Server Side operations in file explorer control.
In file explorer control, server side handling functions are necessary to process the file operations based on Ajax request. Below I have explained the process of Ajax request in fileexplorer.
In “FileExplorerFeatures.cshtml” file, we have mentioned “ajaxAction” as “FileActionDefault”. So every Ajax request will call the “FileActionDefault” method, which is available on controller part of the provided sample. In FileActionDefault method, we can find the file operation type using “ActionType” parameter. Based on the operation type (ActionType), we will call the corresponding build-in file operation handling methods, which is available in “FileExplorerOperations” class. 
[bookmark: _GoBack]Here “FileExplorerOperations” class is used to simplify the process on server side. This class contains some built-in methods, which is used to handle some basic file operations (like read, copy, move, delete, etc...). After performing the file operation, it will return some data in JSON format. So it will be helpful to show the changes in file explorer UI.  
In server side, you may modify file handling functions by overriding the methods in FileExplorerOperations as per your requirement. To create custom methods for file handling, we need to know request parameters in Ajax call, and response data. We have to create custom methods as per our requirement.
By default, we send following parameters in data field of the corresponding Ajax request. This helps to handle the server side operation. Some Server side action method will only return the response data. This response data and request parameters are explained in following table. By referring to below table, you can create custom functions to perform server side operations. 
	Operation
	Default Request Parameter
	Response data
	Action Performed/ Details

	Read
	String ActionType,
String Path,
String ExtensionsAllow,
IEnumerable<object> SelectedItems
	Return type is FileExplorerResponse

Should return data in JSON format with key name as ‘files’ and value as array of JSON format and JSON fields need to be in following field names
“name, size, type, dateModified, hasChild”
If needed, customer can also add additional data along with the JSON result.
For example:
{files:[{name: "7.png", type: "File", size: 11439, dateModified: "3/31/2015 3:16:38 PM", hasChild: false},{name: "human.png", type: "File", size: 11059, dateModified: "3/31/2015 3:16:35 PM", hasChild: false}]}
	Read the file and folder details from the given path and return details in specified JSON format.

	CreateFolder
	String ActionType,
String Path,
String Name,
IEnumerable<object> SelectedItems
	Return type is FileExplorerResponse

	Create the new folder in given path

	Paste
	String ActionType,
String LocationFrom, 
String LocationTo,
String[] Names,
String Action,
IEnumerable<CommonFileDetails> CommonFiles
IEnumerable<object> SelectedItems
IEnumerable<object> TargetFolder
	Return type is FileExplorerResponse

	Paste the content from source to target place

	Delete
	String ActionType, 
String[] Names,
String Path
IEnumerable<object> SelectedItems
	Return type is FileExplorerResponse

	Delete the file/ folder from given path

	Rename
	String ActionType, 
String Path,
String Name,
String NewName,
IEnumerable<CommonFileDetails> CommonFiles
IEnumerable<object> SelectedItems
	Return type is FileExplorerResponse

	Rename the file or folder from the given path

	GetDetails
	String ActionType, 
String Path,
String[] Names,
IEnumerable<object> SelectedItems
	Return type is FileExplorerResponse
Response data should be in JSON format like below
{details:[{CreationTime:"4/28/2015 9:44:32 AM", Extension:".png", Format:"Archive", FullName:"F:\All samples\FileExplorer_Custom\FileExplorerContent\human.png", LastAccessTime:"4/28/2015 9:44:32 AM", LastWriteTime:"3/31/2015 3:16:35 PM", Length:11059, Name:"human.png"}]}
Here you may add additional date fields with this JSON
	get the details of the file/folder from the given path and return data in JSON format

	Download
	String ActionType,
String Path,
String[] Names,
IEnumerable<object> SelectedItems
	Void
	download the file from the given path

	Upload
	String ActionType, 
IEnumerable<HttpPostedFileBase> FileUpload,
String Path
IEnumerable<object> SelectedItems 
	Should return HttpResponseMessage.
	upload the file to the given path


	GetImage
	String path,
IEnumerable<object> SelectedItems
	Void
	Used to get image form the given physical path.



