By 
default, MVC creates a Site.css file in your Content folder. A best practice is to create a 
Site.Mobile.css file in the Content folder and put your custom mobile styles there, then include 
that style sheet in each of your mobile layout pages (or in your custom mobile bundle if you are 
using that technique). 

Now that we have our image created and our style sheets that define the tags, we can now 
reference these new icon tags in our page just like we reference the standard icons. The first 
item in the following code sample uses a stock icon, the second uses a custom sprite icon, and 
the third uses a custom image. 

<div data-role="navbar" data-theme="b" data-iconpos="top"> 

  <ul> 

    <li>@Html.ActionLink("Home", "Index", "Home", null,  

      new { data_icon = "home" })</li> 

    <li>@Html.ActionLink("About Us", "About", "Home", null,  

      new { data_icon = "custom-thought" })</li> 

    <li>@Html.ActionLink("Bug Us", "Contact", "Home", null,  

      new { data_icon = "custom-bugimage" })</li> 

  </ul> 

</div> 

 

Header with Stock and Custom Icons 

Now that you know how to create your own icon files and use them, you are limited only by your 
imagination. Get your graphic designer to draw some custom images for you and make your site 
look unique! 

The example images and Photoshop file used to create the sprite are included in the 
sample code file. Enjoy! 



 
75 

Mini UI Elements 

One of the nifty new features in jQuery.Mobile 1.1 is the ability to create mini-elements. All of 
the form elements accept a new data-mini="true" tag. You can also put this tag on the 

controlgroup for making a group of buttons smaller. This tag has no effect on the elements 

other than to make them smaller, but can be very useful if you are trying to put multiple items 
into a header or footer. 

jQuery.Mobile Startup Options 

There are several things that you may want to change in the default behavior of jQuery.Mobile. 
The easiest way to do this is to change the startup options. If you have created JavaScript with 
jQuery before, you are probably familiar with the ready event. In jQuery.Mobile, there is a 

similar event named mobileinit which is fired when the framework is loaded and before it 

renders the UI, so we can make changes here that will affect how the UI is created. One thing to 
note is that this needs to be included in your header BEFORE you include the jQuery.Mobile.js 
file, and AFTER you include the jQuery.js file, so your layout file should look like this: 

<script src="http://code.jquery.com/jquery-1.6.4.min.js" 

type="text/javascript"></script> 

<script src="@Url.Content("~/Scripts/CustomJQMobileInit.js")" 

  type="text/javascript"></script> 

<script src="http://code.jquery.com/mobile/1.1.0/jquery.mobile-1.1.0.min.js" 

type="text/javascript"></script> 

So, what kinds of things would you want to change here? Let’s suppose that we wanted to 
change the default page animation on every page from the default "fade" to "flip" because 

we like to see things flip. To do that, you would insert the following code in your 
/Scripts/CustomJQMobileInit.js file: 

$(document).bind('mobileinit', function() { 

  $.mobile.defaultPageTransition = "flip"; 

}); 

We could also use this if we had to create a multi-lingual site with localization. Some things like 
the text in the Back button are set by default within the framework. We can override this by 
setting one of the internal values in this initialization script.  

There are also many other events that you should investigate such as the pagebeforechange, 

pagebeforeload, pagebeforecreate, pagecreate, pageinit, pageload, pagebeforehide, 

pagebeforeshow, pagehide, pageshow, and pagechange. All of these events in the 

jQuery.Mobile event model are available for you to access within JavaScript on your page.  

There are too many details to go into here. There are several good jQuery.Mobile books that go 
into greater detail. This is just a quick introduction to give you a starting place for your research 
so that you know that it is possible to do these types of things with jQuery.Mobile.  



 
76 

Chapter 10   Enhancing Performance 

“I feel the need…the need for speed!”  
    Lt. Pete “Maverick” Mitchell in Top Gun 

It’s easy to say that we want a website that performs well. It’s just as easy to say that we’ve 
made changes and insist that our website is now “faster.” The real issue is how you can 
measure that performance increase. To show that you have improved something, you first need 
to be able to measure it. There are several ways that you can do that for a desktop application, 
but not as many for mobile devices. However, there are a few options that work fairly well for 
measuring performance on your mobile devices. 

Measuring Performance 

A great tool is one that many web developers are familiar with: YSlow. In addition to the normal 
desktop version that you can add as an extension to your browser, there is a mobile version 
available. This version is located at http://developer.yahoo.com/yslow/mobile. This URL will 
redirect you to a very long URL with lots of JavaScript on the end. To use YSlow for Mobile, you 
must first create a bookmark from this resulting URL, which will look like this:  

http://yslow.org/mobile/#javascript:(function(y,p,o){p=y.body.append... 

After you have created the bookmark, edit it and delete everything up to the “#” sign so that your 
bookmark is actually a piece of JavaScript code instead of a URL, which is commonly known as 
a bookmarklet. Once you have that bookmarklet, go back and load your site, click on the 
bookmarklet bookmark, and you should then see the YSlow application show up in the bottom 
half of your screen. It will reload the site and analyze it for you, giving you a score between 0 
and 100, and a letter grade from A–F for both your overall site and each area.  

Sometimes you can’t do much about what it suggests. When analyzing an MVC site, it will 
suggest that the minified JavaScript and CSS should also be gzip compressed but that option is 
not available in the MVC 4 RC bundles. As you review each area of your site, the tool will give 
you suggestions for how to improve your score in that area. 

Enabling Client Caching with Web.config 

One very easy way that you can dramatically speed up your website is to enable content 
caching on your scripts, style sheets, and images. To do that, all you need to do is to include 
this very simple Web.config in the Content and Scripts folders: 

<?xml version="1.0" encoding="UTF-8"?> 

<configuration> 

  <system.webServer> 

    <staticContent> 

      <clientCache cacheControlMode="UseMaxAge"  

        cacheControlMaxAge="30.00:00:00" /> 

http://developer.yahoo.com/yslow/mobile
http://yslow.org/mobile/#javascript:(function(y,p,o){p=y.body.append...


 
77 

    </staticContent> 

  </system.webServer> 

</configuration> 

Note that this is the Web.config in your subfolders, and not the Web.config in the root of 
your site! 

You might not think you need this since your browser automatically caches images and other 
content files for you. However, if you look behind the scenes with a tool like Fiddler, you will see 
that even if your browser has a file in the cache, for each of the files on your page the browser 
will do an HTTP query up to the server to see if the file in the browser cache is older than the file 
on the server. 

This Web.config setting will automatically put a content expiration date of thirty days on 
everything that is downloaded from that folder. The next time any of those images, scripts, or 
both are requested from that folder by your client’s browser, it will see that it has the file in 
cache AND that the expiration date has not passed yet, so it won’t hit the server to check and 
see if it needs the file. Even though it’s a small request, you have eliminated one round-trip to 
the server for every image you have on the page that is cached. Talk about an easy upgrade! 

There is one small downside to this approach that you have to be aware of. If you want to 
change a script, style sheet, or image in that folder, you have a small problem. For the next 
thirty days, any client that already has your script or image in its cache won’t even bother to 
check your server to see if the file has changed. After thirty days, it will check again and your 
site will be updated. 

Fortunately, there is a simple solution: When you change a file, you have to also change the 
name of the file. If you change a style sheet named Site.Mobile.css, do a global search and 
replace to change the name to Site.Mobile2.css. The new file name won’t be in the client’s 
cache, so it will be fetched from the server. 

Using a CDN 

Another way that you can easily increase the performance of your site is to use a content 
delivery network (CDN) for spreading the load for you. A CDN will dramatically improve your 
site’s performance even if you are pulling the exact same files from the CDN that you serve up 
from your site. The secret is in how the browser retrieves files. Most browsers will download up 
to six concurrent files from any given domain. When you request a seventh resource from a 
domain, it will be queued up and wait until one of the first six are completed. If you download 
some of your files from a CDN, you get another six download streams that you can use at the 
same time.  

Another big plus is that these files are cached in your browser’s cache from some other site, so 
it’s quite possible that they will already be there and you won’t even have to download them. 

You might think that you don’t have access to one, but you do. You can easily use a CDN for 
the shared files that you include in your project. Here are some examples: 

 



 
78 

<link  

href="http://code.jquery.com/mobile/1.1.0/jquery.mobile-1.1.0.min.css" 

rel="stylesheet" /> 

<link  

href="http://code.jquery.com/mobile/1.1.0/jquery.mobile.structure-1.1.0.min.css" 

rel="stylesheet" /> 

 

<script  

src="http://code.jquery.com/mobile/1.1.0/jquery.mobile-1.1.0.min.js" 

type="text/javascript"></script> 

<script src="http://code.jquery.com/jquery-1.6.4.min.js" 

type="text/javascript"></script> 

<script  

src="http://ajax.aspnetcdn.com/ajax/mvc/3.0/jquery.unobtrusive-ajax.min.js" 

type="text/javascript"></script> 

<script 

src="http://ajax.microsoft.com/ajax/jQuery.Validate/1.6/jQuery.Validate.min.js" 

type="text/javascript"></script> 

<script 

src="http://ajax.aspnetcdn.com/ajax/mvc/3.0/jquery.validate.unobtrusive.min.js" 

type="text/javascript"></script> 

If you are using the bundling features of MVC 4, this may or may not apply to you, but it’s worth 
looking at, at least for images that are not bundled and minified. 

Data Prefetch Tag 

On links that you know will be used (like a link to the next picture in a gallery), you can add an 
extra tag which will cause jQuery.Mobile to preload the content: 

<a href="mypage" data-prefetch>Load Page</a> 

The data-prefetch tag prompts jQuery.Mobile to go ahead and fetch the next page once the 

current page is loaded so that when you actually click on the link, the document will load almost 
instantaneously because the page is already in the cache. 

In a similar fashion, jQuery.Mobile loads a page into memory in the DOM when it is loaded, and 
then removes the page when it goes out of scope, keeping up the three pages in memory at any 
given time. If you want to make sure your page remains in memory, you can add a data-dom-
cache="true" on the page element, and it will not be unloaded, so it will load faster. 

Both of these tips have a large potential downside if you are trying to manage page loads and 
memory yourself, so you will want to make sure it’s important if you are planning on using these 
tips. 



 
79 

Chapter 11   Still Using MVC 3? 

“I’ll have what she’s having!” 
    Anonymous customer in When Harry Met Sally 

There are a lot of projects out there that have been developed with MVC 3, and if you are still 
working with MVC 3, you may be feeling a little left out right now and want some of what 
everyone else is having. Don’t worry about it—you can achieve the same mobile-friendly effects 
using existing MVC 3 technology, and position yourself to move right into MVC 4 without a big 
disruption. 

Speed Bump: MVC 3 and MVC 4 side by side 

You can easily install MVC 4 alongside MVC 3 and it is not supposed to break anything. 
However, there is one little speed bump that you may run into.  

When MVC 4 is installed, it installs its new files for your system in the C:\Program Files 
(x86)\Microsoft ASP.NET\ASP.NET MVC 4 folder, so it does keep the new MVC files separate 
from the ASP.NET MVC 3 folder that it sits beside. However, it also installs a new v2.0 folder 
inside the ASP.NET Web Pages folder next to the v1.0 folder: C:\Program Files 
(x86)\Microsoft ASP.NET\ASP.NET Web Pages\v2.0. 

This folder just so happens to contain a few files that MVC 3 uses with the same name but a 
different version. 

When you go back and build your existing MVC 3 project after installing MVC 4, you may get 
this compile error: 

c:\Windows\Microsoft.NET\Framework\v4.0.30319\Microsoft.Common.targets(1360,9): 

warning MSB3247: Found conflicts between different versions of the same dependent 

assembly. 

If you dig around for a while, you’ll find that your MVC 3 project references the 
System.Web.Pages and System.Web.Helpers DLLs, but without specifying a version. The 
quickest fix is to open up your project file in Notepad and make a couple of quick edits that put 
everything back in its proper place and your project will start working properly once again. 

Project Definition File Before: (*.csproj) 
<Reference Include="System.Web.WebPages"> 

  <Private>True</Private> 

</Reference> 

<Reference Include="System.Web.Helpers"> 

 
Project Definition File After: (*.csproj) 
<Reference Include="System.Web.WebPages, Version=1.0.0.0, Culture=neutral,  

  PublicKeyToken=31bf3856ad364e35, processorArchitecture=MSIL"> 



 
80 

  <SpecificVersion>True</SpecificVersion> 

</Reference> 

<Reference Include="System.Web.Helpers, Version=1.0.0.0, Culture=neutral,  

  PublicKeyToken=31bf3856ad364e35, processorArchitecture=MSIL"> 

  <Private>True</Private> 

</Reference> 

Once you’ve fixed that little bug, you should be able to run your MVC 3 projects normally again 
and everything works side by side. However, you will have to apply this fix to each and every 
MVC 3 project you open. 

Back to the MVC 3 Project 

Let’s get back to our topic at hand: how do you convert your MVC 3 project to use the mobile-
friendly techniques that we are using in our fancy new MVC 4 project? As it turns out, there is 
not much we need to add to make this work in MVC 3. 

The first thing to do is to install the jQuery.Mobile package using NuGet, just like we do in MVC 
4. Using the Package Manager Console command line, run the command Install-Package 
jQuery.Mobile. 

Since the DisplayModeProvider code is a new feature in MVC 4, we will have to replicate that 

functionality in our MVC 3 project. In the root of your project, create a new class file called 
MobileCapableRazorViewEngine.cs, and put the following code into that class: 

using System; 

using System.IO; 

using System.Web; 

using System.Web.Mvc; 

 

namespace YourApplicationNameSpace 

{ 

  // In Global.asax.cs Application_Start you can insert these  

  // into the ViewEngine chain like so: 

  // 

  // ViewEngines.Engines.Insert(0, new  

  //   MobileCapableRazorViewEngine()); 

  // 

  // or 

  // 

  // ViewEngines.Engines.Insert(0,  

  //  new MobileCapableRazorViewEngine("iPhone") 

  //  { 

  //    ContextCondition = (ctx =>  

  //     ctx.Request.UserAgent.IndexOf( 

  //      "iPhone", StringComparison.OrdinalIgnoreCase) >= 0) 

  //  }); 



 
81 

 

  public class MobileCapableRazorViewEngine : RazorViewEngine 

  { 

    public string ViewModifier { get; set; } 

    public Func<HttpContextBase, bool> ContextCondition  

      { get; set; } 

 

    public MobileCapableRazorViewEngine() 

      : this("Mobile", context =>  

        context.Request.Browser.IsMobileDevice) 

    { 

    } 

 

    public MobileCapableRazorViewEngine(string viewModifier) 

      : this(viewModifier,  

        context => context.Request.Browser.IsMobileDevice) 

    { 

    } 

 

    public MobileCapableRazorViewEngine(string viewModifier,  

      Func<HttpContextBase, bool> contextCondition) 

    { 

      this.ViewModifier = viewModifier; 

      this.ContextCondition = contextCondition; 

    } 

 

    public override ViewEngineResult FindView( 

     ControllerContext controllerContext, 

     string viewName, string masterName, bool useCache) 

    { 

      return NewFindView(controllerContext, viewName,   

        null, useCache, false); 

    } 

 

    public override ViewEngineResult FindPartialView( 

      ControllerContext controllerContext,  

      string partialViewName, bool useCache) 

    { 

      return NewFindView(controllerContext, partialViewName,  

        null, useCache, true); 

    } 

 

    private ViewEngineResult NewFindView( 

      ControllerContext controllerContext,  

      string viewName, string masterName, bool useCache,  

      bool isPartialView) 



 
82 

    { 

      if (!ContextCondition(controllerContext.HttpContext)) 

      { 

        // We found nothing and we pretend we looked nowhere. 

        return new ViewEngineResult(new string[] { });  

      } 

 

      // Get the name of the controller from the path. 

      string controller = controllerContext.RouteData 

        .Values["controller"].ToString(); 

      string area = ""; 

      try 

      { 

        area = controllerContext.RouteData.DataTokens["area"] 

         .ToString(); 

      } 

      catch 

      { 

      } 

 

      // Apply the view modifier. 

      var newViewName = string.Format("{0}.{1}", viewName,  

        ViewModifier); 

 

      // Create the key for caching purposes.           

      string keyPath = Path.Combine(area, controller,  

        newViewName); 

 

      string cacheLocation =  

        ViewLocationCache 

          .GetViewLocation(controllerContext.HttpContext, 

          keyPath); 

 

      // Try the cache.           

      if (useCache) 

      { 

        //If using the cache, check to see if the location  

        //is cached.                               

        if (!string.IsNullOrWhiteSpace(cacheLocation)) 

        { 

          if (isPartialView) 

          { 

            return new ViewEngineResult(CreatePartialView( 

              controllerContext, cacheLocation), this); 

          } 

          else 



 
83 

          { 

            return new ViewEngineResult( 

              CreateView(controllerContext, cacheLocation, 

               masterName),  

                this); 

          } 

        } 

      } 

      string[] locationFormats = string.IsNullOrEmpty(area) ?  

        ViewLocationFormats : AreaViewLocationFormats; 

 

      // For each of the paths defined, format the string and  

      // see if that path exists. When found, cache it.           

      foreach (string rootPath in locationFormats) 

      { 

        string currentPath = string.IsNullOrEmpty(area) 

          ? string.Format(rootPath, newViewName, controller) 

          : string.Format(rootPath, newViewName, controller, 

            area); 

        if (FileExists(controllerContext, currentPath)) 

        { 

          ViewLocationCache.InsertViewLocation( 

            controllerContext.HttpContext,  

            keyPath, currentPath); 

          if (isPartialView) 

          { 

            return new ViewEngineResult(CreatePartialView( 

              controllerContext, currentPath), this); 

          } 

          else 

          { 

            return new ViewEngineResult(CreateView( 

              controllerContext, currentPath, masterName), 

                this); 

          } 

        } 

      } 

      // We found nothing and we pretend we looked nowhere. 

      return new ViewEngineResult(new string[] { });  

    } 

  } 

} 

This code is also available on NuGet by running the following command: 

PM> Install-Package MobileViewEngines 



 
84 

If you install the NuGet package, it won’t automatically include the code in your project, but the 
code will be in the Packages folder alongside your project, so you can copy it from there. 

Kudos for this code go to Scott Hanselman, who blogged about this mobile view 
approach5, and Peter Mourfield, who contributed this version of the Mobile View Engine 
code! 

Now that you have the view engine available for use, edit the Global.asax.cs file and update 
the Application_Start function with the following code (which looks amazingly similar to what 

we did for MVC 4!): 

protected void Application_Start() 

{ 

  AreaRegistration.RegisterAllAreas(); 

  RegisterGlobalFilters(GlobalFilters.Filters); 

  RegisterRoutes(RouteTable.Routes); 

 

  ViewEngines.Engines.Insert(0,  

  new MobileCapableRazorViewEngine("Phone") 

  { 

    ContextCondition = (ctx => 

      ctx.Request.UserAgent.IndexOf("iPhone",  

          StringComparison.OrdinalIgnoreCase) >= 0 || 

      ctx.Request.UserAgent.IndexOf("iPod",  

          StringComparison.OrdinalIgnoreCase) >= 0 || 

      ctx.Request.UserAgent.IndexOf("Droid",  

          StringComparison.OrdinalIgnoreCase) >= 0 || 

      ctx.Request.UserAgent.IndexOf("Blackberry",  

          StringComparison.OrdinalIgnoreCase) >= 0 || 

      ctx.Request.UserAgent.StartsWith("Blackberry",  

          StringComparison.OrdinalIgnoreCase)) 

  }); 

  ViewEngines.Engines.Insert(0,  

  new MobileCapableRazorViewEngine("Tablet") 

  { 

    ContextCondition = (ctx => 

      ctx.Request.UserAgent.IndexOf("iPad",  

          StringComparison.OrdinalIgnoreCase) >= 0 || 

      ctx.Request.UserAgent.IndexOf("Playbook",  

          StringComparison.OrdinalIgnoreCase) >= 0 || 

      ctx.Request.UserAgent.IndexOf("Transformer",  

          StringComparison.OrdinalIgnoreCase) >= 0 || 

      ctx.Request.UserAgent.IndexOf("Xoom",  

          StringComparison.OrdinalIgnoreCase) >= 0) 

  }); 

} 

 



 
85 

That’s it—you now have a code base that is almost functionally equivalent to what we have 
created using the MVC 4 mobile functionality with the DisplayModeProvider. There are a few 

differences, but you should be able to start creating a very mobile-friendly website using this 
code base. The jQuery.Mobile features should all be the same, and most of the layout files 
should be the same. There are a few things like the bundling technology that are not available in 
MVC 3, so you will have to list each of your style sheets and JavaScript files in your layout files 
(or minify and concatenate them yourself). 

The following figure is an example of an MVC 3 application with a screenshot of the code for the 
layout page, a screenshot of the resulting familiar, blue, tabbed, default layout for the desktop, 
and the updated phone layout with the title changed to Phone Home Page. 

 

 

MVC 3 App with Desktop and Phone Layouts 

When you combine this technique with the things you learned about earlier in the book, you 
should be able to start making your MVC 3 applications nearly as mobile-friendly as MVC 4 
applications! 



 
86 

Chapter 12   Conclusion 

“No more training do you require. Already know you that which you need.”  
    Yoda in Star Wars Episode VI: Return of the Jedi 

Creating mobile-friendly websites is not difficult to do if you know how. It’s something you CAN 
do, and it’s something you SHOULD start doing right now. If you don’t have one, I would 
encourage you to get a mobile device and experiment with your current websites and see how 
they look. Making a few of the simple changes in this book can greatly improve your site and 
make you look like a rock star.  

I hope you’ve enjoyed this book and that you’ve learned something. I know that I’ve learned a 
lot doing the research for this book and discovering new things about topics that I thought I 
already knew. 

So what are you waiting for? Go forth and create mobile-friendly websites!   

And while you’re at it, go learn something new today! 



 
87 

Endnotes 

1 http://www.howtogomo.com/en/d/why-go-mo/#reasons-mobile-matters, reference Chapter 2 

2 http://www.asp.net/mvc/mvc4, reference Chapter 4 

3 http://jquerymobile.com/, reference Chapter 4 

4 https://developer.apple.com/, reference Chapter 7 

5 
http://www.hanselman.com/blog/NuGetPackageOfTheWeek10NewMobileViewEnginesForASP
NETMVC3SpeccompatibleWithASPNETMVC4.aspx, reference Chapter 11 

 

http://www.howtogomo.com/en/d/why-go-mo/%23reasons-mobile-matters
http://www.asp.net/mvc/mvc4
http://jquerymobile.com/
https://developer.apple.com/
http://www.hanselman.com/blog/NuGetPackageOfTheWeek10NewMobileViewEnginesForASPNETMVC3SpeccompatibleWithASPNETMVC4.aspx
http://www.hanselman.com/blog/NuGetPackageOfTheWeek10NewMobileViewEnginesForASPNETMVC3SpeccompatibleWithASPNETMVC4.aspx

	The Story behind the Succinctly Series  of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Preface
	Target Audience
	Tools Needed
	Formatting
	Using Code Examples
	Language Choices

	Chapter 1   I Love MVC 4!
	Chapter 2   Why a Book about Mobile-Friendly Websites?
	Chapter 3   Designing Mobile-Friendly Websites
	Desktop Layout versus Mobile Layout
	Multicolumn versus Single-Column Design
	Tapping versus Hovering and Clicking
	Large Screens and Collapsible Containers

	Desktop != Tablet != Phone

	Chapter 4   Building an MVC Mobile Website
	The Mobile Application Template
	The Internet Application Template
	Simulating a Mobile Device for Testing
	Recognizing Mobile Devices
	Including jQuery.Mobile
	Creating a Mobile Layout Page
	MVC 4 Bundles
	Creating a Custom Bundle
	Using Our New Layout Files


	Chapter 5   Making It Mobile-Friendly
	Fixing the Headers
	Styling Our List Objects
	Detour: Why do we need three copies of everything?
	Adding Home and Back Buttons

	Chapter 6   Making It Look Good
	jQuery.Mobile Sections
	The Page Section
	The Header Section
	The Content Section
	The Footer Section
	The Navbar Section

	Putting Your Menu into a Tab Bar
	Other Tab Bar Considerations
	Alternate Syntax for the Navbar Links
	Yet Another Alternate Navbar Syntax

	Creating Custom Themes and Colors

	Chapter 7   Using Mobile Device Meta Tags
	The Viewport Tag
	The Web Application Tags
	Use Caution When Using Web App Mode
	Creating a Nice Icon on Your Desktop
	Prompting the User to Create a Shortcut

	Creating a Splash Screen

	Chapter 8   Tips and Tricks
	Using Partial Views to Minimize Duplication
	Collapsible Containers and Reusable Content
	Desktop/Mobile ViewSwitcher
	HTML 5 Tags
	Editor Templates
	Search Fields
	Special HTML 5 Attributes

	The MVC 4 Tilde Tidbit

	Chapter 9   More jQuery.Mobile Features
	jQuery.Mobile Container Objects
	Nested Collapsible Containers
	Field Container
	List View
	Columns
	Button
	Dialogs
	NoJS

	Multipage Documents
	Custom Icons
	Mini UI Elements
	jQuery.Mobile Startup Options

	Chapter 10   Enhancing Performance
	Measuring Performance
	Enabling Client Caching with Web.config
	Using a CDN
	Data Prefetch Tag

	Chapter 11   Still Using MVC 3?
	Speed Bump: MVC 3 and MVC 4 side by side
	Back to the MVC 3 Project

	Chapter 12   Conclusion
	Endnotes

