

 2

By

Alessandro Del Sole

Foreword by Daniel Jebaraj

 3

Copyright © 2018 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Jacqueline Bieringer, content producer, Syncfusion, Inc.

Acquisitions Coordinator: Tres Watkins, content development manager, Syncfusion, Inc.

Proofreader: Graham High, senior content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

The Story Behind the Succinctly Series of Books ... 9

Note on the Third Edition ...11

About the Author ..12

Introduction ...13

Chapter 1 Getting Started with Xamarin.Forms ...14

Introducing Xamarin and Xamarin.Forms ...14

Supported platforms ..15

Setting up the development environment..15

Configuring a Mac ..18

Creating Xamarin.Forms solutions..18

The Xamarin.Forms library ..22

The Xamarin.Android project ...22

The Xamarin.iOS project ..25

The Universal Windows Platform project..31

Debugging and testing applications locally ...32

Setting up the iOS Simulator ..34

Running apps on physical devices ...34

The Xamarin Live Player app ...35

Analyzing and profiling applications ..35

Chapter summary ...36

Chapter 2 Sharing Code Among Platforms ..37

Introduction to code-sharing strategies ...37

Sharing code with .NET Standard...37

Sharing code with shared projects ..38

 5

Chapter summary ...41

Chapter 3 Building the User Interface with XAML ...42

The structure of the user interface in Xamarin.Forms ...42

Coding the user interface in C# ..43

The modern way: designing the user interface with XAML ...44

Productivity features for XAML IntelliSense ...46

Responding to events ..49

Understanding type converters ..50

Xamarin.Forms Previewer ...51

Hints for XAML Standard ...52

Chapter summary ...52

Chapter 4 Organizing the UI with Layouts ...53

Understanding the concept of layout ..53

Alignment and spacing options ...54

The StackLayout ..55

The FlexLayout...57

The Grid ...59

Spacing and proportions for rows and columns..62

Introducing spans ..62

The AbsoluteLayout ...62

The RelativeLayout ..64

The ScrollView ...66

The Frame ..67

The ContentView ..68

Styling the user interface with CSS ...70

Defining CSS styles as a XAML resource ..70

 6

Consuming CSS files in XAML ...71

Consuming CSS styles in C# code ..71

Chapter summary ...72

Chapter 5 Xamarin.Forms Common Controls ..73

Understanding the concept of view ...73

Views’ common properties ...73

Introducing common controls ..74

User input with the Button ..74

Working with text: Label, Entry, and Editor ...75

Managing fonts ..77

Working with dates and time: DatePicker and TimePicker ...77

Displaying HTML contents with WebView ..79

Implementing value selection: Switch, Slider, Stepper ...80

Introducing the SearchBar ...82

Long-running operations: ActivityIndicator and ProgressBar ..83

Working with images ..85

Introducing gesture recognizers ...86

Displaying alerts ...87

Introducing the Visual State Manager ...88

Chapter summary ...89

Chapter 6 Pages and Navigation ...90

Introducing and creating pages ..90

Single views with the ContentPage ..91

Splitting contents with the MasterDetailPage ...91

Displaying content within tabs with the TabbedPage ...93

Swiping pages with the CarouselPage ...94

 7

Navigating among pages ..96

Passing objects between pages ...97

Animating transitions between pages ...97

Managing the page lifecycle...98

Handling the hardware Back button ...98

Chapter summary ...99

Chapter 7 Resources and Data Binding ... 100

Working with resources .. 100

Declaring resources ... 100

Introducing styles ... 101

Working with data binding .. 103

IntelliSense support for data binding and resources ... 106

Bindable spans .. 107

Working with collections and with the ListView .. 108

Introducing Model-View-ViewModel ... 118

Chapter summary ... 123

Chapter 8 Accessing Platform-Specific APIs ... 124

The Device class and the OnPlatform method .. 124

Device-based localization .. 126

Working with the dependency service .. 126

Working with plugins .. 128

Working with native views .. 131

Embedding native views in XAML .. 131

Working with custom renderers .. 132

Hints for effects .. 136

Introducing platform-specifics .. 136

 8

Chapter summary ... 137

Chapter 9 Managing the App Lifecycle ... 139

Introducing the App class ... 139

Managing the app lifecycle ... 139

Sending and receiving messages ... 142

Chapter summary ... 143

Appendix: Useful Resources ... 144

Working with SQLite databases .. 144

Consuming web services and cloud services ... 144

Publishing applications ... 144

Code examples and starter kits .. 144

Creating plugins ... 145

 9

The Story Behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge
As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest
In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series
This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever
Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

S

 10

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 11

Note on the Third Edition

This is the third edition of Xamarin.Forms Succinctly by Alessandro Del Sole. This update
covers features added in Xamarin.Forms version 3.0 and version 3.1, the XAML code editor,
tools for developing iOS applications, and using native Android and iOS controls without writing
custom APIs.

 12

About the Author

Alessandro Del Sole is a Xamarin Certified Mobile Developer and has been a Microsoft MVP
since 2008. Awarded MVP of the Year in 2009, 2010, 2011, 2012, and 2014, he is
internationally considered a Visual Studio expert and a .NET authority. Alessandro has authored
many printed books and ebooks on programming with Visual Studio, including Visual Studio
2017 Succinctly, Visual Basic 2015 Unleashed, and Visual Studio Code Succinctly. He has
written tons of technical articles about .NET, Visual Studio, and other Microsoft technologies in
Italian and English for many developer portals, including MSDN Magazine and the Visual Basic
Developer Center from Microsoft. He is a frequent speaker at Italian conferences, and he has
released a number of Windows Store apps. He has also produced a number of instructional
videos in both English and Italian. Alessandro works as a senior software engineer for
Fresenius Medical Care, focusing on building mobile apps with Xamarin in the healthcare
market. You can follow him on Twitter at @progalex.

https://www.syncfusion.com/resources/techportal/details/ebooks/VS2017_Succinctly
https://www.syncfusion.com/resources/techportal/details/ebooks/VS2017_Succinctly
https://www.syncfusion.com/resources/techportal/details/ebooks/Visual_Studio_Code_Succinctly
http://twitter.com/progalex

 13

Introduction

For mobile app developers and companies that want to be represented on the market by mobile
applications, the need to publish Android, iOS, and Windows versions of apps has dramatically
increased in the last few years. For companies that have always worked with native platforms
and development tools, this might not be a problem. It is a problem, though, for companies that
have always built software with .NET, C#, and, more generally, with the Microsoft stack. A
company might therefore hire specialized developers or wait for existing developers to attain the
necessary skills and knowledge to work with native platforms but, in both cases, there are huge
costs and risks with timing. The ideal solution is that developers could reuse their existing .NET
and C# skills to build native mobile apps. This is where Xamarin comes in.

In this ebook, you will learn how Xamarin.Forms allows for cross-platform development, letting
you create mobile and desktop apps for Android, iOS, Tizen devices, macOS, and Windows
from a single C# codebase, and therefore reuse your existing .NET skills. You will learn how
Xamarin.Forms solutions are made, what makes it possible to share code, how to create the
user interface, how to organize controls within containers, and how to implement navigation
between pages. You will also leverage advanced techniques, such as data binding and
accessing native APIs from cross-platform code.

It is worth mentioning that Xamarin.Forms also supports the F# programming language, but C#
is obviously the most common choice, and therefore, all the explanations and examples will be
provided based on C#. It is also worth mentioning that, in the past, Xamarin.Forms supported
Windows Phone 8.x and Windows 8.x as target platforms, and support for Universal Windows
Platform on Windows 10 was added recently. In Visual Studio 2017, Xamarin.Forms only
supports UWP for Windows development. For this reason, when I refer to Windows from now
on, I mean Windows 10 and the Universal Windows Platform, not the previous versions.

In this ebook, I will assume you have at least a basic knowledge of C# and the Visual Studio
IDE. I also suggest you bookmark the official Xamarin documentation portal for quick reference.
The source code for this ebook is available on GitHub. File names are self-explanatory so that
it’s easier for you to follow the examples, especially for Chapters 4, 5, and 6. Before you start
writing code, you need to set up your development environment. This is the topic of the first
chapter.

http://developer.xamarin.com/
https://github.com/SyncfusionSuccinctlyE-Books/Xamarin.Forms-Succinctly

 14

Chapter 1 Getting Started with
Xamarin.Forms

Before you start writing mobile apps with Xamarin.Forms, you first need to understand the state
of mobile app development today and how Xamarin fits into it. Also, you need to set up your
development environment to be able to build, test, debug, and deploy your apps to Android,
iOS, and Windows devices. This chapter introduces Xamarin as a set of tools and services,
Xamarin.Forms as the platform you will use, and then presents the tools and hardware you
need for real-world development.

Introducing Xamarin and Xamarin.Forms

Xamarin is the name of a company that Microsoft acquired in 2016 and, at the same time, the
name of a set of development tools and services that developers can use to build native apps
for iOS, Android, and Windows in C#. Xamarin’s main goal is to make it easier for .NET
developers to build native apps for Android, iOS, and Windows reusing their existing skills. The
reason behind this goal is simple: building apps for Android requires you to know Java and
Android Studio or Eclipse; building apps for iOS requires you to know Objective-C or Swift and
Xcode; building apps for Windows requires you to know C# and Visual Studio. As an existing
.NET developer, whether you are experienced or a beginner, getting to know all the possible
platforms, languages, and development environments is extremely difficult, and costs are
extremely high.

Xamarin allows you to build native apps with C#, based on a cross-platform, open-source
porting of the .NET Framework called Mono. From a development point of view, Xamarin offers
a number of flavors: Xamarin.iOS and Xamarin.Mac, libraries that wrap native Apple APIs you
can use to build apps for iOS and macOS using C# and Visual Studio; Xamarin.Android, a
library that wraps native Java and Google APIs you can use to build apps for Android using C#
and Visual Studio; and Xamarin.Forms, an open-source library that allows you to share code
across platforms and build apps that run on Android, iOS, and Windows from a single C#
codebase. The biggest benefit of Xamarin.Forms is that you write code once and it will run on all
the supported platforms at no additional cost. As you’ll learn throughout this ebook,
Xamarin.Forms consists of a layer that wraps objects common to all the supported platforms
into C# objects. Accessing native, platform-specific objects and APIs is possible in several
ways, all discussed in the next chapters, but it requires some extra work. Additionally, Xamarin
integrates with the Visual Studio IDE on Windows and is also part of Visual Studio for Mac, so
you can not only create cross-platform solutions, but also write code on different systems.

The Xamarin offering also includes Xamarin University, a paid service that allows you to attend
live classes online and watch instructional videos that will help you prepare to get the Xamarin
Certified Mobile Developer badge. It also includes the Xamarin Test Cloud service for test
automation, a complete cloud solution for the app-management lifecycle from build automation
to continuous integration, tests, analytics, and much more (note that Internet Explorer is not
supported), which is now part of the Visual Studio Mobile Center. This ebook focuses on
Xamarin.Forms and targets Visual Studio 2017 on Windows 10, but all the technical concepts

http://www.mono-project.com/
https://university.xamarin.com/
https://www.xamarin.com/test-cloud
https://mobile.azure.com/

 15

apply to Visual Studio for Mac as well. However, if you prefer working on a Mac, I recommend
that you read my ebook Xamarin.Forms for macOS Succinctly. I’ve also recorded a video series
for Syncfusion that provides an overview of what Xamarin offers, and of Xamarin.iOS,
Xamarin.Android, and Xamarin.Forms.

Supported platforms

Out of the box, Xamarin.Forms allows creating apps for Android, iOS, and the Universal
Windows Platform from a single C# codebase. Recently, the range of supported platforms has
been expanded to include Tizen (an operating system by Samsung for proprietary devices).
Additionally, Microsoft is working on previews of support for macOS, WPF, and GTK#. As you
can imagine, this opens incredible opportunities in the market of cross-platform development
because you can target both mobile and desktop systems. In this ebook, I will target the most
popular operating systems (Android, iOS, and Windows 10) because support for other platforms
is not yet released (apart from Tizen). You can read the official documentation about targeting
macOS, Tizen, WPF, and GTK# in your Xamarin.Forms projects, with the assumption that your
shared code will not change.

Setting up the development environment

In order to build native mobile apps with Xamarin.Forms, you need Windows 10 as your
operating system and Microsoft Visual Studio 2017 as your development environment. You can
download and install the Visual Studio 2017 Community edition for free and get all the
necessary tools for Xamarin development. I will discuss the latest stable release of
Xamarin.Forms, version 3.1, in this ebook, so make sure you install version 15.8 or later of
Visual Studio 2017.

When you start the installation, you will need to select the Mobile development with .NET
workload in the Visual Studio Installer (see Figure 1).

https://www.syncfusion.com/ebooks/xamarin_forms_for_mac_os_succinctly
https://www.youtube.com/playlist?list=PLDzXQPWT8wED1eXjcfjGndwGVzBF8U7uO
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/platform/mac
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/platform/tizen
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/platform/wpf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/platform/gtk
https://www.visualstudio.com/downloads/

 16

Figure 1: Installing Xamarin development tools

When you select this workload, the Visual Studio Installer will download and install all the
necessary tools to build apps for Android, iOS, and Windows. iOS requires additional
configuration, described in the next section. Also, for Windows 10 development, you need
additional tools and SDKs, which you can get by also selecting the Universal Windows
Platform Development workload. If you select the Individual components tab, you will have
an option to check if Android and Windows emulators have been selected or to make a choice
manually (see Figure 2).

 17

Figure 2: Selecting emulators

Whether you will use Visual Studio 2017, Visual Studio for Mac, or both, I suggest you install the
Google emulator, which has an identical appearance and behavior on both systems.

 Note: With Visual Studio 2017 version 15.8, Microsoft has relesead a Google
Android emulator that runs on Hyper-V. This is a very important addition because
many developers used to work with the Visual Studio Android Emulator, which is
based on Hyper-V, and was recently discontinued. The new emulator requires the
Windows 10 April 2018 update with the Windows HyperVisor Platform installed and
Visual Studio 2017 15.8. The emulator will not be covered here because of its
particular system requirements, and for consistency with development on Mac (which
does not have Hyper-V), but you can read the documentation for further details.

For the Windows 10 emulator, my suggestion is to download the oldest version if you plan to
target older versions of Windows 10; otherwise, the most recent is always a good option (Fall
Creators Update in Figure 2). Go ahead with the installation and wait for it to complete.

https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/android-emulator/hardware-acceleration?tabs=vswin#hyper-v-overview

 18

Configuring a Mac

Apple’s policies establish that a Mac computer is required to build an app. This is because only
the Xcode development environment and the Apple SDKs are allowed to run the build process.
For local debugging and testing, Xamarin offers the Xamarin Live Player app, which you can
download and install on your Android or iOS device and pair with Visual Studio for debugging
purposes. More details about this app will be provided shortly. However, it becomes insufficient
for serious development. You still need a Mac computer for code signing, setting up profiles,
and publishing an app to the App Store. You can use a local Mac in your network, which also
allows you to debug and test apps on a physical device, or a remote Mac. In both cases,
macOS must be configured with the following software requirements:

• macOS “El Capitan” (10.11) or higher.
• Xcode and Apple SDKs, which you get from the App Store for free.
• Xamarin.iOS engine. The easiest way to get Xamarin properly configured on a Mac is by

installing Visual Studio Community for Mac.

Visual Studio will connect to the Mac to launch the Xcode compiler and SDKs; remote
connections must be enabled for the latter. The official Xamarin documentation has a specific
page that will help you configure a Mac. I recommend you read it carefully, especially because it
explains how to configure profiles and certificates, and how to use Xcode to perform preliminary
configurations. The documentation is actually about Xamarin.iOS, but the same steps apply to
Xamarin.Forms.

 Tip: Starting with Xamarin.Forms 3.0, Visual Studio 2017 introduced integrated
tools that simplify the Mac configuration from within the IDE, and without the need to
work on the Mac directly. These improvements are discussed in the “Xamarin.iOS
project” section later in this chapter.

Creating Xamarin.Forms solutions

Assuming that you have installed and configured your development environment, the next step
is opening Visual Studio to see how you create Xamarin.Forms solutions and what these
solutions consist of. Project templates for Xamarin.Forms are available in the Visual C#, Cross-
Platform node of the New Project dialog window (see Figure 3).

https://www.xamarin.com/live
https://www.visualstudio.com/vs/visual-studio-mac/
https://developer.xamarin.com/guides/ios/getting_started/installation/windows/connecting-to-mac/
https://developer.xamarin.com/guides/ios/getting_started/installation/windows/connecting-to-mac/

 19

Figure 3: Project templates for Xamarin.Forms

The Cross Platform App (Xamarin) template is the one you use to build mobile apps. The
Class Library (Xamarin.Forms) template allows you to create a reusable class library that can
be consumed in Xamarin.Forms projects, and the UI Test App template is used to create
automated UI tests, but these two templates will not be discussed in this ebook.

Select the Cross Platform App template, and optionally, specify a different project name than
the default (this is not relevant right now). Then click OK. At this point, Visual Studio will ask you
to select between Blank App, Master-Detail, and Tabbed templates (see Figure 4). The Master-
Detail template generates a basic user interface based on pages and visual elements that will
be discussed later, with some sample data. The Tabbed generates a basic user interface based
on tabs to navigate between child pages. Neither Master-Detail nor Tabbed are a good starting
point (unless you already have experience with Xamarin), so select the Blank App template.

 20

Figure 4: Selecting the template, UI technology, and code sharing strategy for a new project

In the Platform group, select all the platforms you want to target. The default is Android, iOS,
and UWP. In the Code Sharing Strategy group, you can choose between Shared Project and
.NET Standard. The code-sharing strategy is a very important topic in Xamarin.Forms, and
Chapter 2 will provide a detailed explanation. For now, select the .NET Standard option and
click OK.

After a few seconds, Visual Studio will ask you to specify the target version of Windows 10 for
your new app. Leave the default selection unchanged and continue. It will also show a welcome
dialog window where, in the second screen, you will have an option to specify the location of a
Mac computer. Skip this step for now, as it will be discussed in the next section. In Solution
Explorer, you will see that the solution is made up of four projects, as demonstrated in Figure 5.

 21

Figure 5: The structure of an Xamarin.Forms solution

The first project is either a .NET Standard library or a shared project, depending on your
selection at project creation. This project contains all the code that can be shared across
platforms, and its implementation will be discussed in the next chapter. For now, what you need
to know is that this project is the place where you will write all the user interface of your app,
and all the code that does not require interacting with native APIs.

The second project, whose suffix is Android, is a Xamarin.Android native project. It has a
reference to the shared code and to Xamarin.Forms, and implements the required infrastructure
for your app to run on Android devices.

The third project, whose suffix is iOS, is a Xamarin.iOS native project. This one also has a
reference to the shared code and to Xamarin.Forms, and implements the required infrastructure
for your app to run on the iPhone and iPad.

The fourth and last project is a native Universal Windows project (UWP) that has a reference to
shared code and implements the infrastructure for your app to run on Windows 10 devices, for
both the desktop and mobile devices. I will now provide more details on each platform project,
so that you have a basic knowledge of their properties. This is very important, because you will
need to fine-tune project properties every time you create a new Xamarin.Forms solution.

 22

The Xamarin.Forms library

Technically speaking, Xamarin.Forms is a .NET library that exposes all the objects discussed in
this ebook through a root namespace called Xamarin.Forms. It has been recently open

sourced, and it ships as a NuGet package that Visual Studio automatically installs to all projects
when you create a new solution. The NuGet Package Manager in Visual Studio will then notify
you of available updates. Because creating Xamarin.Forms solutions must be allowed even if
your PC is offline, Visual Studio installs the version of the NuGet package in the local cache,
which isn’t typically the latest version available. For this reason, it is recommended that you
upgrade the Xamarin.Forms and other Xamarin packages in the solution to the latest version,
and, obviously, that you only upgrade to stable releases. Though alpha and beta intermediate
releases are often available, their only intended use is for experimenting with new features still
in development. As of this writing, version 3.1.0.697729 is the latest stable release and is
required to successfully complete all the exercises and code examples provided in the next
chapters.

The Xamarin.Android project

Xamarin.Android makes it possible for your Xamarin.Forms solution to run on Android devices.
The MainActivity.cs file represents the startup activity for the Android app that Xamarin
generates. In Android, an activity can be thought of as a single screen with a user interface, and
every app has at least one. In this file, Visual Studio adds startup code that you should not
change, especially the initialization code for Xamarin.Forms you see in the last two lines of
code. In this project, you can add code that requires accessing native APIs and platform-specific
features, as you will learn in Chapter 8.

The Resources folder is also very important, because it contains subfolders where you can add
icons and images for different screen resolutions. The name of such folders starts with
drawable, and each represents a particular screen resolution. The Xamarin documentation
explains thoroughly how to provide icons and images for different resolutions on Android. The
Properties element in Solution Explorer allows you to access the project properties, as you
would do with any C# solution. In the case of Xamarin, in the Application tab (see Figure 6)
you can specify the version of the Android SDK that Visual Studio should use to build the app
package.

https://github.com/xamarin/Xamarin.Forms
https://github.com/xamarin/Xamarin.Forms
https://www.nuget.org/packages/Xamarin.Forms/2.3.5.256-pre6
https://developer.xamarin.com/guides/android/application_fundamentals/resources_in_android/part_4_-_creating_resources_for_varying_screens/

 23

Figure 6: Selecting the version of the Android SDK for compilation

Visual Studio automatically selects the highest version available and provides a drop-down list
where you can select a different version of SDK. Notice that Visual Studio marks an SDK
version with a * symbol if it is not installed on the development machine. You can download the
SDK using the Android SDK Manager tool, or you can enable automatic download via Tools >
Options > Xamarin > Android Settings > Enable Auto Install Android SDKs. The SDK
selection here does not affect the minimum version of Android you want to target; instead, it is
related to the version of the build tools that Visual Studio will use. My recommendation is to
leave the default selection unchanged.

 Tip: You can manage installed SDK versions using the Android SDK Manager, a
tool that you can launch from both the Windows Programs menu and from Visual
Studio by selecting Tools > Android > Android SDK Manager.

The Android Manifest tab is even more important. Here you specify your app’s metadata, such
as name, version number, icon, and permissions the user must grant to the application. Figure 7
shows an example.

 24

Figure 7: The Android manifest

The information you supply in the Android Manifest tab is also important for publication to
Google Play. For example, the package name uniquely identifies your app package in the
Google Play store and, by convention, it is in the following form: com.companyname.appname,
which is self-explanatory (com. is a conventional prefix). The version name is your app version,
whereas version number is a single-digit string that represents updates. For instance, you might
have version name 1.0 and version number 1, version name 1.1 and version number 2, version
name 1.2 and version number 3, and so on.

The Install location option allows you to specify whether your app should be installed only in
the internal storage or if memory cards are allowed, but remember that starting from Android
6.0, apps can no longer be installed onto a removable storage device. In the Minimum Android
version drop-down list, you can select the minimum Android version you want to target.

 25

It is important that you pay particular attention to the Required permissions list. Here you must
specify all the permissions that your app must be granted in order to access resources such as
the internet, the camera, other hardware devices, sensors, and more. Remember that, starting
from Android 6.0, the operating system will ask the user for confirmation before accessing a
resource that requires one of the permissions you marked in the manifest, and the app will fail if
it attempts to access a sensitive resource, but the related permission was not selected in the
manifest.

In the Android Options tab, you will be able to manage debugging and build options. However,
I will not walk through all the available options here. It is worth highlighting the Use Fast
Deployment option though, which is enabled by default. When enabled, deploying the app to a
physical or emulated device will only replace changed files. This can often cause the app to not
work properly or not start at all, so my suggestion is you disable this option. The other tabs are
the same as for other .NET projects.

The Xamarin.iOS project

Similar to the Xamarin.Android project, the Xamarin.iOS project makes it possible for your
Xamarin.Forms solutions to run on the iPhone and iPad. Supposing you have a configured Mac,
Visual Studio will need to know its address in the network. Visual Studio normally asks this after
creating a new Xamarin.Forms solution or opening an existing one, but you can manually enter
the Mac address by choosing Tools > iOS > Xamarin Mac Agent. In the Xamarin Mac Agent
dialog window, Visual Studio should be able to list any detected Mac computers in the network.
However, it is strongly recommended that you re-add a Mac by providing its IP address rather
than its name. For example, Figure 8 shows the Xamarin Mac Agent dialog window displaying
my Mac Mini machine with both its name and its IP address, but Visual Studio established a
connection based on the IP, not the name.

 26

Figure 8: Connecting Visual Studio to a Mac

If a Mac is not detected, click Add Mac and enter its IP address first. Then, when requested,
enter the same credentials you use to log in to the Mac. If the connection succeeds, Visual
Studio will show a success message in the status bar.

For the Xamarin.iOS project, the AppDelegate.cs file contains the Xamarin.Forms initialization
code and should not be changed. You can add all the code that requires accessing native APIs
and platform-specific features in this project, as you will learn in Chapter 8. In the Info.plist file
(see Figure 9), with each tab, you can configure your app metadata, the minimum target
version, supported devices and orientations, capabilities (such as Game Center and Maps
integration), visual assets (such as launch images and icons), and other advanced features.

 27

Figure 9: The Info.plist file

The Info.plist file represents the app manifest in iOS, and therefore, is not related to only
Xamarin.iOS. In fact, if you have experience with Xcode and native iOS development, you
already know this file. Unlike Android, the iOS operating system includes restriction policies that
are automatically applied to most sensitive resources, especially those involving security and
privacy. Also, there are differences among iOS 8.x, 9.x, 10.x, and 11.x in how the OS handles
these options.

The Info.plist reference will help you understand how to properly configure any exceptions.
Among the project properties, the most important is, without a doubt, the iOS Bundle Signing.

https://developer.xamarin.com/guides/ios/deployment,_testing,_and_metrics/provisioning/infoplist-reference/

 28

You use the iOS Bundle Signing properties to specify the identity that the Apple tools must use
to sign the app package, and specify the provisioning profile that is used to associate a team of
developers to an app identifier. Configuring signing identities and profiles is particularly
important when preparing an app for publishing. Figure 10 shows the iOS Bundle Signing
properties (some sensitive information about my account has been redacted for privacy
reasons).

Figure 10: The iOS Bundle Signing options

As you can imagine, Visual Studio can detect available signing identities and provisioning
profiles only when connected to a Mac, because this information is generated via Xcode.
Further details about configuring a Xamarin.iOS project are offered through the documentation.

Automatic iOS provisioning

Whether you use native Xamarin.iOS or Xamarin.Forms, creating apps for iOS requires some
preliminary steps that can be really complicated and frustrating. In fact, apart from enrolling in
Apple’s Developer Program, which is required to enable your Apple developer account to sign
and publish apps to the App Store, you need to provision your iOS device. iOS provisioning will
enable you to deploy and test your apps on physical devices.

https://developer.xamarin.com/guides/ios/getting_started/installation/windows/introduction_to_xamarin_ios_for_visual_studio/

 29

iOS provisioning is usually done via Xcode on the Mac and requires you to:

• Create a development team: This includes specifying the list of Apple developer
accounts in the development team, and enabling them to sign and publish an app.

• Set up provisioning profiles: A provisioning profile is bundled into the compiled app
package and contains three types of information: a unique app identifier (App ID), one or
more development certificates required to test an app on physical devices, and a Unique
Device Identifiers (UDI) list that enumerates devices allowed to run an app.

• Create signing certificates: All apps must be signed before they can run on an iOS
device, even for development, so a signing certificate is required. Different kinds of
certificates are available to each developer account (such as development and
publishing), depending on the level of subscription.

Even though the documentation nicely explains how to get started with iOS provisioning, the
reality is that complexity is the biggest barrier for developers wanting to build apps for iOS.
Fortunately, the latest releases of Visual Studio 2017 include support for automatic iOS
provisioning. You simply provide your Apple developer account, and Visual Studio 2017 will set
up all the necessary artifacts on your behalf through a connection to a Mac machine.

To accomplish this, you must first associate your Apple ID with Visual Studio by selecting Tools
> Options > Xamarin > Apple Accounts. In the Options dialog box, you’ll be able to associate
one or more Apple IDs by clicking Add, after which Visual Studio 2017 shows the list of
associated teams and the user role for each team (see Figure 11).

Figure 11: Associating development teams with Visual Studio

https://bit.ly/2NhzO0O

 30

Once you click OK, you can go to the iOS Bundle Signing tab of the Xamarin.iOS project
properties and select the Automatic Provisioning option (see Figure 10). You’ll simply need to
select the team you wish to use for development from the Team drop-down menu, and Visual
Studio will generate the necessary provisioning profiles and signing certificates required to test
apps on a physical device (which must be connected to the Mac machine).

Remote Xamarin.iOS update

One important thing that you must keep in mind when building iOS apps with Xamarin is that the
same version of the SDK must be installed on both the PC and the Mac. In the past, you had to
update the Xamarin.iOS SDK manually on both systems. In the latest version of Visual Studio
2017, a new integrated feature will help you update the Xamarin.iOS version remotely, without
the need to access the physical, remote Mac. When connecting to the Mac, if Visual Studio
2017 detects a version mismatch, it will show a warning message and provide an Install button
that will launch the update process on the remote Mac.

Figure 12 shows the warning message and the Install button (you can click Cancel if you do not
want to go through the update process).

Figure 12: Remote update of Xamarin.iOS

 Note: This feature will update the Xamarin.iOS SDK, but not other components. If
you can access the physical Mac machine, or another person on your team can, my
recommendation is to update via Visual Studio for Mac, so that all the tools (including
the IDE) and SDKs will receive the latest updates.

 31

The Universal Windows Platform project

The Universal Windows Platform project in a Xamarin.Forms solution is nothing but a normal
UWP project with a reference to the shared code and to the Xamarin.Forms package.

In the App.xaml.cs file, you can see initialization code that you must not change. What you will
need to configure, instead, is the application manifest, which you can edit by double-clicking the
Package.appxmanifest file in Solution Explorer.

Visual Studio has a nice editor for UWP manifests, and you will at least configure app metadata
(see Figure 13), visual assets such as icons and logos, and capabilities (see Figure 14). These
include permissions you need to specify before testing and distributing your apps, and Windows
10 will ask the user for confirmation before accessing resources that require a permission.

Figure 13: Editing metadata in UWP projects

 32

Figure 14: Specifying capabilities in UWP projects

The official documentation explains how to configure other options. However, remember that
you need a paid subscription to the Windows Store in order to fill in the Packaging settings that
you provide when preparing for publishing.

Debugging and testing applications locally

Starting apps built with Xamarin.Forms for debugging and testing is easy. You simply select one
of the platform projects in Solution Explorer as the startup project, then you select the target
device and press F5. Do not forget to rebuild your solution before debugging for the first time.
When you start an app for debugging, Visual Studio will build your solution and deploy the app
package to the selected physical device or emulator. The result of the build process is an .apk
file for Android, an .ipa file for iOS, and an .appx file for Windows 10.

When the app starts either on a physical device or on an emulator, Visual Studio attaches an
instance of the debugger, and you will be able to use all the well-known, powerful debugging
tools of the IDE, including (but not limited to) breakpoints, data tips, tool windows, watch
windows, and more. The easiest way to select the target platform and configuration is by using
the standard toolbar, which you can see in Figure 15 (notice that the list of emulators may vary
depending on your choices at installation time or on custom emulator images).

 33

Figure 15: Selecting target platform and devices for debugging

The Debug configuration is the appropriate choice during development. You will select Ad-Hoc
when preparing for distribution on iOS and Android, or Release for Windows 10. The target
architecture is normally Any CPU for Android and Windows, whereas it is iPhoneSimulator
for debugging an iOS app in the iOS Simulator, or iPhone for debugging an app on a physical
iPhone or iPad (remember that a physical Apple device must be associated to your Mac via
Xcode and connected to the Mac, not the PC). You can also quickly select the startup project
and specify the target device. For example, in Figure 13 you can see a list of Android emulator
configurations.

 Note: In this ebook, I will provide figures that show all the supported platforms in
action when it is relevant to do so. In other cases, I will show just one platform in
action, meaning that the same behavior is expected on all platforms.

Figure 16 shows the previously created blank app running on all three platforms within the
respective emulators. Notice how in the background Visual Studio shows the Output window
where you receive messages from the debugger; you will be able to use all the other debugging
tools similarly.

Figure 16: An app built with Xamarin.Forms running on all platforms

 34

 Note: Although Visual Studio 2017 allows you to run multiple instances of an app
on multiple platforms, Figure 16 has been captured with the Android version running,
with the Windows emulator and iOS Simulator screenshots added separately.

As you can imagine, in order to build the iOS app, Visual Studio connected to the Mac and
launched the Apple SDKs. In Figure 16, you see an example of the iOS Simulator, which
deserves some more consideration.

Setting up the iOS Simulator

Unlike Android and Windows, with which emulators run locally on your Windows development
machine, the iOS Simulator runs on your Mac. However, if you have Visual Studio 2017
Enterprise, you can also download and install the Remoted iOS Simulator for Windows. When
this is installed, the simulator will run on your Windows machine instead of running on the Mac.
The iOS Simulator on Windows is not enabled by default, so you need to open Tools > Options
> Xamarin > iOS Settings, and select the Remote Simulator to Windows option. An example
of the iOS Simulator is available in Figure 14, but you will see others in the next chapters. If you
have Visual Studio 2017 Community or Professional, then you need to use the simulator on the
Mac.

Running apps on physical devices

Visual Studio can easily deploy an app package to physical Windows and Android devices. For
Android, you first need to enable the developer mode, which you accomplish with the following
steps:

1. Open the Settings app
2. Tap the About item
3. In the list that appears, locate the OS build number and tap this item seven times

At this point, you can simply plug your device into the USB port of your PC, and Visual Studio
will immediately recognize it. It will be visible in the list of available devices that you can see in
Figure 15. For Windows, you first need to enable both your machine and your devices for
development, and the official documentation provides guidance about this. Then you will be able
to plug your devices into the USB port of your PC, and Visual Studio will recognize them as
available target devices. For Apple mobile devices, you need to connect your iPhone or iPad to
your Mac computer, making sure you make them discoverable through Xcode. Then, when you
start debugging from Visual Studio, your app will be deployed to the iPhone or iPad through the
Mac.

https://developer.xamarin.com/guides/cross-platform/windows/ios-simulator/
https://docs.microsoft.com/en-us/windows/uwp/get-started/enable-your-device-for-development

 35

The Xamarin Live Player app

Microsoft has published the Xamarin Live Player app for Android and iOS. The goal of this app
is to make it simpler to debug and test Android and iOS applications on a physical device
connected to the same network as your development machine, and to avoid the need to have a
Mac for compiling and debugging an app on iOS. Basically, you will need to pair the Xamarin
Live Player app with Visual Studio using a bar code, and then Visual Studio will be able to
deploy your app packages to the physical device via the network. Because there are some
important limitations when using this app (for example, you still need a Mac to digitally sign and
distribute iOS apps, and only a limited number of NuGet packages are supported), it will not be
discussed in this chapter. Just keep in mind that this is a nice alternative if you do not have a
Mac yet.

Analyzing and profiling applications

The Xamarin toolbox has been recently enriched with three amazing tools: Xamarin Workbooks,
Xamarin Inspector, and Xamarin Profiler. The first tool allows you to explore a number of .NET
and Mono development platforms with interactive examples. The Xamarin Inspector allows you
to nicely inspect the visual tree of your Xamarin apps and make changes to the UI in real time
(see the documentation).

The Xamarin Profiler is a complete suite of analysis tools in one program that you can use to
profile your mobile apps and analyze performance, memory usage, CPU consumption, and
more. In Visual Studio, you can select Tools > Xamarin Profiler, and launch any platform
version of your app for profiling, instead of pressing F5. After the app has been deployed to the
selected device and before starting up, the Profiler will ask you what kind of analysis you want
to execute against the application. Figure 17 shows an example based on the selection of all the
available instrumenting tools.

https://www.xamarin.com/live
https://developer.xamarin.com/guides/cross-platform/live/limitations/
https://developer.xamarin.com/guides/cross-platform/workbooks/
https://developer.xamarin.com/guides/cross-platform/inspector/
https://www.xamarin.com/profiler
https://developer.xamarin.com/guides/cross-platform/inspector/

 36

Figure 17: Analyzing app performance with Xamarin Profiler

You can also take and compare snapshots of the memory in different moments to see if
memory allocation can cause potential problems. This is an excellent performance analysis tool,
and the documentation will provide all the details you need to improve your app performance.

Chapter summary

This chapter introduced the Xamarin.Forms platform and its goals, describing the required
development tools and offering an overview of a Xamarin.Forms solution, passing through the
platform projects and their most important settings. You have also seen how to start an app for
debugging using emulators and how to take advantage of the new Xamarin Live Player
application that allows you to debug an iOS application without having a Mac (which is still
required for serious development). Now that you have an overview of Xamarin.Forms and the
development tools, the next step is understanding what is at its core: sharing code across
platforms.

https://developer.xamarin.com/guides/cross-platform/profiler/

 37

Chapter 2 Sharing Code Among Platforms

Xamarin.Forms allows you to build apps that run on Android, iOS, and Windows from a single
C# codebase. This is possible because, at its core, Xamarin.Forms allows the sharing among
platforms of all the code for the user interface and all the code that is not platform-specific.
There are different ways to share code among platforms, each with its pros and cons. This
chapter explains the available code-sharing strategies in Xamarin.Forms, highlighting their
characteristics so that it will be easier for you to decide which strategy is better for your
solutions.

Introduction to code-sharing strategies

In Chapter 1, I explained how to create an Xamarin.Forms solution in Visual Studio 2017, and
that it is made up of four projects: three platform projects (Android, iOS, and UWP), and a
project that allows for sharing code among platforms. With this approach, developers can share
all the code for the user interface and all the code that is not coupled to the APIs of each
platform, maximizing code reuse and simplifying the process of creating three different native
apps from a single C# codebase. In that explanation, I briefly introduced .NET Standard as a
project type that allows sharing code. However, Xamarin.Forms allows sharing code among
platforms in two different ways: shared projects and .NET Standard libraries. This chapter
contains a thorough discussion of these two code-sharing strategies, providing further
information about the .NET Standard project type.

 Note: Before version 3.0, the .NET Standard was not included in Visual Studio as
a code sharing option for Xamarin.Forms, which instead offered the Portable Class
Library (PCL) model. This is no longer available in Visual Studio 2017 when creating
new Xamarin.Forms projects, and therefore will not be covered in this book.

Sharing code with .NET Standard

The .NET Standard provides a set of formal specifications for APIs that all the .NET
development platforms, such as .NET Framework, .NET Core, and Mono, must implement. This
allows for unifying .NET platforms and avoids future fragmentation. By creating a .NET Standard
library, you will ensure your code will run on any .NET platform without the need to select any
targets. This also solves a common problem with portable libraries, since every portable library
can target a different set of platforms, which implies potential incompatibility between libraries
and projects. Microsoft has an interesting blog post about the .NET Standard and its goals and
implementations that will clarify any doubts about this specification.

At the time of writing, version 2.0 of .NET Standard is available, and new Xamarin.Forms
projects rely on this version. .NET Standard libraries are certainly not exclusive to Xamarin. In
fact, they can be used in many other development scenarios. For example, a .NET Standard
library could be used to share a Model-View-ViewModel architecture between a WPF project
and a UWP project.

https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/

 38

The most important characteristics of .NET Standard libraries are:

• They produce a compiled, reusable .dll assembly.
• They can reference other libraries and have dependencies such as NuGet packages.
• They can contain XAML files for the user interface definition and C# files.
• They cannot expose code that leverages specific APIs that are not available on all the

platforms targeted by a specific .NET Standard version.
• They are a better choice when you need to implement architectural patterns such as

MVVM, factory, inversion of control (IoC) with dependency injection, and service locator.
• With regard to Xamarin.Forms, they can use the service locator pattern to implement an

abstraction and to invoke platform-specific APIs through platform projects (this will be
discussed in Chapter 8).

• They are easier to unit test.

For example, it’s only possible to use a component of the .NET Standard library for both a WPF
and UWP application to access the location sensor of a device if the component is supported by
both application types. Normally, you would create a .NET Standard library project manually and
then add the necessary references to and from other projects in the solution. In the case of
Xamarin.Forms, you instead decide a code-sharing strategy when creating a new project (see
Figure 4), and then Visual Studio 2017 will automatically generate a .NET Standard project that
is referenced by the platform projects in the solution, and that has a dependency on the
Xamarin.Forms NuGet package.

 Note: In all the examples in this ebook, I will use .NET Standard as the code-
sharing strategy for the following reasons: it makes it easier to use and manage other
libraries, and it is a better choice for real-world projects that require more complex
architectures.

Sharing code with shared projects

Shared projects, as well as .NET Standard libraries, are not specific to Xamarin and have
existed for many years. Shared projects are essentially loose assortments of files that can be
shared with other projects. The following is a list of the most important characteristics of a
shared project, also highlighting the differences from a .NET Standard library:

• They do not produce a compiled, reusable .dll assembly.
• They cannot reference other libraries and have dependencies, such as NuGet packages.
• They can contain XAML files for the user interface definition and C# files.
• They can contain platform-specific code that can use conditional compilation and

preprocessor directives.

In order to select a shared project as the code-sharing strategy, in the New Cross Platform
App dialog box (see Figure 4), you select Shared Project in the Code Sharing Strategy
group. When the solution is ready in Solution Explorer, you will see the shared project looking
similar to Figure 18.

 39

Figure 18: The shared project in a Xamarin.Forms solution

One important note here is that platform projects (Android, iOS, and UWP) have a reference to
the shared project, but the shared project cannot have references or dependencies.
Additionally, shared projects’ properties have no project-level properties; instead, you can only
access the properties of the individual files they contain. Not surprisingly, there is no Properties
or References node for shared projects in Solution Explorer. Shared projects can contain an
infinite number of different files and resources, including XAML files for the user interface and
C# code files. This is possible because shared projects are not compiled; rather, the compiler
resolves source files and resources when the whole solution is built. Because shared projects
do not reference any libraries, it might be difficult to remember types and members you can use
in C#. Luckily, IntelliSense comes in to help, showing what is available (and what is not) when
you type, as shown in Figure 19.

Figure 19: IntelliSense shows available types

 40

The biggest benefit of shared projects is that they allow the writing of platform-specific code
without needing to use patterns such as the service locator, as you do with NET Standard
libraries. This is accomplished using preprocessor directives such as #if, #elif, #else, and

conditional compilation symbols, as demonstrated in Code Listing 1.

Code Listing 1

private string GetFolderPath()
{
 string path = "";

 #if __ANDROID__
 path = Environment.GetFolderPath(Environment.SpecialFolder.MyDocume
nts);
 #elif __IOS__
 path = Environment.GetFolderPath(Environment.SpecialFolder.MyDocume
nts);
 #elif WINDOWS_PHONE
 path = Windows.Storage.KnownFolders.DocumentsLibrary.Path;
 #endif
 return path;
}

As you can see, you can simply check the platform your app is running on with preprocessor
directives, and then the compiler will resolve the appropriate platform-specific code without
dealing with the complexity of other patterns. Each platform is represented by a conditional
compilation symbol, defined in the build options of the project properties. Table 1 summarizes
the available symbols in Visual Studio 2017 and the platforms they represent.

Table 1: Conditional compilation symbols in Xamarin.Forms

Symbol Description

__ANDROID__ Represents the Android platform

__IOS__ Represents the iOS platform

WINDOWS_PHONE Represents the Universal Windows
Platform, Windows 8.1, and Windows
Phone 8.1 platforms. Windows 8.1 and
Windows Phone 8.1 are no longer
supported on Xamarin.Forms 3.x.

__TVOS__ Represents the Apple tvOS platform

__WATCHOS__ Represents the Apple Watch OS platform

NETFX_CORE Represents the .NET Core platform

 41

An interesting example of platform-specific code that uses conditional compilation symbols and
preprocessor directives is the SQLite.cs file, which implements data access against the popular
SQLite database in C#. A complete sample solution based on shared projects and the approach
described previously is available from the official Xamarin documentation, and is called Tasky. It
shows how to create a simple To-Do mobile application.

Having the option to write platform-specific code with the approach you saw in Code Listing 1 is
certainly appealing, but you should prefer .NET Standard libraries in at least the following
situations:

• You need to access many platform-specific resources and your code might become very
difficult to maintain.

• You need to implement architectures based on one or more patterns. In such situations,
not only are shared projects not the best option, but it is common to have multiple
portable libraries, which also makes it easier for teams to work on different parts of a
solution.

• You want to unit test your code efficiently.

The aforementioned points, together with the considerations I made in the section about
portable libraries, should further clarify the reason you will find examples based on .NET
Standard libraries rather than shared projects in this ebook.

Chapter summary

This chapter introduced the available code-sharing strategies that Xamarin.Forms can use to
share user interface files and platform-independent code, such as .NET Standard libraries and
shared projects. .NET Standard libraries produce reusable assemblies, allow for implementing
better architectures, and cannot contain platform-specific code. Shared projects can contain
platform-specific code with preprocessor directives and conditional compilation symbols, but
they do not produce reusable assemblies, and code maintenance is more difficult if they access
many native resources.

.NET Standard libraries represent the present and future of code sharing across platforms, are
based on a formal set of API specifications, and they make sure your code will run on all the
platforms that support the selected version of .NET Standard. Assuming that .NET Standard
libraries are the preferred choice, in the next chapters you will start writing code and building
cross-platform user interfaces.

https://github.com/praeclarum/sqlite-net/blob/master/src/SQLite.cs
https://github.com/xamarin/mobile-samples/tree/master/Tasky

 42

Chapter 3 Building the User Interface with
XAML

Xamarin.Forms is, at its core, a library that allows you to create native user interfaces from a
single C# codebase by sharing code. This chapter provides the foundations for building the user
interface in a Xamarin.Forms solution. Then, in the next three chapters, you will learn in more
detail about layouts, controls, pages, and navigation.

The structure of the user interface in Xamarin.Forms

The biggest benefit of Xamarin.Forms is that you can define the entire user interface of your
application inside the project that you selected for sharing code, which can be either a .NET
Standard library or a shared project. Native apps for iOS, Android, and Windows that you get
when you build a solution will render the user interface with the proper native layouts and
controls on each platform. This is possible because Xamarin.Forms maps native controls into
C# classes that are then responsible for rendering the appropriate visual element depending on
the platform the app is running on. These classes actually represent visual elements such as
pages, layouts, and controls.

Because the .NET Standard library or shared project can only contain code that will certainly run
on all platforms, Xamarin.Forms maps only those visual elements common to all platforms. For
instance, iOS, Android, and Windows all provide text boxes and labels, thus Xamarin.Forms can
provide the Entry and Label controls that represent text boxes and labels, respectively.

However, each platform renders and manages visual elements differently from one another,
with different properties and behavior. This implies that controls in Xamarin.Forms expose only
properties and events that are common to every platform, such as the font size and the text
color.

In Chapter 8, you will learn how to use native controls directly, but for now let’s focus on how
Xamarin.Forms allows the creation of user interfaces with visual elements provided out of the
box. The user interface in iOS, Android, and Windows has a hierarchical structure made of
pages that contain layouts that contain controls. Layouts can be considered as containers of
controls that allow for dynamically arranging the user interface in different ways. Based on this
consideration, Xamarin.Forms provides a number of page types, layouts, and controls that can
be rendered on each platform. When you create a Xamarin.Forms solution, whether you choose
a .NET Standard or a shared project, the project you selected for sharing code will contain a
root page that you can populate with visual elements. Then you can design a more complex
user interface by adding other pages and visual elements. To accomplish this, you can use both
C# and the extensible Application Markup Language (XAML). Let’s discuss both methods.

 43

Coding the user interface in C#

In Xamarin.Forms, you can create the user interface of an application in C# code. For instance,
Code Listing 2 demonstrates how to create a page with a layout that arranges controls in a
stack containing a label and a button. For now, do not focus on element names and their
properties (they will be explained in the next chapter). Rather, focus on the hierarchy of visual
elements that the code introduces.

Code Listing 2

var newPage = new ContentPage();
newPage.Title = "New page";

var newLayout = new StackLayout();
newLayout.Orientation = StackOrientation.Vertical;
newLayout.Padding = new Thickness(10);

var newLabel = new Label();
newLabel.Text = "Welcome to Xamarin.Forms!";

var newButton = new Button();
newButton.Text = "Tap here";
newButton.Margin = new Thickness(0, 10, 0, 0);

newLayout.Children.Add(newLabel);
newLayout.Children.Add(newButton);

newPage.Content = newLayout;

Here you have full IntelliSense support. However, as you can imagine, creating a complex user
interface entirely in C# can be challenging for at least the following reasons:

• Representing a visual hierarchy made of tons of elements in C# code is extremely
difficult.

• You must write the code in a way that allows you to distinguish between user interface
definition and other imperative code.

• As a consequence, your C# becomes much more complex and difficult to maintain.

In the early days of Xamarin.Forms, defining the user interface could only be done in C# code.
Fortunately, you now have a much more versatile way of designing the user interface with
XAML, as you’ll learn in the next section. Obviously, there are still situations in which you might
need to create visual elements in C#, for example, if you need to add new controls at runtime,
although this is the only scenario for which I suggest you code visual elements in C#.

 44

The modern way: designing the user interface with XAML

XAML is the acronym for eXtensible Application Markup Language. As its name implies, XAML
is a markup language that you can use to write the user interface definition in a declarative
fashion. XAML is not new in Xamarin.Forms, since it was first introduced more than ten years
ago with Windows Presentation Foundation, and it has always been available in platforms such
as Silverlight, Windows Phone, and the Universal Windows Platform.

XAML derives from XML and, among others, it offers the following benefits:

• XAML makes it easy to represent structures of elements in a hierarchical way, where
pages, layouts, and controls are represented with XML elements and properties with
XML attributes.

• It provides clean separation between the user interface definition and the C# logic.
• Being a declarative language separated from the logic, it allows professional designers

to work on the user interface without interfering with the imperative code.

The way you define the user interface with XAML is unified across platforms, meaning that you
design the user interface once and it will run on iOS, Android, and Windows.

 Note: XAML in Xamarin.Forms adheres to Microsoft’s XAML 2009 specifications,
but its vocabulary is different from XAML in other platforms, such as WPF or UWP.
So, if you have experience with these platforms, you will notice many differences in
how visual elements and their properties are named. Microsoft is working on unifying
XAML vocabularies, as you’ll learn in the section “Hints for XAML Standard.” Also,
remember that XAML is case-sensitive for object names and their properties and
members.

For example, when you create a Xamarin.Forms solution, you can find a file in the .NET
Standard project called MainPage.xaml, whose markup is represented in Code Listing 3.

Code Listing 3

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 x:Class="App1.MainPage">

 <Label Text="Welcome to Xamarin Forms!"
 VerticalOptions="Center"
 HorizontalOptions="Center" />

</ContentPage>

A XAML file in Xamarin.Forms normally contains a page or a custom view. The root element is a
ContentPage object, which represents its C# class counterpart and is rendered as an individual

page. In XAML, the Content property of a page is implicit, meaning you do not need to write a

 45

ContentPage.Content element. The compiler assumes that the visual elements you enclose

between the ContentPage tags are assigned to the ContentPage.Content property.

The Label element, on the other hand, represents the Label class in C#. Properties of this

class are assigned with XML attributes, such as Text, VerticalOptions, and

HorizontalOptions.

You probably already have the immediate perception of better organization and visual
representation of the structure of the user interface. If you look at the root element, you can see
a number of attributes whose definition starts with xmlns. These are referred to as XML

namespaces and are important because they make it possible to declare visual elements
defined inside specific namespaces or XML schemas. For example, xmlns points to the root

XAML namespace defined inside a specific XML schema and allows for adding to the UI
definition all the visual elements defined by Xamarin.Forms; xmlns:x points to an XML schema

that exposes built-in types; and xmlns:local points to the app’s assembly, making it possible

to use objects defined in your project.

Each page or layout can only contain one visual element. In the case of the autogenerated
MainPage.xaml page, you cannot add other visual elements to the page unless you organize
them into a layout. For instance, if you wanted to add a button below the Label, you would need

to include both the Label and the Button inside a container such as the StackLayout, as

demonstrated in Code Listing 4.

 Tip: IntelliSense will help you add visual elements faster by showing element
names and properties as you type. You can then simply press Tab or double-click to
quickly insert an element.

Code Listing 4

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 x:Class="App1.MainPage">

 <StackLayout Orientation="Vertical" Padding="10">
 <Label Text="Welcome to Xamarin Forms!"
 VerticalOptions="Center"
 HorizontalOptions="Center" />

 <Button x:Name="Button1" Text="Tap here!"
 Margin="0,10,0,0"/>
 </StackLayout>

</ContentPage>

 46

If you did not include both controls inside the layout, Visual Studio will raise an error. You can
nest other layouts inside a parent layout and create complex hierarchies of visual elements.
Notice the x:Name assignment for the Button. Generally speaking, with x:Name you can assign

an identifier to any visual element so that you can interact with it in C# code, for example, if you
need to retrieve a property value.

If you have never seen XAML before, you might wonder how you can interact with visual
elements in C# at this point. In Solution Explorer, if you expand the MainPage.xaml file, you will
see a nested file called MainPage.xaml.cs. This is the so-called code-behind file, and it
contains all the imperative code for the current page. In this case, the simplest form of a code-
behind file, the code contains the definition of the MainPage class, which inherits from

ContentPage, and the page constructor, which makes an invocation to the

InitializeComponent method of the base class and initializes the page. You will access the

code-behind file often from Solution Explorer, but Visual Studio 2017 introduces another easy
way that is related to a very common requirement: responding to events raised by the user
interface.

Productivity features for XAML IntelliSense

The XAML code editor in Visual Studio 2017 has been recently redesigned, and it is now
powered by the same engine that is behind Windows Presentation Foundation (WPF) and
Universal Windows Platform (UWP). This is extremely important for several reasons:

• Full, rich IntelliSense support: Earlier versions of IntelliSense could make writing
XAML markup painful to do. The new version adds linting and fuzzy matching, described
in more detail shortly.

• Quick actions and refactorings: Light bulb suggestions are now available to XAML in
Xamarin.Forms, just as they have been for WPF and UWP, making it easy to resolve
XML namespaces, remove unused namespaces, and organize code with contextualized
suggestions.

• Go To Definition and Peek Definition: These popular features, previously available
only to the C# code editor, are also now available to Xamarin.Forms’ XAML.

• Enhanced support for binding expressions: IntelliSense now lists available objects
for bindings based on the {Binding} markup extension, and also lists available resources
when using the {StaticResource} markup extension. Hints about this feature will be
provided in Chapter 7, “Resources and Data Binding.”

I will now describe these productivity features in more detail.

Fuzzy matching and linting

Fuzzy matching is a feature that helps you find appropriate completions based on what you
type. For example, if you type Stk and then press Tab, IntelliSense will add a StackLayout tag.

This feature is also capable of providing a list of possible completions as you type in a control
name. For example, if you type Layout, IntelliSense will offer StackLayout, FlexLayout,

AbsoluteLayout, and RelativeLayout as possible completions, as well as closing tags based

on the same typing. Another interesting feature of fuzzy matching is CamelCase matching,
which provides shortcuts based on CamelCase types. For instance, if you type RL and then

press Tab, the editor inserts a RelativeLayout tag. With linting, the code editor underlines

code issues as you type with red squiggles (critical errors) or green squiggles (warnings).

 47

Light bulb: Quick actions and refactorings

The light bulb icon was first introduced to IntelliSense in Visual Studio 2015 for the C# and
Visual Basic languages, and it was later added to XAML IntelliSense in WPF and UWP. Now
this useful feature is also available to XAML in Xamarin.Forms. With this tool, when a code
issue is detected, you can click the light bulb icon (or press Ctrl + .) and IntelliSense will show
potential fixes for that code issue. In Xamarin.Forms XAML, the light bulb can suggest code
fixes to import missing XML namespaces, sort XML namespaces, and remove unused XML
namespaces.

 Tip: Unused XML namespaces have a lighter color in the code editor, so they are
more easily recognizable. When you hover over unused XML namespaces, the light
bulb will be available and a quick action will suggest to remove all unused
namespaces as a potential fix.

Figure 20 provides an example based on using a type defined inside an XML namespace that is
currently not declared.

Figure 20: Quickly adding a missing XML namespace

 48

Go To Definition and Peek Definition

Go To Definition and Peek Definition are popular, extremely useful features in the code editor,
and they have been added to the XAML IntelliSense in Xamarin.Forms. Both are available
through the context menu when you right-click an object name in the code editor. With Go To
Definition, Visual Studio will open the definition of the selected object and, if it is defined in a
different file, such a file will be opened in a separate tab. The cursor will be moved to the object
definition. In XAML, this is particularly useful when you need to go to the definition of objects
such as styles, templates, and other resources that might be defined in a different file. Peek
Definition, instead, opens an interactive pop-up window in the active editor, allowing you to see
the definition of an object or to make edits without leaving the active window. Additionally, you
are not limited to viewing or editing objects defined in a XAML file, as you can also peek the
definition of an object defined in the C# code-behind file.

Figure 21 shows an example of Peek Definition where a C# event handler for the Clicked

event of a Button is displayed within a XAML editor window.

Figure 21: Making edits in the active editor with Peek Definition

Both these features were already available for C# in Xamarin.Forms, and for both XAML and
the managed languages in platforms such as WPF and UWP. Finally, they are now also
available in Xamarin.Forms XAML.

 49

Responding to events

Events are fundamental for the interaction between the user and the application, and controls in
Xamarin.Forms raise events as normally happens in any platform. Events are handled in the C#
code-behind file. Visual Studio 2017 makes it much simpler to create event handlers than its
predecessors with an evolved IntelliSense experience. For instance, suppose you want to
perform an action when the user taps the button defined in the previous code. The Button

control exposes an event called Clicked that you assign the name of an event handler as

follows:

<Button x:Name="Button1" Text="Tap here!" Margin="0,10,0,0"
 Clicked="Button1_Clicked"/>

However, when you type Clicked=", Visual Studio offers a shortcut that allows the generation

of an event handler in C# based on the control’s name, as shown in Figure 22.

Figure 22: Generating an event handler

If you press Tab, Visual Studio will insert the name of the new event handler and generate the
C# event handler in the code-behind. You can quickly go to the event handler by right-clicking
its name and then selecting Go To Definition. You will be redirected to the event handler
definition in the C# code-behind, as shown in Figure 23.

 50

Figure 23: The event handler definition in C#

At this point, you will be able to write the code that performs the action you want to execute,
exactly as it happens with other .NET platforms such as WPF or UWP. Generally speaking,
event handlers’ signatures require two parameters: one of type object representing the control

that raised the event, and one object of type EventArgs containing information about the event.

In many cases, event handlers work with derived versions of EventArgs, but these will be

highlighted when appropriate. As you can imagine, Xamarin.Forms exposes events that are
commonly available on all the supported platforms.

Understanding type converters

If you look at Code Listing 3, you will see that the Orientation property of the StackLayout is

of type StackOrientation, the Padding property is of type Thickness, and the Margin

property assigned to the Button is also of type Thickness. However, as you can see in Code

Listing 4, the same properties are assigned with values passed in the form of strings in XAML.

Xamarin.Forms (and all the other XAML-based platforms) implement the so-called type
converters, which automatically convert a string into the appropriate value for a number of
known types. Summarizing all the available type converters and known target types is neither
possible nor necessary at this point; you simply need to remember that, in most cases, strings
you assign as property values are automatically converted into the appropriate type on your
behalf.

 51

Xamarin.Forms Previewer

Xamarin.Forms doesn’t have a designer that allows you to draw the user interface visually with
the mouse, the toolbox, and interactive windows as you are used to doing with platforms such
as WPF, Windows Forms, and UWP. This implies that you need to write all your XAML
manually. However, Visual Studio 2017 brings an important addition, known as the
Xamarin.Forms Previewer. This is a tool window you can enable with View > Other Windows >
Xamarin.Forms Previewer, and it shows a preview of the user interface in real time, as you
edit your XAML. Figure 24 shows the Xamarin.Forms Previewer in action.

Figure 24: The Xamarin.Forms Previewer

 Tip: Remember to rebuild your solution before opening the Xamarin.Forms
Previewer for the first time.

At the bottom-right corner, the previewer provides zoom controls. At the top, you can select the
device factor (phone or tablet), the platform used to render the preview (Android or iOS), and
the orientation (vertical or horizontal). If you wish to render the preview based on iOS,
remember that you need Visual Studio to be connected to a Mac. If there are any errors in your
XAML or if, for any reason, the Previewer is unable to render the preview, it will show a detailed
error message.

 52

The Xamarin.Forms Previewer is an important tool, because it prevents the need to run the
application every time you make significant edits to the UI, as was required in the past. In the
next chapters, I will often use the Previewer to demonstrate how the UI looks instead of running
the emulator.

Hints for XAML Standard

XAML in Xamarin.Forms follows the Microsoft XAML 2009 specifications, but its vocabulary is
different from other XAML-based platforms. For example, a text box is represented by the
TextBox control in WPF and UWP, but in Xamarin.Forms you have an Entry. Again, the

Button control in WPF and UWP exposes an event called Click, which is instead called

Clicked in Xamarin.Forms.

Microsoft is currently working on XAML Standard, a unification of XAML dialects across
platforms. XAML Standard is still a work in progress, so it’s not available yet. However, you can
follow the progress on GitHub and read this introductory blog post that explains the XAML
Standard’s goals in more detail.

Chapter summary

Sharing the user interface across platforms is the main goal of Xamarin.Forms, and this chapter
provided a high-level overview of how you define the user interface with XAML, based on a
hierarchy of visual elements. You have seen how to add visual elements and how to assign their
properties; you have seen how type converters allow for passing string values in XAML and how
the compiler converts them into the appropriate types; and you had a first look at the
Xamarin.Forms Previewer to get a real-time, integrated representation of the user interface as
you edit your XAML. After this overview of how the user interface is defined in Xamarin.Forms, it
is time to discuss important UI concepts in more detail, and we will start by organizing the user
interface with layouts.

https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjlqIbd5IXVAhVDbhQKHU-ACtAQFggmMAA&url=https%3A%2F%2Fgithub.com%2FMicrosoft%2Fxaml-standard&usg=AFQjCNFgeMIN5skZ4TSTRXmNiu3-eARarQ
https://blogs.windows.com/buildingapps/2017/05/19/introducing-xaml-standard-net-standard-2-0/#zFYJudAG8xDFLj8f.97

 53

Chapter 4 Organizing the UI with Layouts

Mobile devices such as phones, tablets, and laptops have different screen sizes and form
factors. They also support both landscape and portrait orientations. Therefore, the user interface
in mobile apps must dynamically adapt to the system, screen, and device so that visual
elements can be automatically resized or rearranged based on the form factor and device
orientation. In Xamarin.Forms, this is accomplished with layouts, which is the topic of this
chapter.

Understanding the concept of layout

 Tip: If you have previous experience with WPF or UWP, the concept of layout is the
same as the concept of panels such as the Grid and the StackPanel.

One of the goals of Xamarin.Forms is to provide the ability to create dynamic interfaces that can
be rearranged according to the user’s preferences or to the device and screen size. Because of
this, controls in mobile apps you build with Xamarin should not have a fixed size or position on
the UI, except in a very limited number of scenarios. To make this possible, Xamarin.Forms
controls are arranged within special containers, known as layouts. Layouts are classes that
allow for arranging visual elements in the UI, and Xamarin.Forms provides many of them.

In this chapter, you’ll learn about available layouts and how to use them to arrange controls. The
most important thing to keep in mind is that controls in Xamarin.Forms have a hierarchical logic;
therefore, you can nest multiple panels to create complex user experiences. Table 2
summarizes the available layouts. You’ll learn about them in more detail in the sections that
follow.

Table 2: Layouts in Xamarin.Forms

Layout Description

StackLayout
Allows you to place visual elements near each other
horizontally or vertically.

FlexLayout
Allows you to place visual elements near each other
horizontally or vertically. Wraps visual elements to the
next row or column if not enough space is available.

Grid
Allows you to organize visual elements within rows and
columns.

AbsoluteLayout A layout placed at a specified, fixed position.

 54

Layout Description

RelativeLayout
A layout whose position depends on relative
constraints.

ScrollView Allows you to scroll the visual elements it contains.

Frame
Draws a border and adds space around the visual
element it contains.

ContentView
A special layout that can contain hierarchies of visual
elements and can be used to create custom controls in
XAML.

Remember that only one root layout is assigned to the Content property of a page, and that

layout can then contain nested visual elements and layouts.

Alignment and spacing options

As a general rule, both layouts and controls can be aligned by assigning the
HorizontalOptions and VerticalOptions properties with one of the property values from the

LayoutOptions structure, summarized in Table 3. Providing an alignment option is very

common. For instance, if you only have the root layout in a page, you will want to assign
VerticalOptions with StartAndExpand so that the layout gets all the available space in the

page (remember this consideration when you experiment with layouts and views in this chapter
and the next one).

Table 3: Alignment options in Xamarin.Forms

Alignment Description

Center Aligns the visual element at the center.

CenterAndExpand Aligns the visual element at the center and expands its
bounds to fill the available space.

Start Aligns the visual element at the left.

StartAndExpand Aligns the visual element at the left and expands its bounds
to fill the available space.

 55

Alignment Description

End Aligns the visual element at the right.

EndAndExpand Aligns the visual element at the right and expands its
bounds to fill the available space.

Fill Makes the visual element have no padding around itself and
it does not expand.

FillAndExpand Makes the visual element have no padding around itself and
it expands to fill the available space.

You can also control the space between visual elements with three properties: Padding,

Spacing, and Margin, summarized in Table 4.

Table 4: Spacing options in Xamarin.Forms

Spacing Description

Margin Represents the distance between the current visual element and its
adjacent elements with either a fixed value for all four sides, or with
comma-separated values for the left, top, right, and bottom. It is of
type Thickness and XAML has built in a type converter for it.

Padding Represents the distance between a visual element and its child
elements. It can be set with either a fixed value for all four sides, or
with comma-separated values for the left, top, right, and bottom. It is
of type Thickness and XAML has built in a type converter for it.

Spacing Available only in the StackLayout container, it allows you to set the

amount of space between each child element, with a default of 6.0.

I recommend you spend some time experimenting with how alignment and spacing options work
in order to understand how to get the appropriate result in your user interfaces.

The StackLayout

The StackLayout container allows the placing of controls near each other, as in a stack that

can be arranged both horizontally and vertically. As with other containers, the StackLayout can

contain nested panels. The following code shows how you can arrange controls horizontally and
vertically. Code Listing 5 shows an example with a root StackLayout and two nested layouts.

 56

Code Listing 5

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 x:Class="App1.MainPage">

 <StackLayout Orientation="Vertical">
 <StackLayout Orientation="Horizontal" Margin="5">
 <Label Text="Sample controls" Margin="5"/>
 <Button Text="Test button" Margin="5"/>
 </StackLayout>
 <StackLayout Orientation="Vertical" Margin="5">
 <Label Text="Sample controls" Margin="5"/>
 <Button Text="Test button" Margin="5"/>
 </StackLayout>
 </StackLayout>
</ContentPage>

The result of the XAML in Code Listing 5 is shown in Figure 25.

 57

Figure 25: Arranging visual elements with the StackLayout

The Orientation property can be set as Horizontal or Vertical, and this influences the final

layout. If not specified, Vertical is the default. One of the main benefits of XAML code is that

element names and properties are self-explanatory, and this is the case in StackLayout’s

properties, too. Remember that controls within a StackLayout are automatically resized

according to the orientation. If you do not like this behavior, you need to specify WidthRequest

and HeightRequest properties on each control, which represent the width and height,

respectively. Spacing is a property that you can use to adjust the amount of space between

child elements; this is preferred to adjusting the space on the individual controls with the Margin

property.

The FlexLayout

The FlexLayout was introduced with Xamarin.Forms 3.0. It works like a StackLayout, since it

arranges child visual elements vertically or horizontally, but the difference is that it is also able to
wrap the child visual elements if there is not enough space in a single row or column. Code
Listing 6 provides an example and shows how easy it is to work with this layout.

 58

Code Listing 6

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 x:Class="App1.MainPage">

 <FlexLayout Wrap="Wrap" JustifyContent="SpaceAround"
 Direction="Row">
 <Label Text="This is a sample label in a page"
 FlexLayout.AlignSelf="Center"/>
 <Button Text="Tap here to get things done"
 FlexLayout.AlignSelf="Center" x:Name="Button1"/>
 </FlexLayout>
</ContentPage>

The FlexLayout exposes several properties, most of them common to other layouts, but the

following are exclusive to FlexLayout, and certainly the most important to use to adjust its

behavior:

• Wrap: A value from the FlexWrap enumeration that specifies if the FlexLayout content
should be wrapped to the next row if there is not enough space in the first one. Possible
values are Wrap (wraps to the next row), NoWrap (keeps the view content on one row),
and Reverse (wraps to the next row in the opposite direction).

• Direction: A value from the FlexDirection enumeration that determines if the
children of the FlexLayout should be arranged in a single row or column. The default
value is Row. Other possible values are Column, RowReverse, and ColumnReverse
(where Reverse means that child views will be laid out in the reverse order).

• JustifyContent: A value from the FlexJustify enumeration that specifies how child
views should be arranged when there is extra space around them. There are self-
explanatory values such as Start, Center, and End, as well other options such as
SpaceAround, where elements are spaced with one unit of space at the beginning and
end, and two units of space between them, so the elements and the space fill the line;
and SpaceBetween, where child elements are spaced with equal space between units
and no space at either end of the line, again so the elements and the space fill the line.
The SpaceEvenly value causes child elements to be spaced so the same amount of
space is set between each element as there is from the edges of the parent to the
beginning and end elements.

You can specify the alignment of child views in the FlexLayout by assigning the

FlexLayout.AlignSelf attached property with self-explanatory values such as Start, Center,

End, and Stretch. For a quick understanding, you can take a look at Figure 26, which

demonstrates how child views have been wrapped.

 59

Figure 26: Arranging visual elements with the FlexLayout

If you change the Wrap property value to NoWrap, child views will be aligned on the same row,

overlapping each other. The FlexLayout is therefore particularly useful to create dynamic

hierarchies of visual elements, especially when you do not know in advance the size of child
elements.

The Grid

The Grid is one of the easiest layouts to understand, and probably the most versatile. It allows

you to create tables with rows and columns. In this way, you can define cells, and each cell can
contain a control or another layout storing nested controls. The Grid is versatile in that you can

just divide it into rows or columns, or both.

The following code defines a Grid that is divided into two rows and two columns:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition />

 60

 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
</Grid>

RowDefinitions is a collection of RowDefinition objects, and the same is true for

ColumnDefinitions and ColumnDefinition. Each item represents a row or a column within

the Grid, respectively. You can also specify a Width or a Height property to delimit row and

column dimensions; if you do not specify anything, both rows and columns are dimensioned at
the maximum size available. When resizing the parent container, rows and columns are
automatically rearranged.

The preceding code creates a table with four cells. To place controls in the Grid, you specify

the row and column position via the Grid.Row and Grid.Column properties, known as attached

properties, on the control. Attached properties allow for assigning properties of the parent
container from the current visual element. The index of both is zero-based, meaning that 0

represents the first column from the left and the first row from the top. You can place nested
layouts within a cell or a single row or column. The code in Code Listing 7 shows how to nest a
grid into a root grid with children controls.

 Tip: Grid.Row="0" and Grid.Column="0" can be omitted.

Code Listing 7

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Layouts.GridSample">
 <ContentPage.Content>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Button Text="First Button" />
 <Button Grid.Column="1" Text="Second Button"/>

 <Grid Grid.Row="1">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

https://developer.xamarin.com/guides/xamarin-forms/xaml/attached-properties/
https://developer.xamarin.com/guides/xamarin-forms/xaml/attached-properties/

 61

 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Button Text="Button 3" />
 <Button Text="Button 4" Grid.Column="1" />
 </Grid>
 </Grid>
 </ContentPage.Content>
</ContentPage>

Figure 27 shows the result of this code.

Figure 27: Arranging visual elements with the Grid

The Grid layout is very versatile and is also a good choice (when possible) in terms of

performance.

 62

Spacing and proportions for rows and columns

You have fine-grained control over the size, space, and proportions of rows and columns. The
Height and Width properties of the RowDefinition and ColumnDefinition objects can be

set with values from the GridUnitType enumeration as follows:

• Auto: Automatically sizes to fit content in the row or column.
• Star: Sizes columns and rows as a proportion of the remaining space.
• Absolute: Sizes columns and rows with specific, fixed height and width values.

XAML has type converters for the GridUnitType values, so you simply pass no value for Auto,

a * for Star, and the fixed numeric value for Absolute, such as:

<Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="20"/>
</Grid.ColumnDefinitions>

Introducing spans

In some situations, you might have elements that should occupy more than one row or column.
In these cases, you can assign the Grid.RowSpan and Grid.ColumnSpan attached properties

with the number of rows and columns a visual element should occupy.

The AbsoluteLayout

The AbsoluteLayout container allows you to specify where exactly on the screen you want the

child elements to appear, as well as their size and bounds. There are a few different ways to set
the bounds of the child elements based on the AbsoluteLayoutFlags enumeration used during

this process.

The AbsoluteLayoutFlags enumeration contains the following values:

• All: All dimensions are proportional.
• HeightProportional: Height is proportional to the layout.
• None: No interpretation is done.
• PositionProportional: Combines XProportional and YProportional.
• SizeProportional: Combines WidthProportional and HeightProportional.
• WidthProportional: Width is proportional to the layout.
• XProportional: X property is proportional to the layout.
• YProportional: Y property is proportional to the layout.

 63

Once you have created your child elements, to set them at an absolute position within the
container you will need to assign the AbsoluteLayout.LayoutFlags attached property. You

will also want to assign the AbsoluteLayout.LayoutBounds attached property to give the

elements their bounds. Since Xamarin.Forms is an abstraction layer between Xamarin and the
device-specific implementations, the positional values can be independent of the device pixels.
This is where the LayoutFlags mentioned previously come into play. Code Listing 8 provides

an example based on proportional dimensions and absolute position for child controls.

Code Listing 8

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 x:Class="App1.MainPage">

 <AbsoluteLayout>
 <Label Text="First Label"
 AbsoluteLayout.LayoutBounds="0, 0, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" TextColor="Red"/>
 <Label Text="Second Label"
 AbsoluteLayout.LayoutBounds="0.20, 0.20, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" TextColor="Orange"/>
 <Label Text="Third Label"
 AbsoluteLayout.LayoutBounds="0.40, 0.40, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" TextColor="Violet"/>
 <Label Text="Fourth Label"
 AbsoluteLayout.LayoutBounds="0.60, 0.60, 0.25, 0.25"
 AbsoluteLayout.LayoutFlags="All" TextColor="Yellow"/>
 </AbsoluteLayout>
</ContentPage>

Figure 28 shows the result of the AbsoluteLayout example.

 64

Figure 28: Absolute positioning with AbsoluteLayout

The RelativeLayout

The RelativeLayout container provides a way to specify the location of child elements relative

either to each other or to the parent control. Relative locations are resolved through a series of
Constraint objects that define each particular child element’s relative position to another. In

XAML, Constraint objects are expressed through the ConstraintExpression markup

extension, which is used to specify the location or size of a child view as a constant, or relative
to a parent or other named view. Markup extensions are very common in XAML, and you will
see many of them in Chapter 7 related to data binding, but discussing them in detail is beyond
the scope here. The official documentation has a very detailed page on their syntax and
implementation that I encourage you to read.

https://developer.xamarin.com/guides/xamarin-forms/xaml/xaml-basics/xaml_markup_extensions/

 65

In the RelativeLayout class, there are properties named XConstraint and YConstraint. In

the next example, you will see how to assign a value to these properties from within another
XAML element, through attached properties. This is demonstrated in Code Listing 9, where you
meet the BoxView, a visual element that allows you to draw a colored box. In this case, it’s

useful for giving you an immediate perception of how the layout is organized.

Code Listing 9

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 x:Class="App1.MainPage">

 <RelativeLayout>
 <BoxView Color="Red" x:Name="redBox"
 RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToPa
rent,
 Property=Height,Factor=.15,Constant=0}"
 RelativeLayout.WidthConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=1,Constant=0}"
 RelativeLayout.HeightConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Height,Factor=.8,Constant=0}" />
 <BoxView Color="Blue"
 RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToVi
ew,
 ElementName=redBox,Property=Y,Factor=1,Constant=20}"
 RelativeLayout.XConstraint="{ConstraintExpression Type=RelativeToVi
ew,
 ElementName=redBox,Property=X,Factor=1,Constant=20}"
 RelativeLayout.WidthConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Width,Factor=.5,Constant=0}"
 RelativeLayout.HeightConstraint="{ConstraintExpression
 Type=RelativeToParent,Property=Height,Factor=.5,Constant=0}" />
 </RelativeLayout>
</ContentPage>

The result of Code Listing 9 is shown in Figure 29.

 66

Figure 29: Arranging visual elements with the RelativeLayout

 Tip: The RelativeLayout container has poor rendering performance, and the
documentation recommends that you avoid this layout whenever possible, or at least
avoid more than one RelativeLayout per page.

The ScrollView

The special layout ScrollView allows you to present content that cannot fit on one screen, and

therefore should be scrolled. Its usage is very simple:

 <ScrollView x:Name="Scroll1">
 <StackLayout>
 <Label Text="My favorite color:" x:Name="Label1"/>
 <BoxView BackgroundColor="Green" HeightRequest="600" />
 </StackLayout>
 </ScrollView>

 67

You basically add a layout or visual elements inside the ScrollView and, at runtime, the

content will be scrollable if its area is bigger than the screen size. You can also decide whether
to display the scroll bars through the HorizontalScrollbarVisibility and

VerticalScrollbarVisibility properties that can be assigned with self-explanatory values

such as Always, Never, and Default. Additionally, you can specify the Orientation property

(with values Horizontal or Vertical) to set the ScrollView to scroll only horizontally or only

vertically. The reason the layout has a name in the sample usage is that you can interact with
the ScrollView programmatically, invoking its ScrollToAsync method to move its position

based on two different options.

Consider the following lines:

Scroll1.ScrollToAsync(0, 100, true);
Scroll1.ScrollToAsync(Label1, ScrollToPosition.Start, true);

In the first case, the content at 100px from the top is visible. In the second case, the
ScrollView moves the specified control at the top of the view and sets the current position at

the control’s position. Possible values for the ScrollToPosition enumeration are:

• Center: Scrolls the element to the center of the visible portion of the view.
• End: Scrolls the element to the end of the visible portion of the view.
• MakeVisible: Makes the element visible within the view.
• Start: Scrolls the element to the start of the visible portion of the view.

Note that you should never nest ScrollView layouts, and you should never include the

ListView and WebView controls inside a ScrollView because they both already implement

scrolling.

The Frame

The Frame is a very special layout in Xamarin.Forms because it provides an option to draw a

colored border around the visual element it contains, and optionally add extra space between
the Frame’s bounds and the visual element. Code Listing 10 provides an example.

Code Listing 10

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 x:Class="App1.MainPage">

 <Frame OutlineColor="Red" CornerRadius="3" HasShadow="True"
Margin="20">
 <Label Text="Label in a frame"
 HorizontalOptions="Center"
 VerticalOptions="Center"/>
 </Frame>

 68

</ContentPage>

The OutlineColor property is assigned with the color for the border, the CornerRadius

property is assigned with a value that allows you to draw circular corners, and the HasShadow

property allows you to display a shadow. Figure 30 provides an example based on the UWP
version of the project. Notice that Frame objects are rendered on iOS and UWP, but not on

Android.

Figure 30: Drawing a Frame

The Frame will be resized proportionally based on the parent container’s size.

The ContentView

The special container ContentView allows for aggregating multiple views into a single view and

is useful to create reusable, custom controls. Because the ContentView represents a stand-

alone visual element, Visual Studio makes it easier to create an instance of this container with a
specific item template. In Solution Explorer, you can right-click the .NET Standard project name
and then select Add New Item. In the Add New Item dialog box, select the Xamarin.Forms
node, then the Content View item, as shown in Figure 31. Make sure you do not select the item
called Content View (C#); otherwise, you will get a new class file that you will need to populate
in C# code rather than XAML.

 69

Figure 31: Adding a ContentView

When the new file is added to the project, the XAML editor shows basic content made of the
ContentView root element and a Label. You can add multiple visual elements, as shown in

Code Listing 11, and then you can use the ContentView as you would with an individual control

or layout.

Code Listing 11

<?xml version="1.0" encoding="UTF-8"?>
<ContentView xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="App1.View1">
 <ContentView.Content>
 <StackLayout>
 <Label Text="Enter your email address:" />
 <Entry x:Name="EmailEntry" />
 </StackLayout>
 </ContentView.Content>
</ContentView>

 70

It is worth mentioning that visual elements inside a ContentView can raise and manage events

and support data binding, which makes the ContentView very versatile and perfect for building

reusable views.

Styling the user interface with CSS

Xamarin.Forms allows you to style the user interface with Cascading Style Sheets (CSS). If you
have experience with creating content with HTML, you might find this feature very interesting.

 Note: CSS styles must be compliant with Xamarin.Forms in order to be consumed
in mobile apps, since it does not support all CSS elements. For this reason, this
feature should be considered as a complement to XAML, not a replacement. Before
you decide to make serious styling with CSS in your mobile apps, make sure you read
the documentation for further information about what is available and supported.

There are three options to consume CSS styles in a Xamarin.Forms project, two in XAML and
one in C# code.

Defining CSS styles as a XAML resource

 Note: Examples in this section are based on the ContentPage object since you
have not read about other pages yet, but the concepts apply to all pages deriving
from Page. Chapter 6 will describe in detail all the available pages in Xamarin.Forms.

The first way you can use CSS styles in Xamarin.Forms is by defining a StyleSheet object

within the resources of a page, like in the following code snippet:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Layouts.CSSsample">
 <ContentPage.Resources>
 <ResourceDictionary>
 <StyleSheet>
 <![CDATA[
^contentpage {
background-color: lightgray; }
stacklayout {
margin: 20; }
]]>
 </StyleSheet>
 </ResourceDictionary>

</ContentPage.Resources>
</ContentPage>

In this scenario, the CSS content is enclosed within a CDATA section.

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/styles/css/

 71

 Note: Names of visual elements inside a CSS style must be lowercase.

For each visual element, you supply property values in the form of key/value pairs. The syntax
requires the visual element name and, enclosed within brackets, the property name followed by
a colon, and the value followed by a semicolon, such as stacklayout { margin: 20; }.

Notice how the root element, contentpage in this case, must be preceded by the ^ symbol. You

do not need to do anything else, as the style will be applied to all the visual elements specified
in the CSS.

Consuming CSS files in XAML

The second available option to consume a CSS style in XAML is from an existing .css file. First,
you need to add your .css file to the Xamarin.Forms project (either .NET Standard or shared
project) and set its BuildAction property as EmbeddedResource. The next step is to add a

StyleSheet object to a ContentPage’s resources and assign its Source property with the .css

file name, as follows:

 <ContentPage.Resources>
 <ResourceDictionary>
 <StyleSheet Source="/mystyle.css"/>
 </ResourceDictionary>
 </ContentPage.Resources>

Obviously you can organize your .css files into subfolders; for example, the value for the Source

property could be /Assets/mystyle.css.

Consuming CSS styles in C# code

The last option you have to consume CSS styles in Xamarin.Forms is using C# code. You can
create a CSS style from a string (through a StringReader object) or you can load an existing

style from a .css file, but in both cases, the key point is that you still need to add the style to a
page’s resources. The following code snippet demonstrates the first scenario, where a CSS
style is created from a string and added to the page’s resources:

using (var reader =
 new StringReader
 ("^contentpage { background-color: lightgray; }
 stacklayout { margin: 20; }"))
{
 // "this" represents a page
 // StyleSheet requires a using Xamarin.Forms.StyleSheets directive
 this.Resources.Add(StyleSheet.FromReader(reader));
}

For the second scenario, loading the content of a CSS style from an existing file, an example is
provided by the following code snippet:

 72

var styleSheet = StyleSheet.FromAssemblyResource(IntrospectionExtensions.
 GetTypeInfo(typeof(Page1)).Assembly,
 "Project1.Assets.mystyle.css");
this.Resources.Add(styleSheet);

The second snippet is a bit more complex, since the file is loaded via reflection (and in fact it
requires a using System.Reflection directive in order to import the

IntrospectionExtensions object). Notice how you provide the file name including the project

name (Project1) and the subfolder (if any) name that contains the .css file.

Chapter summary

Mobile apps require dynamic user interfaces that can automatically adapt to the screen size of
different device form factors. In Xamarin.Forms, creating dynamic user interfaces is possible
through a number of so-called layouts.

The StackLayout allows you to arrange controls near one another both horizontally and

vertically. The FlexLayout does the same, but it is also capable of wrapping visual elements.

The Grid allows you to arrange controls within rows and columns; the AbsoluteLayout allows

you to give controls an absolute position; the RelativeLayout allows you to arrange controls

based on the size and position of other controls or containers; the ScrollView layout allows

you to scroll the content of visual elements that do not fit in a single page; the Frame layout

allows you to draw a border around a visual element; and the ContentView allows you to create

reusable views.

In the last part of the chapter, you saw how you can style visual elements using CSS
stylesheets, in both XAML and imperative code, but these must be compliant to Xamarin.Forms
and should only be considered as a complement to XAML, and not a replacement.

Now that you have a basic knowledge of layouts, it’s time to discuss common controls in
Xamarin.Forms that allow you to build the functionalities of the user interface, arranged within
the layouts you learned in this chapter.

 73

Chapter 5 Xamarin.Forms Common
Controls

Xamarin.Forms ships with a rich set of common controls that you can use to build cross-
platform user interfaces easily and without the need for the complexity of platform-specific
features. As you can imagine, the benefit of these common controls is that they run on Android,
iOS, and Windows from the same codebase. In this chapter, you’ll learn about common
controls, their properties, and their events. Other controls will be introduced in Chapter 7,
especially controls whose purpose is displaying lists of data.

 Note: In order to follow the examples in this chapter, create a new Xamarin.Forms
solution based on the .NET Standard code-sharing strategy. The name is up to you.
Every time a new control is discussed, just clean the content of the root ContentPage
object in the XAML file and remove any C# code specific to a single control, or add a
new file of type ContentPage to the project.

Understanding the concept of view

In Xamarin.Forms, a view is the building block of any mobile application. Put succinctly, a view
is a control, and it represents what you would call a widget in Android, a view in iOS, and a
control in Windows. Views derive from the Xamarin.Forms.View class. Actually, from a

technical perspective, layouts are views themselves and derive from Layout, an intermediate

object in the hierarchy that derives from View and includes a Children property, allowing you to

add multiple visual elements to the layout itself.

The concept of view is also important from the terminology perspective. In fact, in
Xamarin.Forms and its documentation, you will more often find the word view than control. From
now on, I will be using both view and control interchangeably, but remember that documentation
and tutorials often refer to views.

Views’ common properties

Views share a number of properties that are important for you to know in advance. These are
summarized in Table 5.

Table 5: Views’ common properties

Property Description

HorizontalOptions Same as Table 3.

VerticalOptions Same as Table 3.

 74

Property Description

HeightRequest Of type double, gets or sets the height of

a view.

WidthRequest Of type double, gets or sets the width of a

view.

IsVisible Of type bool, determines whether a

control is visible on the user interface.

IsEnabled Of type bool, allows enabling or disabling

a control, keeping it visible on the UI.

GestureRecognizers A collection of GestureRecognizer

objects that enable touch gestures on
controls that do not directly support touch.
These will be discussed later in this
chapter.

 Tip: Controls also expose the Margin property described in Table 4.

If you wish to change the width or height of a view, remember that you need the WidthRequest

and HeightRequest properties, instead of Height and Width that are read-only and return the

current height and width.

Introducing common controls

This section provides a high-level overview of Xamarin.Forms’s common controls and their most
utilized properties. Remember to add the official documentation about the user interface to your
bookmarks for a more detailed reference.

User input with the Button

The Button control is certainly one of the most-used controls in every user interface. You

already saw a couple examples of the Button previously, but here is a quick summary. This

control exposes the properties summarized in Table 6, and you declare it like this:

<Button x:Name="Button1" Text="Tap here" TextColor="Orange" BorderColor="Red"
 BorderWidth="2" BorderRadius="2" Clicked="Button1_Clicked"/>

https://developer.xamarin.com/guides/xamarin-forms/user-interface/

 75

Table 6: Button properties

Property Description

Text The text in the button.

TextColor The color of the text in the button.

BorderColor Draws a colored border around the button.

BorderWidth The width of the border around the button.

BorderRadius The radius of the edges around the button.

Image An optional image to be set near the text.

Notice how you can specify a name with x:Name so that you can interact with the button in C#,

which is the case when you set the Clicked event with a handler. This control also exposes a

Font property whose behavior is discussed in the next section about text.

Working with text: Label, Entry, and Editor

Displaying text and requesting input from the user in the form of text is extremely common in
every mobile app. Xamarin.Forms offers the Label control to display read-only text, and the

Entry and Editor controls to receive text. The Label control has some useful properties, as

shown in the following XAML:

<Label Text="Displaying some text" LineBreakMode="WordWrap"
 TextColor="Blue" XAlign="Center" YAlign="Center"/>

LineBreakMode allows you to truncate or wrap a long string and can be assigned a value from

the LineBreakMode enumeration. For example, WordWrap splits a long string into multiple lines

proportionate to the available space. If not specified, NoWrap is the default. XAlign and YAlign

specify the horizontal and vertical alignment for the text. The Entry control instead allows you

to enter a single line of text, and you declare it as follows:

<Entry x:Name="Entry1" Placeholder="Enter some text..."
 TextColor="Green" Keyboard="Chat" Completed="Entry1_Completed"/>

The Placeholder property lets you display specific text in the entry until the user types

something. It is useful for explaining the purpose of the text box. When the user taps the Entry,

the on-screen keyboard is displayed. The appearance of the keyboard can be controlled via the
Keyboard property, which allows you to display the most appropriate keys, depending on the

Entry’s purpose. Supported values are Chat, Email, Numeric, Telephone, and Number. If

Keyboard is not assigned, Default is assumed. Additionally, Entry exposes the MaxLength

property that allows you to set the max length of the text the user can enter. This control also
exposes two events: Completed, which is fired when the users finalize the text by tapping the

Return key, and TextChanged, which is fired at every keystroke.

https://developer.xamarin.com/guides/xamarin-forms/user-interface/text/label/#Truncation_and_Wrapping

 76

You provide event handlers the usual way, as follows:

private void Entry1_Completed(object sender, EventArgs e)
{
 // Entry1.Text contains the full text
}

Entry also provides the IsPassword property to mask the Entry’s content, which you use

when the user must enter a password. Another very useful property is ReturnType, whose

value is of type ReturnType, which allows you to specify the text to be displayed in the Enter

key of the keyboard. Possible values are Done, Go, Next, Search, Send, and Default (which

sets the default text for each platform). The combination of the Label and Entry controls is

visible in Figure 32.

Figure 32: Label and Entry controls

The Editor control is very similar to Entry in terms of behavior, events, and properties, but it

allows for entering multiple lines of text. For example, if you place the editor inside a layout, you
can set its HorizontalOptions and VerticalOptions properties with Fill so that it will take

all the available space in the parent. Both the Entry and Editor views expose the

IsSpellChedkedEnabled property that, as the name implies, enables spell check over the

entered text.

Formatted strings and bindable spans

The Label control exposes the FormattedText property, which can be used to implement more

sophisticated string formatting. This property is of type FormattedString, an object that is

populated with a collection of Span objects, each representing a part of the formatted string. The

following snippet provides an example:

 <Label
 HorizontalOptions="Center"

 77

 VerticalOptions="CenterAndExpand">
 <Label.FormattedText>
 <FormattedString>
 <FormattedString.Spans>
 <Span FontSize="Large" FontAttributes="Bold"
 ForegroundColor="Red"
 Text="Xamarin.Forms Succinctly" />
 <Span FontSize="Medium" FontAttributes="Italic"
 ForegroundColor="Black" Text="3rd edition" />
 <Span FontSize="Small" FontAttributes="Bold"
 ForegroundColor="Blue"
 Text="by Alessandro Del Sole" />
 </FormattedString.Spans>
 </FormattedString>
 </Label.FormattedText>
 </Label>

You can basically use Span objects to format specific paragraphs or sentences by setting most

of the properties already exposed by the Label control, such as Text, Font, FontFamily,

FontSize, FontAttributes, ForegroundColor, and BackgroundColor.

 Note: Xamarin.Forms 3.1 also introduces the so-called bindable spans, which will
be explained in Chapter 7 after you get a basic knowledge of data binding.

Managing fonts

Controls that display some text (including the Button) or that wait for user input through the

keyboard also expose some properties related to fonts, such as FontFamily, FontAttributes,

and FontSize. FontFamily specifies the name of the font you want to use. FontAttributes

displays text as Italic or Bold and, if not specified, None is assumed. With FontSize, you can

specify the font size with either a numeric value or with a so-called named size, based on the
Micro, Small, Medium, and Large values from the NamedSize enumeration. With this

enumeration, Xamarin.Forms chooses the appropriate size for the current platform. For
instance, the following two options are allowed to set the font size:

<Label Text="Some text" FontSize="72"/>
<Label Text="Some text" FontSize="Large"/>

Unless you are writing an app for a single platform, I recommend you avoid using numeric
values—use the named size instead.

Working with dates and time: DatePicker and TimePicker

Another common requirement in mobile apps is working with dates and time: Xamarin.Forms
provides the DatePicker and TimePicker views for that. On each platform, these are rendered

with the corresponding date and time selectors. DatePicker exposes the Date, MinimumDate,

and MaximumDate properties that represent the selected/current date, the minimum date, and

 78

the maximum date, respectively, all of type DateTime. It exposes an event called

DateSelected, which is raised when the user selects a date. You can handle this to retrieve the

value of the Date property. The view can be declared as follows:

<DatePicker x:Name="DatePicker1" MinimumDate="07/17/2017"
 MaximumDate="12/31/2017"
 DateSelected="DatePicker1_DateSelected"/>

And then in the code-behind, you can retrieve the selected date like this:

private void DatePicker1_DateSelected(object sender, DateChangedEventArgs e)
{
 DateTime selectedDate = e.NewDate;
}

The DateChangedEventArgs object stores the selected date in the NewDate property and the

previous date in the OldDate property. Figure 33 shows the DatePicker on the three platforms.

Figure 33: The DatePicker in action

The TimePicker exposes a property called Time, of type TimeSpan, but it does not expose a

specific event for time selection, so you need to use the PropertyChanged event. In terms of

XAML, you declare a TimePicker like this:

<TimePicker x:Name="TimePicker1"
 PropertyChanged="TimePicker1_PropertyChanged"/>

Then, in the code-behind, you need to detect changes on the Time property as follows:

private void TimePicker1_PropertyChanged(object sender,
 System.ComponentModel.PropertyChangedEventArgs e)
{
 if(e.PropertyName == TimePicker.TimeProperty.PropertyName)

 79

 {
 TimeSpan selectedTime = TimePicker1.Time;
 }
}

TimeProperty is a dependency property, a concept that will be discussed in Chapter 7. Figure

34 shows the TimePicker in action.

Figure 34: The TimePicker in action

 Tip: You can also assign a date or time to pickers in the C# code-behind, for
example, in the constructor of the page that declares them.

Displaying HTML contents with WebView

The WebView control allows for displaying HTML contents, including webpages and static HTML

markup. This control exposes the Navigating and Navigated events that are raised when

navigation starts and completes, respectively. The real power is in its Source property, of type

WebViewSource, which can be assigned with a variety of content, such as URIs or strings

containing HTML markup. For example, the following XAML opens the specified website:

<WebView x:Name="WebView1" Source="https://www.xamarin.com"/>

The following example shows instead how you can assign the Source property with a string:

WebView1.Source = "<div><h1>Header</h1></div>";

 80

For dynamic sizing, a better option is enclosing the WebView inside a Grid layout. If you instead

use the StackLayout, you need to supply height and width explicitly. When you browse

contents on the internet, you need to enable the internet permission in the Android manifest and
the internet (client) permission in the UWP manifest. Figure 35 shows how the WebView

appears.

Figure 35: Displaying HTML contents with WebView

If the webpage you display allows you to browse other pages, you can leverage the built-in
GoBack and GoForward methods, together with the CanGoBack and CanGoForward Boolean

properties to programmatically control navigation between webpages.

 Tip: If you need to implement navigation to URLs, it might be worth considering
the so-called deep linking feature, available since Xamarin.Forms 2.3.1.

App Transport Security in iOS

Starting with iOS 9, Apple introduced some restrictions in accessing networked resources,
including websites, enabling navigation only through the HTTPS protocol by default. This
feature is known as App Transport Security (ATS). ATS can be controlled in the iOS project
properties, and it allows for introducing some exceptions, because you might need to browse
HTTP contents despite the restrictions. More details about ATS and exceptions are available in
the documentation; however, remember that if the WebView shows no content on iOS, the

reason might be ATS.

Implementing value selection: Switch, Slider, Stepper

Xamarin.Forms offers a number of controls for user input based on selecting values. The first of
them is the Switch, which provides a toggled value and is useful for selecting values such as

true or false, on or off, and enabled or disabled. It exposes the IsToggled property, which turns

the switch on when true, and the Toggled event, which is raised when the user changes the

switch position. This control has no built-in label, so you need to use it in conjunction with a
Label as follows:

<StackLayout Orientation="Horizontal">
 <Label Text="Enable data plan"/>

https://blog.xamarin.com/deep-link-content-with-xamarin-forms-url-navigation/
https://developer.xamarin.com/guides/ios/application_fundamentals/ats/

 81

 <Switch x:Name="Switch1" IsToggled="True" Toggled="Switch1_Toggled"
 Margin="5,0,0,0"/>
</StackLayout>

The Toggled event stores the new value in the ToggledEventArgs object that you use as

follows:

private void Switch1_Toggled(object sender, ToggledEventArgs e)
{
 bool isToggled = e.Value;
}

You can also change the color for the selector when it’s turned on, assigning the OnColor

property with the color of your choice. Before Xamarin.Forms 3.1, you had to create a custom
renderer to achieve this, so it is a very useful addition. The Slider allows the input of a linear

value. It exposes the Value, Minimum, and Maximum properties, all of type double, which

represent the current value, minimum value, and maximum value. Like the Switch, it does not

have a built-in label, so you can use it together with a Label as follows:

<StackLayout Orientation="Horizontal">
 <Label Text="Select your age: "/>
 <Slider x:Name="Slider1" Maximum="85" Minimum="13" Value="30"
 ValueChanged="Slider1_ValueChanged"/>
</StackLayout>

 Tip: Surprisingly, if you write the Minimum before the Maximum, a runtime error will
occur. So, for both the Slider and the Stepper, the order matters.

The ValueChanged event is raised when the user moves the selector on the Slider, and the

new value is sent to the NewValue property of the ValueChangedEventArgs object you get in

the event handler. The last control is the Stepper, which allows the supplying of discrete values

with a specified increment. It also allows the specifying of minimum and maximum values. You
use the Value, Increment, Minimum, and Maximum properties of type double as follows:

<StackLayout Orientation="Horizontal">
 <Label Text="Select your age: "/>
 <Stepper x:Name="Stepper1" Increment="1" Maximum="85" Minimum="13"
 Value="30" ValueChanged="Stepper1_ValueChanged"/>
 <Label x:Name="StepperValue"/>
</StackLayout>

Notice that both the Stepper and Slider only provide a way to increment and decrement a

value, so it is your responsibility to display the current value, for example, with a Label that you

can handle through the ValueChanged event. The following code demonstrates how to

accomplish this with the Stepper:

 82

private void Stepper1_ValueChanged(object sender, ValueChangedEventArgs e)
{
 StepperValue.Text = e.NewValue.ToString();
}

Figure 36 shows a summary of all the aforementioned views.

Figure 36: A summary view of the Switch, Slider, and Stepper controls

Introducing the SearchBar

One of the nicest views in Xamarin.Forms, the SearchBar shows a native search box with a

search icon that users can tap. This view exposes the SearchButtonPressed event. You can

handle this event to retrieve the text the user typed in the box and then perform your search
logic; for example, by executing a LINQ query against an in-memory collection or filtering data
from the table of a local database. It also exposes the TextChanged event, which is raised at

every keystroke, and the Placeholder property, which allows you to specify a placeholder text

like the same-named property of the Entry control. You declare it as follows:

<SearchBar x:Name="SearchBar1" Placeholder="Enter your search key..."
 SearchButtonPressed="SearchBar1_SearchButtonPressed"/>

 83

Figure 37 shows an example.

Figure 37: The SearchBar view

In Chapter 7, you will learn how to display lists of items through the ListView control. The

SearchBar can be a good companion in that you can use it to filter a list of items based on the

search key the user entered.

Long-running operations: ActivityIndicator and ProgressBar

In some situations, your app might need to perform potentially long-running operations, such as
downloading content from the internet or loading data from a local database. In such situations,
it is a best practice to inform the user that an operation is in progress. This can be accomplished
with two views, the ActivityIndicator or the ProgressBar. The latter exposes a property

called Progress, of type double. This control is not used very often, because it implies you are

able to calculate the amount of time or data needed to complete an operation.

 Tip: If you still want to use a ProgressBar, it is worth mentioning that
Xamarin.Forms 3.0 introduces the ProgressColor property, of type Color, which
allows you to change the color of the progress indicator.

The ActivityIndicator instead shows a simple, animated indicator that is displayed while an

operation is running, without the need to calculate its progress. It is enabled by setting its
IsRunning property to true; you might also want to make it visible only when running, done by

assigning IsVisible with true. You typically declare it in XAML as follows:

<ActivityIndicator x:Name="ActivityIndicator1" />

 84

Then, in the code-behind, you can control it as follows:

// Starting the operation...
ActivityIndicator1.IsVisible = true;
ActivityIndicator1.IsRunning = true;

// Executing the operation...

// Operation completed
ActivityIndicator1.IsRunning = false;
ActivityIndicator1.IsVisible = false;

As a personal suggestion, I recommend you always set both IsVisible and IsRunning. This

will help you keep consistent behavior across platforms. Figure 38 shows an example based on
Android.

Figure 38: The ActivityIndicator shows that an operation is in progress

 85

 Tip: Page objects, such as the ContentPage, expose a property called IsBusy that
enables an activity indicator when assigned with true. Depending on your scenario,
you might also consider this option.

Working with images

Using images is crucial in mobile apps since they both enrich the look and feel of the user
interface and enable apps to support multimedia content. Xamarin.Forms provides an Image

control you can use to display images from the internet, local files, and embedded resources.
Displaying images is really simple, while understanding how you load and size images is more
complex, especially if you have no previous experience with XAML and dynamic user interfaces.
You declare an Image as follows:

<Image Source="https://www.xamarin.com/content/images/pages/branding/assets/x
amarin-logo.png" Aspect="AspectFit"/>

As you can see, you assign the Source property with the image path, which can be a URL or

the name of a local file or resource. Source can be assigned either in XAML or in code-behind.

You will assign this property in C# code when you need to assign the property at runtime. This
property is of type ImageSource and, while XAML has a type converter for it, in C# you need to

use specific methods depending on the image source: FromFile requires a file path that can be

resolved on each platform, FromUri requires a System.Uri object, and FromResource allows

you to specify an image in the embedded app resources.

 Note: Each platform has its own way of working with local images and embedded
resources, which requires further explanation. Because this goes beyond the scope
of this ebook, I strongly recommend you read the official documentation, which also
explains how to manage images for different purposes on iOS, Android, and
Windows.

The Aspect property determines how to size and stretch an image within the bounds it is being

displayed in. It requires a value from the Aspect enumeration:

• Fill: Stretches the image to fill the display area completely and exactly. This may result
in the image being distorted.

• AspectFill: Clips the image so that it fills the display area while preserving the aspect.
• AspectFit: Letterboxes the image (if required) so that the entire image fits into the

display area, with blank space added to the top, bottom, or sides, depending on whether
the image is wide or tall.

You can also set the WidthRequest and HeightRequest properties to adjust the size of the

Image control. Figure 39 shows an example.

https://developer.xamarin.com/guides/xamarin-forms/user-interface/images/

 86

Figure 39: Displaying images with the Image view

Supported image formats are .jpg, .png, .gif, .bmp, and .tif. Working with images also involves
icons and splash screens, which are totally platform-dependent, and therefore require you to
read the official documentation. Also, for enhanced 2D graphics, you might want to consider
taking a look at the SkiaSharp library, a portable library that works great with Xamarin.Forms
and is powered by Google’s Skia library.

Introducing gesture recognizers

Views such as Image and Label do not include support for touch gestures natively, but

sometimes you might want to allow users to tap a picture or text to perform an action such as
navigating to a page or website. The Xamarin.Forms.Gestures namespace has classes that

allow you to leverage gesture recognizers to add touch support to views that do not include it
out of the box. Views expose a collection called GestureRecognizers, of type

IList<GestureRecognizer>. Supported gesture recognizers are:

• TapGestureRecognizer: Allows recognition of taps.
• PinchGestureRecognizers: Allows recognition of the pinch-to-zoom gesture.
• PanGestureRecognizers: Enables the dragging of objects with the pan gesture.

For example, the following XAML demonstrates how to add a TapGestureRecognizer to an

Image control:

<Image Source="https://www.xamarin.com/content/images/pages/branding/assets/x
amarin-logo.png" Aspect="AspectFit">

https://developer.xamarin.com/guides/xamarin-forms/user-interface/images/
https://developer.xamarin.com/guides/cross-platform/drawing/
https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/gestures/

 87

 <Image.GestureRecognizers>
 <TapGestureRecognizer x:Name="ImageTap"
 NumberOfTapsRequired="1" Tapped="ImageTap_Tapped"/>
 </Image.GestureRecognizers>
</Image>

You can assign the NumberOfTapsRequired property (self-explanatory) and the Tapped event

with a handler that will be invoked when the user taps the image. It will look like this:

private void ImageTap_Tapped(object sender, EventArgs e)
{
 // Do your stuff here...
}

Gesture recognizers give you great flexibility and allow you to improve the user experience in
your mobile apps by adding touch support where required.

Displaying alerts

All platforms can show pop-up alerts with informative messages or receive user input with
common choices such as OK or Cancel. Pages in Xamarin.Forms provide an asynchronous
method called DisplayAlert, which is very easy to use. For example, suppose you want to

display a message when the user taps a button. The following code demonstrates how to
accomplish this:

private async void Button1_Clicked(object sender, EventArgs e)
{
 await DisplayAlert("Title", "This is an informational pop-up", "OK");
}

As an asynchronous method, you call DisplayAlert with the await operator, marking the

containing method as async. The first argument is the pop-up title, the second argument is the

text message, and the third argument is the text you want to display in the only button that
appears. Actually, DisplayAlert has an overload that can wait for the user input and return

true or false depending on whether the user selected the OK option or the Cancel option:

bool result =
 await DisplayAlert("Title", "Do you wish to continue?", "OK", "Cancel");

You are free to write whatever text you like for the OK and Cancel options, and IntelliSense
helps you understand the order of these options in the parameter list. If the user selects OK,
DisplayAlert returns true. Figure 40 shows an example of the alert.

 88

Figure 40: Displaying alerts

Introducing the Visual State Manager

 Note: The Visual State Manager was introduced with Xamarin.Forms 3.0, but
already existed in WPF and UWP, so you might already be familiar with it if you
worked with those technologies.

With the Visual State Manager, you can make changes to the user interface based on a view’s
state, such as Normal, Focused, and Disabled, all with declarative code. For example, you can

use the Visual State Manager to change the color of a view depending on its state. The
following code snippet demonstrates how you can change the background color of an Entry

view based on its state:

 <Entry>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="White" />
 </VisualState.Setters>
 </VisualState>

 <VisualState x:Name="Focused">
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="LightGray" />

 89

 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Disabled">
 <VisualState.Setters>
 <Setter Property="BackgroundColor" Value="Gray" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Entry>

With this markup code, the Entry will automatically change its background color when its state

changes. In this case, you will need to set the Entry’s IsEnabled property as False in order to

disable the view and trigger the Disabled state. States must be grouped into objects called

VisualStateGroup. Each state is represented by the VisualState object, where you add

Setter specifications as you would do with styles, therefore providing the name of the property

you want to change, and its value. Of course, you can specify multiple property setters.
Xamarin.Forms defines a set of states called common states, such as Normal, Focused, and

Disabled (see the VisualStateGroup with the CommonState name in the preceeding code);

these states are common to each view. Other states might be available only to specific views,
and not to other views. The Visual State Manager provides an elegant and clean way to control
the user interface behavior, all in your XAML code.

Chapter summary

This chapter introduced the concepts of view and common views in Xamarin.Forms, the building
blocks for any user interface in your mobile apps. You have seen how to obtain user input with
the Button, Entry, Editor, and SearchBar controls; you have seen how to display information

with the Label and how to use it in conjunction with other input views such as Slider, Stepper,

and Switch. You have seen how the DatePicker and TimePicker views allow you to work with

dates and time. You have seen how to display images with the Image view; you have used the

WebView to show HTML content; and you have seen how to inform the user of the progress of

long-running operations with ActivityIndicator and ProgressBar. You have seen how to

add gesture support to views that do not include it out of the box, and how to display alerts for
informational purposes, and how to allow user choices. Finally, you have seen how the Visual
State Manager allows changing the user interface behavior based on a view’s state, all with
declarative code.

Now you have all you need to build high-quality user interfaces with layouts and views, and you
have seen how to use all these building blocks in a single page. However, most mobile apps are
made of multiple pages. The next chapter explains all the available page types in
Xamarin.Forms and the navigation infrastructure.

 90

Chapter 6 Pages and Navigation

In the previous chapters, we went over the basics of layouts and views, which are the
fundamental building blocks of the user interface in mobile applications. However, I
demonstrated how to use layouts and views within a single page, while real-world mobile apps
are made of multiple pages. Android, iOS, and Windows provide a number of different pages
that allow you to display content in several ways and to provide the best user experience
possible based on the content you need to present. Xamarin.Forms provides unified page
models you can use from your single, shared C# codebase that work cross-platform. It also
provides an easy-to-use navigation framework, which is the infrastructure you use to move
between pages. Pages and navigation are the last pieces of the user interface framework you
need to know to build beautiful, native apps with Xamarin.Forms.

 Note: In order to follow the examples in this chapter, create a new Xamarin.Forms
solution based on the .NET Standard code-sharing strategy. The name is up to you.
Every time a new page is discussed, just clean the content of the MainPage.xaml and
MainPage.xaml.cs files (except for the constructor) and write the new code.

Introducing and creating pages

Xamarin.Forms provides many page objects that you can use to set up the user interfaces of
your applications. Pages are root elements in the visual hierarchy, and each page allows you to
add only one visual element, typically a root layout with other layouts and visual elements
nested inside the root. From a technical point of view, all the page objects in Xamarin.Forms
derive from the abstract Page class, which provides the basic infrastructure of each page,

including common properties such as Content. This is definitely the most important property

that you assign with the root visual element. Table 7 describes available pages in
Xamarin.Forms.

Table 7: Pages in Xamarin.Forms

Page Type Description

ContentPage Displays a single view object.

TabbedPage Facilitates navigating among child pages
using tabs.

CarouselPage Facilitates using the swipe gesture among
child pages.

MasterDetailPage Manages two separate panes, which
includes a flyout control.

NavigationPage Provides the infrastructure for navigating
among pages.

 91

The next sections describe the available pages in more detail. Remember that Visual Studio
provides item templates for different page types, so you can right-click the .NET Standard
project in Solution Explorer, select Add New Item, and in the Add New Item dialog box, you will
see templates for each page described in Table 7.

Single views with the ContentPage

The ContentPage object is the simplest page possible and allows for displaying a single visual

element. You already looked at some examples of the ContentPage previously, but it is worth

mentioning its Title property. This property is particularly useful when the ContentPage is

used in pages with built-in navigation, such as TabbedPage and CarouselPage, because it

helps identify the active page. The core of the ContentPage is the Content property, which you

assign with the visual element you want to display. The visual element can be either a single
control or a layout; the latter allows you to create complex visual hierarchies and real-world user
interfaces. In XAML, the tag for the Content property can be omitted, which is also common

practice (also notice Title):

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 Title="Main page"
 x:Class="App1.MainPage">

 <Label Text="A content page"/>

</ContentPage>

The ContentPage can be used individually or as the content of other pages discussed in the

next sections.

Splitting contents with the MasterDetailPage

The MasterDetailPage is a very important page, since it allows you to split contents into two

separate categories: generic and detailed. The user interface provided by the
MasterDetailPage is very common in Android and iOS apps. It offers a flyout on the left (the

master part) that you can swipe to show and hide it, and a second area on the right that displays
more detailed content (the detail part). For example, a very common scenario for this kind of
page is displaying a list of topics or settings in the master and the content for the selected topic
or setting in the detail. Both the master and the detail parts are represented by ContentPage

objects. A typical declaration for a MasterDetailPage looks like Code Listing 12.

Code Listing 12

<?xml version="1.0" encoding="utf-8" ?>
<MasterDetailPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 92

 xmlns:local="clr-namespace:App1"
 Title="Main page"
 x:Class="App1.MainPage">

 <MasterDetailPage.Master>
 <ContentPage>
 <Label Text="This is the Master" HorizontalOptions="Center"
 VerticalOptions="Center"/>
 </ContentPage>
 </MasterDetailPage.Master>
 <MasterDetailPage.Detail>
 <ContentPage>
 <Label Text="This is the Details" HorizontalOptions="Center"
 VerticalOptions="Center"/>
 </ContentPage>
 </MasterDetailPage.Detail>
</MasterDetailPage>

As you can see, you populate the Master and Detail properties with the appropriate

ContentPage objects. In real-world apps, you might have a list of topics in the Master, and then

you might show details for a topic in the Detail when the user taps one in the Master’s

content.

 Note: Every time you change the root page from ContentPage to another kind of
page, such as MasterDetailPage, you also need to change the inheritance in the
code-behind. For example, if you open the C# MainPage.xaml.cs file, you will see that
MainPage inherits from ContentPage, but in XAML you replaced this object with
MasterDetailPage. So, you also need to make MainPage inherit from
MasterDetailPage. If you forget this, the compiler will report an error. This note is
valid for the pages discussed in the next sections as well.

Figures 41 and 42 show the master and detail parts, respectively. You can simply swipe from
the left to enable the master flyout, and then swipe back to hide it. You can also control the
flyout programmatically by assigning the IsPresented property with true (visible) or false

(hidden). This is useful when the app is in landscape mode, because the flyout is automatically
opened by default.

 93

Figure 41: MasterDetailPage: The flyout

of the master

Figure 42: MasterDetailPage: The detail

Displaying content within tabs with the TabbedPage

Sometimes you might need to categorize multiple pages by topic, or by activity type. When you
have a small amount of content, you can take advantage of the TabbedPage, which can group

multiple ContentPage objects into tabs for easy navigation. The TabbedPage can be declared

as shown in Code Listing 13.

Code Listing 13

<?xml version="1.0" encoding="utf-8" ?>
<TabbedPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 Title="Main page"
 x:Class="App1.MainPage">

 <TabbedPage.Children>
 <ContentPage Title="First">
 <Label Text="This is the first page" HorizontalOptions="Center"
 VerticalOptions="Center"/>

 94

 </ContentPage>
 <ContentPage Title="Second">
 <Label Text="This is the second page" HorizontalOptions="Center"
 VerticalOptions="Center"/>
 </ContentPage>
 <ContentPage Title="Third">
 <Label Text="This is the third page" HorizontalOptions="Center"
 VerticalOptions="Center"/>
 </ContentPage>
 </TabbedPage.Children>
</TabbedPage>

As you can see, you populate the Children collection with multiple ContentPage objects.

Providing a Title to each ContentPage is of primary importance, since the title’s text is

displayed in each tab, as demonstrated in Figure 43.

Figure 43: Displaying grouped contents with the TabbedPage

Of course, the TabbedPage works well with a small number of child pages, typically between

three and four pages.

Swiping pages with the CarouselPage

The CarouselPage is similar to the TabbedPage, but instead of having tabs, you can use the

swipe gesture to switch among child pages. For example, the CarouselPage could be perfect to

display a gallery of pictures. Code Listing 14 shows how to declare a CarouselPage.

 95

Code Listing 14

<?xml version="1.0" encoding="utf-8" ?>
<CarouselPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 Title="Main page"
 x:Class="App1.MainPage">

 <CarouselPage.Children>
 <ContentPage Title="First">
 <Label Text="This is the first page" HorizontalOptions="Center"
 VerticalOptions="Center"/>
 </ContentPage>
 <ContentPage Title="Second">
 <Label Text="This is the second page" HorizontalOptions="Center"
 VerticalOptions="Center"/>
 </ContentPage>
 <ContentPage Title="Third">
 <Label Text="This is the third page" HorizontalOptions="Center"
 VerticalOptions="Center"/>
 </ContentPage>
 </CarouselPage.Children>
</CarouselPage>

Figure 44 shows how the CarouselPage appears.

Figure 44: Swiping contents with the CarouselPage

 96

Navigating among pages

 Note: In the spirit of the Succinctly series, this section explains the most
important concepts and topics of page navigation. However, there are tips and
considerations that are specific to each platform that you have to know when dealing
with navigation in Xamarin.Forms. To learn more about them, see the official
documentation.

Most mobile apps offer their content through multiple pages. In Xamarin.Forms, navigating
among pages is very simple because of a built-in navigation framework. First of all, in
Xamarin.Forms you leverage navigation features through the NavigationPage object. This kind

of page must be instantiated, passing an instance of the first page in the stack of navigation to
its constructor. This is typically done in the App.xaml.cs file, where you replace the assignment
of the MainPage property with the following code:

public App()
{
 InitializeComponent();

 MainPage = new NavigationPage(new MainPage());
}

Wrapping a root page into a NavigationPage will not only enable the navigation stack, but will

also enable the navigation bar on Android, iOS, and Windows desktop (but not on Windows 10
Mobile, which relies on the hardware back button), whose text will be the value of the Title

property of the current page object, represented by the CurrentPage read-only property. Now

suppose you added another page of type ContentPage to the .NET Standard project, called

SecondaryPage.xaml. The content of this page is not important at this point; just set its Title

property with some text. If you want to navigate from the first page to the second page, use the
PushAsync method as follows:

await Navigation.PushAsync(new SecondaryPage());

The Navigation property, exposed by each Page object, represents the navigation stack at the

application level and provides methods for navigating between pages in a LIFO (last-in, first-out)
approach. PushAsync navigates to the specified page instance; PopAsync, invoked from the

current page, removes the current page from the stack and goes back to the previous page.
Similarly, PushModalAsync and PopModalAsync allow you to navigate between pages modally.

The following lines of code demonstrate this:

// removes SecondaryPage from the stack and goes back to the previous page
await Navigation.PopAsync();

// displays the specified page as a modal page
await Navigation.PushModalAsync(new SecondaryPage());
await Navigation.PopModalAsync();

Figure 45 shows how the navigation bar appears on Android and iOS when navigating to
another page.

https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/navigation/
https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/navigation/

 97

Figure 45: The navigation bar offered by the NavigationPage object

Users can simply tap the Back button on the navigation bar to go back to the previous page.
However, when you implement modal navigation, you cannot take advantage of the built-in
navigation mechanism offered by the navigation bar, so it is your responsibility to implement
code that allows going back to the previous page. Modal navigation can be useful if you must be
able to intercept a tap on the Back button on each platform. In fact, Android and Windows
devices have a built-in hardware Back button that you can manage with events, but iOS does
not. In iOS, you only have the Back button provided by the navigation bar, but this cannot be
accessed by any events. So, in this case, modal navigation can be a good option to intercept
user actions.

Passing objects between pages

The need to exchange data between pages is not uncommon. You can change or overload a
Page’s constructor and require a parameter of the desired type. Then, when you call PushAsync

and pass the instance of the new page, you will be able to supply the argument that is
necessary to the new page’s constructor.

Animating transitions between pages

By default, the navigation includes an animation that makes the transition from one page to
another nicer. However, you can disable animations by simply passing false as the argument

of PushAsync and PushModalAsync.

 98

Managing the page lifecycle

Every Page object exposes the OnAppearing and OnDisappearing events, raised right before

the page is rendered, and right before the page is removed from the stack, respectively. Their
code looks like the following:

protected override void OnAppearing()
{
 // Replace with your code…
 base.OnAppearing();
}

protected override void OnDisappearing()
{
 // Replace with your code…
 base.OnDisappearing();
}

Actually, these events are not strictly related to navigation, since they are available to any page,
including individual pages. However, it is with navigation that they become very important,
especially when you need to execute some code at specific moments in the page lifecycle. For
a better understanding of the flow, think of the page constructor: this is invoked the very first
time a page is created. Then, OnAppearing is raised right before the page is rendered on

screen. When the app navigates to another page, OnDisappearing is invoked, but this does not

destroy the current page instance (and this makes perfect sense). When the app navigates back
from the second page to the first page, this is not created again because it is still in the
navigation stack, so its constructor will not be invoked, while OnAppearing will. So, within the

OnAppearing method body, you can write code that will be executed every time the page is

shown, while in the constructor, you can write code that will be executed only once.

Handling the hardware Back button

Android devices and Windows phones have a built-in hardware Back button that users can use
instead of the Back button in the navigation bar. You can detect if the user presses the
hardware Back button by handling the OnBackButtonPressed event as follows:

protected override bool OnBackButtonPressed()
{
 return base.OnBackButtonPressed(); // replace with your logic here
}

Simply put your logic in the method body. The default behavior is to suspend the app, so you
might want to override this with PopAsync to return to the previous page. This event does not

intercept pressing the Back button in the navigation bar, which implies it has no effect on iOS
devices.

 99

Chapter summary

This chapter introduced the available pages in Xamarin.Forms, explaining how you can display
single-view content with the ContentPage object, group content into tabs with the TabbedPage,

swipe content with the CarouselPage, and group contents into two categories with the

MasterDetail page object.

In the second part of the chapter, you looked at how the NavigationPage object provides a

built-in navigation framework that not only displays a navigation bar, but also allows for
navigating between pages programmatically. Finally, you looked at how the page lifecycle
works, including the difference between page creation and page rendering. In the next chapter,
you will look at information about two important and powerful features in Xamarin.Forms:
resources and data binding.

 100

Chapter 7 Resources and Data Binding

XAML is a very powerful declarative language, and it shows all of its power with two particular
scenarios: working with resources and working with data binding. If you have existing
experience with platforms like WPF, Silverlight, and Universal Windows Platform, you will be
familiar with the concepts described in this chapter. If this is your first time, you will immediately
appreciate how XAML simplifies difficult things in both scenarios.

Working with resources

Generally speaking, in XAML-based platforms such as WPF, Silverlight, Universal Windows
Platform, and Xamarin.Forms, resources are reusable pieces of information that you can apply
to visual elements in the user interface. Typical XAML resources are styles, control templates,
object references, and data templates. Xamarin.Forms supports styles and data templates, so
these will be discussed in this chapter.

 Tip: Resources in XAML are very different from resources in platforms such as
Windows Forms, where you typically use .resx files to embed strings, images, icons,
or files. My suggestion is that you should not make any comparison between XAML
resources and other .NET resources.

Declaring resources

Every Page object and layout exposes a property called Resources, a collection of XAML

resources that you can populate with one or more objects of type ResourceDictionary. A

ResourceDictionary is a container of XAML resources such as styles, data templates, and

object references. For example, you can add a ResourceDictionary to a page as follows:

<ContentPage.Resources>
 <ResourceDictionary>
 <!-- Add resources here -->
 </ResourceDictionary>
</ContentPage.Resources>

Resources have scope. This implies that resources you add to the page level are available to
the whole page, whereas resources you add to the layout level are only available to the current
layout, like in the following snippet:

<StackLayout.Resources>
 <ResourceDictionary>
 <!-- Resources are available only to this layout, not outside -->
 </ResourceDictionary>
</StackLayout.Resources>

 101

Sometimes you might want to make resources available to the entire application. In this case,
you can take advantage of the App.xaml file. The default code for this file is shown in Code
Listing 15.

Code Listing 15

<?xml version="1.0" encoding="utf-8" ?>
<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="App1.App">
 <Application.Resources>

 <!-- Application resource dictionary -->
 <ResourceDictionary>

 </ResourceDictionary>
 </Application.Resources>
</Application>

As you can see, the autogenerated code of this file already contains an
Application.Resources node with a nested ResourceDictionary. Resources you put inside

this resource dictionary will be visible to any page, layout, and view in the application. Now that
you have knowledge of where resources are declared and their scope, it is time to see how
resources work, starting with styles. Other resources, such as data templates, will be discussed
later in this chapter.

Introducing styles

When designing your user interface, in some situations, you might have multiple views of the
same type and, for each of them, you might need to assign the same properties with the same
values. For example, you might have two buttons with the same width and height, or two or
more labels with the same width, height, and font settings. In such situations, instead of
assigning the same properties many times, you can take advantage of styles. A style allows you
to assign a set of properties to views of the same type. Styles must be defined inside a
ResourceDictionary and they must specify the type they are intended for and an identifier.

The following code demonstrates how to define a style for Label views:

<ResourceDictionary>
 <Style x:Key="labelStyle" TargetType="Label">
 <Setter Property="TextColor" Value="Green" />
 <Setter Property="FontSize" Value="Large" />
 </Style>
</ResourceDictionary>

You assign an identifier with the x:Key expression and the target type with TargetType,

passing the type name for the target view. Property values are assigned with Setter elements,

whose Property property represents the target property name, and whose Value represents

the property value. You then assign the style to Label views as follows:

 102

<Label Text="Enter some text:" Style="{StaticResource labelStyle}"/>

A style is therefore applied by assigning the Style property on a view with an expression that

encloses the StaticResource markup extension and the style identifier within curly braces.

You can then assign the Style property on each view of that type instead of manually assigning

the same properties every time. With styles, XAML supports both StaticResource and

DynamicResource markup extensions. In the first case, if a style changes, the target view will

not be updated with the refreshed style. In the second case, the view will be updated reflecting
changes in the style.

Style inheritance

Styles support inheritance; therefore, you can create a style that derives from another style. For
example, you can define a style that targets the abstract View type as follows:

<Style x:Key="viewStyle" TargetType="View">
 <Setter Property="HorizontalOptions" Value="Center" />
 <Setter Property="VerticalOptions" Value="Center" />
</Style>

This style can be applied to any view regardless of the concrete type. Then you can create a
more specialized style using the BasedOn property as follows:

<Style x:Key="labelStyle" TargetType="Label"
 BasedOn="{StaticResource viewStyle}">
 <Setter Property="TextColor" Value="Green" />
</Style>

The second style targets Label views, but also inherits property settings from the parent style.

Put succinctly, the labelStyle will assign the HorizontalOptions, VerticalOptions, and

TextColor properties on the targeted Label views.

Implicit styling

A view’s Style property allows the assigning of a style defined inside resources. This allows

you to selectively assign the style only to certain views of a given type. However, if you want the
same style to be applied to all of the views of the same type in the user interface, assigning the
Style property to each view manually might be tedious. In this case, you can take advantage of

the so-called implicit styling. This feature allows you to automatically assign a style to all the
views of the type specified with the TargetType property without the need to set the Style

property. To accomplish this, you simply avoid assigning an identifier with x:Key, like in the

following example:

<Style TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Center" />
 <Setter Property="VerticalOptions" Value="Center" />
 <Setter Property="TextColor" Value="Green" />
</Style>

 103

Styles with no identifier will automatically be applied to all the Label views in the user interface

(according to the scope of the containing resource dictionary) and you will not need to assign
the Style property on the Label definitions.

Working with data binding

Data binding is a built-in mechanism that allows visual elements to communicate with data so
that the user interface is automatically updated when data changes, and vice versa. Data
binding is available in all the most important development platforms, and Xamarin.Forms is no
exception. In fact, its data binding engine relies on the power of XAML, and the way it works is
similar in all the XAML-based platforms. Xamarin.Forms supports binding an object to visual
elements, a collection to visual elements, and visual elements to other visual elements. This
chapter describes the first two scenarios. Because data binding is a very complex topic, the best
way to start is with an example. Suppose you want to bind an instance of the following Person

class to the user interface, so that a communication flow is established between the object and
views:

public class Person
{
 public string FullName { get; set; }
 public DateTime DateOfBirth { get; set; }
 public string Address { get; set; }
}

In the user interface, you will want to allow the user to enter their full name, date of birth, and
address via an Entry, a DatePicker, and another Entry, respectively. In XAML, this can be

accomplished with the code shown in Code Listing 16.

Code Listing 16

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 Title="Main page"
 x:Class="App1.MainPage">

 <StackLayout Orientation="Vertical" Padding="20">
 <Label Text="Name:" />
 <Entry Text="{Binding FullName}"/>

 <Label Text="Date of birth:"/>
 <DatePicker Date="{Binding DateOfBirth, Mode=TwoWay}"/>

 <Label Text="Address:"/>
 <Entry Text="{Binding Address}"/>
 </StackLayout>
</ContentPage>

https://developer.xamarin.com/guides/xamarin-forms/xaml/xaml-basics/data_binding_basics/

 104

As you can see, the Text property for Entry views and the Date property of the DatePicker

have a markup expression as their value. Such an expression is made up of the Binding literal

followed by the property you want to bind from the data object. Actually, the expanded form of
this syntax could be {Binding Path=PropertyName}, but Path can be omitted. Data binding

can be of five types:

• TwoWay: Views can read and write data.
• OneWay: Views can only read data.
• OneWayToSource: Views can only write data.
• OneTime: Views can read data only once.
• Default: Xamarin.Forms resolves the appropriate mode automatically, based on the

view (see the explanation that follows).

TwoWay and OneWay are the most-used modes, and in most cases you do not need to specify

the mode explicitly because Xamarin.Forms automatically resolves the appropriate mode based
on the view. For example, binding in the Entry control is TwoWay because this kind of view can

be used to read and write data, whereas binding in the Label control is OneWay because this

view can only read data. However, with the DatePicker, you need to explicitly set the binding

mode, so you use the following syntax:

<DatePicker Date="{Binding DateOfBirth, Mode=TwoWay}"/>

Views’ properties that are bound to an object’s properties are known as bindable properties (or
dependency properties if you come from the WPF or UWP world).

 Tip: Bindable properties are very powerful, but a bit more complex in the
architecture. In this chapter, I’m going to explain how to use them, but for further
details about their implementation and how you can use them in your custom objects,
you can refer to the official documentation.

Bindable properties will automatically update the value of the bound object’s property and will
automatically refresh their value in the user interface if the object is updated. However, this
automatic refresh is possible only if the data-bound object implements the
INotifyPropertyChanged interface, which allows an object to send change notifications. As a

consequence, you must extend the Person class definition as shown in Code Listing 17.

Code Listing 17

using System;
using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace App1
{
 public class Person : INotifyPropertyChanged
 {
 private string fullName;
 public string FullName
 {

https://developer.xamarin.com/guides/xamarin-forms/xaml/bindable-properties/

 105

 get
 {
 return fullName;
 }
 set
 {
 fullName = value;
 OnPropertyChanged();
 }
 }

 private DateTime dateOfBirth;

 public DateTime DateOfBirth
 {
 get
 {
 return dateOfBirth;
 }
 set
 {
 dateOfBirth = value;
 OnPropertyChanged();
 }
 }
 private string address;
 public string Address
 {
 get
 {
 return address;
 }
 set
 {
 address = value;
 OnPropertyChanged();
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged([CallerMemberName] string propertyNa
me
 = null)
 {
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }

 106

}

By implementing INotifyPropertyChanged, property setters can raise a change notification

via the PropertyChanged event. Bound views will be notified of any changes and will refresh

their contents.

 Tip: With the CallerMemberName attribute, the compiler automatically resolves the
name of the caller member. This avoids the need to pass the property name in each
setter and helps keep code much cleaner.

The next step is binding an instance of the Person class to the user interface. This can be

accomplished with the following lines of code, normally placed inside the page’s constructor or
in its OnAppearing event handler:

Person person = new Person();
this.BindingContext = person;

Pages and layouts expose the BindingContext property, of type object, which represents the

data source for the page or layout and is the same as DataContext in WPF or UWP. Child

views that are data bound to an object’s properties will search for an instance of the object in
the BindingContext property value and bind to properties from this instance. In this case, the

Entry and the DatePicker will search for an object instance inside BindingContext, and they

will bind to properties from that instance. Remember that XAML is case-sensitive, so binding to
FullName is different from binding to Fullname. The runtime will throw an exception if you try to

bind to a property that does not exist or has a different name. If you now try to run the
application, not only will data binding work, but the user interface will also be automatically
updated if the data source changes. You may think of binding views to a single object instance,
like in the previous example, as binding to a row in a database table.

IntelliSense support for data binding and resources

IntelliSense provides full support for binding expressions with markup extensions. For instance,
suppose you have a Person class you want to use as the binding context for your UI, and it is

declared as a local resource. IntelliSense will help you create the binding expression by
showing the list of available resources. With a binding context declared in the resources,
IntelliSense can help with creating binding expressions by showing a list of properties exposed
by the bound object. Figure 46 shows an example where you can also see a property called
FullName, which is defined in the view model.

 107

Figure 46: IntelliSense support for data-binding expressions

This is a big productivity feature that simplifies the way you create binding expressions.

Bindable spans

Xamarin.Forms 3.1 introduced the so-called bindable spans. The Span class now inherits from

BindableObject, which means that all of its properties support data binding. The following

snippet provides an example:

 <Label
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand">
 <Label.FormattedText>
 <FormattedString>
 <FormattedString.Spans>
 <Span FontSize="{Binding TitleSize}"
 ForegroundColor="{Binding TitleColor}"
 Text="{Binding Title}" />
 <Span FontSize="{Binding SubTitleSize}"
 ForegroundColor="{Binding SubTitleColor}"
 Text="{Binding SubTitle}" />
 <Span FontSize="{Binding AuthorSize}"
 ForegroundColor="{Binding AuthorColor}"
 Text="{Binding AuthorName}" />
 </FormattedString.Spans>
 </FormattedString>
 </Label.FormattedText>
 </Label>

 108

With bindable spans you can create formatted strings dynamically, based on the data exposed
by your view models.

Working with collections and with the ListView

Though working with a single object instance is a common scenario, another very common
situation is working with collections that you display as lists in the user interface. Xamarin.Forms
supports data binding over collections via the ObservableCollection<T> object. This

collection works exactly like the List<T>, but it also raises a change notification when items are

added to or removed from the collection. Collections are very useful, for example, when you
want to represent rows in a database table. For example, suppose you have the following
collection of Person objects:

Person person1 = new Person { FullName = "Alessandro" };
Person person2 = new Person { FullName = "James" };
Person person3 = new Person { FullName = "Jacqueline" };
var people = new ObservableCollection<Person>() { person1, person2,
 person3 };

this.BindingContext = people;

The code assigns the collection to the BindingContext property of the root container, but at

this point, you need a visual element that is capable of displaying the content of this collection.
This is where the ListView control comes in. The ListView can receive the data source from

either the BindingContext of its container or by assigning its ItemsSource property, and any

object that implements the IEnumerable interface can be used with the ListView. You will

typically assign ItemsSource directly if the data source for the ListView is not the same data

source as for the other views in the page.

The problem to solve with the ListView is that it does not know how to present objects in a list.

For example, think of the People collection that contains instances of the Person class. Each

instance exposes the FullName, DateOfBirth, and Address properties, but the ListView does

not know how to present these properties, so it is your job to explain to it how. This is
accomplished with the so-called data templates. A data template is a static set of views that are
bound to properties in the object. It instructs the ListView on how to present items. Data

templates in Xamarin.Forms rely on the concept of cells. Cells can display information in a
specific way and are summarized in Table 8.

Table 8: Cells in Xamarin.Forms

Cell Type Description

TextCell Displays two labels: one with a description,
and one with a data-bound text value.

EntryCell Displays a label with a description and an
Entry with a data-bound text value. It also

allows a placeholder to be displayed.

 109

Cell Type Description

ImageCell Displays a label with a description and an
Image control with a data-bound image.

SwitchCell Displays a label with a description and a
Switch control bound to a bool value.

ViewCell Allows for creating custom data templates.

 Tip: Labels within cells are also bindable properties.

For example, if you only had to display and edit the FullName property, you could write the

following data template:

<Grid>
 <ListView x:Name="PeopleList" ItemsSource="{Binding}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <EntryCell Label="Full name:" Text="{Binding FullName}"/>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</Grid>

 Tip: The DataTemplate definition is always defined inside the
ListView.ItemTemplate element.

As a general rule, if the data source is assigned to the BindingContext property, the

ItemsSource must be set with the {Binding} value, which means your data source is the

same as that of your parent. With this code, the ListView will display all the items in the bound

collection, showing two cells for each item. However, each Person also exposes a property of

type DateTime, and no cell is suitable for that. In such situations, you can create a custom cell

using the ViewCell, as shown in Code Listing 18.

Code Listing 18

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 Title="Main page" Padding="20"
 x:Class="App1.MainPage">

 <StackLayout>
 <ListView x:Name="PeopleList" ItemsSource="{Binding}"
 HasUnevenRows="True">

 110

 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.View>
 <StackLayout Margin="10">
 <Label Text="Full name:"/>
 <Entry Text="{Binding FullName}"/>
 <Label Text="Date of birth:"/>
 <DatePicker Date="{Binding DateOfBirth,
 Mode=TwoWay}"/>
 <Label Text="Address:"/>
 <Entry Text="{Binding Address}"/>
 </StackLayout>
 </ViewCell.View>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
</ContentPage>

As you can see, the ViewCell allows you to create custom and complex data templates,

contained in the ViewCell.View property, so that you can display whatever kind of information

you need. Notice the HasUnevenRows property: if true on Android and Windows, this

dynamically resizes a cell’s height based on its content. On iOS, this property must be set to
false and you must provide a fixed row height by setting the RowHeight property. In Chapter 8

you will learn how to take advantage of the OnPlatform object to make UI decisions based on

the platform.

 Tip: The ListView is a very powerful and versatile view, and there is much more to
it, such as interactivity, grouping and sorting, and customizations. I strongly
recommend you read the official documentation and this article that describes how to
improve performance, which is extremely useful with Android.

Figure 47 shows the result for the code described in this section. Notice that the ListView

includes built-in scrolling capability, and must never be enclosed within a ScrollView.

https://developer.xamarin.com/guides/xamarin-forms/user-interface/listview
https://developer.xamarin.com/guides/xamarin-forms/user-interface/listview/performance/

 111

Figure 47: A data-bound ListView

A data template can be placed inside the page or app resources so that it becomes reusable.
Then you assign the ItemTemplate property in the ListView definition with the

StaticResource expression, as shown in Code Listing 19.

Code Listing 19

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 Title="Main page"
 x:Class="App1.MainPage">

 <ContentPage.Resources>
 <ResourceDictionary>
 <DataTemplate x:Key="MyTemplate">
 <ViewCell>
 <ViewCell.View>
 <StackLayout Margin="10" Orientation="Vertical"
 Padding="10">
 <Label Text="Full name:"/>
 <Entry Text="{Binding FullName}"/>
 <Label Text="Date of birth:"/>
 <DatePicker Date="{Binding DateOfBirth,Mode=Two
Way}"/>
 <Label Text="Address:"/>
 <Entry Text="{Binding Address}"/>
 </StackLayout>

 112

 </ViewCell.View>
 </ViewCell>
 </DataTemplate>
 </ResourceDictionary>
 </ContentPage.Resources>

 <ListView x:Name="PeopleList" VerticalOptions="FillAndExpand"
 HasUnevenRows="True" ItemTemplate="{StaticResource MyTemplate
}"/>
</ContentPage>

You can also disable item selection with the SelectionMode = "None" property assignment.

This can be useful when displaying read-only data.

Working with the TableView

When you need to present a list of settings, data in a form, or data that is different from row to
row, you can consider the TableView control. The TableView is based on sections and can

display content through the same cells described previously. With this view, you need to specify
a value for its Intent property, which basically represents the type of information you need to

display. Possible values are Settings (list of settings), Data (to display data entries), Form

(when the table view acts like a form), and Menu (to present a menu of selections). Code Listing

20 provides an example.

Code Listing 20

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 Title="Main page"
 x:Class="App1.MainPage">

 <ContentPage.Content>
 <TableView Intent="Settings">
 <TableRoot>
 <TableSection Title="Network section">
 <SwitchCell Text="Allowed" On="True"/>
 </TableSection>
 <TableSection Title="Push notifications">
 <SwitchCell Text="Allowed" On="True"/>
 </TableSection>
 </TableRoot>
 </TableView>
 </ContentPage.Content>
</ContentPage>

https://developer.xamarin.com/guides/xamarin-forms/user-interface/tableview/

 113

You can divide the TableView into multiple TableSections. Each contains a cell to display the

required type of information, and, of course, you can use a ViewCell for a custom, more

complex template. Figure 48 shows an example of TableView based on the previous listing.

Figure 48: A TableView in action

Obviously, you can bind cell properties to objects rather than setting their value explicitly like in
the previous example.

Showing and selecting values with the Picker view

With mobile apps, it is common to provide the user an option to select an item from a list of
values, which can be accomplished with the Picker view. Xamarin.Forms 2.3.4 has introduced

data-binding support in the Picker. You can now easily bind a List<T> or

ObservableCollection<T> to its ItemsSource property and retrieve the selected item via its

SelectedItem property. For example, suppose you have the following Fruit class:

public class Fruit
{
 public string Name { get; set; }
 public string Color { get; set; }
}

Now, in the user interface, suppose you want to ask the user to select a fruit from a list with the
XAML shown in Code Listing 21.

Code Listing 21

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App2"

 114

 x:Class="App2.MainPage">

 <ContentPage.Content>

 <StackLayout VerticalOptions="FillAndExpand">
 <Label Text="Select your favorite fruit:"/>
 <Picker x:Name="FruitPicker" ItemDisplayBinding="{Binding Name}
"
 SelectedIndexChanged="FruitPicker_SelectedIndexChanged"
/>
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

As you can see, the Picker exposes the SelectedIndexChanged event, which is raised when

the user selects an item. With the ItemDisplayBinding, you specify which property from the

bound object it needs to display: in this case, the fruit name. The ItemsSource property can,

instead, be assigned either in XAML or in the code-behind. In this case, a collection can be
assigned in C#, as demonstrated in Code Listing 22.

Code Listing 22

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();

 var apple = new Fruit { Name = "Apple", Color = "Green" };
 var strawberry = new Fruit { Name = "Strawberry", Color = "Red" };
 var orange = new Fruit { Name = "Orange", Color = "Orange" };

 var fruitList = new ObservableCollection<Fruit>()
 { apple, strawberry, orange };
 this.FruitPicker.ItemsSource = fruitList;
 }

 private async void FruitPicker_SelectedIndexChanged(object sender,
 EventArgs e)
 {
 var currentFruit = this.FruitPicker.SelectedItem as Fruit;
 if (currentFruit != null)
 await DisplayAlert("Selection",
 $"You selected {currentFruit.Name}", "OK");
 }
}

 115

Like the same-named property in the ListView, ItemsSource is of type object and can bind to

any object that implements the IEnumerable interface. Notice how you can retrieve the

selected item handling the SelectedIndexChanged event and casting the

Picker.SelectedItem property to the type you expect. In such situations, it is convenient to

use the as operator, which returns null if the conversion fails, instead of an exception. Figure 49

shows how the user can select an item from the picker.

Figure 49: Selecting items with a Picker

Data-binding support was added to the Picker only with Xamarin.Forms 2.3.4. In previous

versions, you could only manually populate its Items property via the Add method, and then

handle indices. This is the real reason why the SelectedIndexChanged event exists, but it is

still useful with the new approach. Data binding a list to the Picker is very common, but you can

certainly still populate the list manually and handle the index.

Binding images

Displaying images in data-binding scenarios is very common, and Xamarin.Forms makes it easy
to do. You simply need to bind the Image.Source property to an object of type ImageSource or

to a URL that can be represented by both a string and a Uri. For example, suppose you have

a class with a property that stores the URL of an image as follows:

public class Picture
{
 public Uri PictureUrl { get; set; }
}

 116

When you have an instance of this class, you can assign the PictureUrl property:

var picture1 = new Picture();
picture1.PictureUrl = new Uri("http://mystorage.com/myimage.jpg");

Supposing you have an Image view in your XAML code and a BindingContext assigned with

an instance of the class, data binding would work as follows:

<Image Source="{Binding PictureUrl}"/>

XAML has a type converter for the Image.Source property, so it automatically resolves strings

and Uri instances into the appropriate type.

Hints for value converters

The last sentence of the previous section about image binding highlights the existence of type
converters that resolve specific types into the appropriate type for the Image.Source property.

This actually happens with many other views and types. For example, if you bind an integer
value to the Text property of an Entry view, such an integer is converted into a string by a

XAML type converter. However, there are situations in which you might want to bind objects that
XAML type converters cannot automatically convert into the type a view expects.

For example, you might want to bind a Color value to a Label’s Text property, which is not

possible out of the box. In these cases, you can create value converters. A value converter is a
class that implements the IValueConverter interface and that must expose the Convert and

ConvertBack methods. Convert translates the original type into a type that the view can

receive, while ConvertBack does the opposite.

Code Listing 23 shows an example of a value converter that converts a string containing HTML
markup into an object that can be bound to the WebView control. ConvertBack is not

implemented because this value converter is supposed to be used in a read-only scenario, so a
round-trip conversion is not required.

Code Listing 23

using System;
using System.Collections.Generic;
using System.Globalization;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Xamarin.Forms;

namespace App1
{
 public class HtmlConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture)
 {

 117

 try
 {
 var source = new HtmlWebViewSource();
 string originalValue = (string)value;

 source.Html = originalValue;
 return source;
 }
 catch (Exception)
 {
 return value;
 }
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

Both methods always receive the data to convert as object instances, and then you need to cast
the object into a specialized type for manipulation. In this case, Convert creates an

HtmlWebViewSource object, converts the received object into a string, and populates the

Html property with the string that contains the HTML markup. The value converter must then be

declared in the resources of the XAML file where you wish to use it (or in App.xaml). Code
Listing 24 provides an example that also shows how to use the value converter.

Code Listing 24

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 Title="Main page"
 x:Class="App1.MainPage">

 <ContentPage.Resources>
 <local:HtmlConverter x:Key="HtmlConverter"/>
 </ContentPage.Resources>

 <!-- Assumes you have a data-bound .NET object that exposes
 a property called HtmlContent -->
 <WebView Source="{Binding HtmlContent,
 Converter={StaticResource HtmlConverter}}"/>
</ContentPage>

 118

You declare the converter as you would do with any other resource. Then your binding will also
contain the Converter expression, which points to the value converter with the typical syntax

you used with other resources.

Introducing Model-View-ViewModel

Model-View-ViewModel (MVVM) is an architectural pattern used in XAML-based platforms that
allows for clean separation between the data (model), the logic (view model), and the user
interface (view). With MVVM, pages only contain code related to the user interface, they
strongly rely on data binding, and most of the work is done in the view model. MVVM can be
quite complex if you have never seen it before, so I will try to simplify the explanations as much
as possible, but you should use Xamarin’s MVVM documentation as a reference.

Let’s start with a simple example and a fresh Xamarin.Forms solution based on the .NET
Standard code-sharing strategy. Imagine you want to work with a list of Person objects. This is

your model, and you can reuse the Person class from before. Add a new folder called Model to

your project, and add a new Person.cs class file to this folder, pasting in the code of the Person

class. Next, add a new folder called ViewModel to the project and add a new class file called
PersonViewModel.cs.

Before writing the code for it, let’s summarize some important considerations:

• The view model contains the business logic, acts like a bridge between the model and
the view, and exposes properties to which the view can bind.

• Among such properties, one will certainly be a collection of Person objects.
• In the view model, you can load data, filter data, execute save operations, and query

data.

Loading, filtering, saving, and querying data are examples of actions a view model can execute
against data. In a classic development approach, you would handle Clicked events on Button

views and write the code that executes an action. However, in MVVM, views should only contain
code related to the user interface, not code that executes actions against data. In MVVM, view
models expose the so-called commands. A command is a property of type ICommand that can

be data-bound to views such as Button, SearchBar, ListView, and TapGestureRecognizer

objects. In the UI, you bind a view to a command in the view model. In this way, the action is
executed in the view model instead of in the view’s code behind. Code Listing 25 shows the
PersonViewModel class definition.

Code Listing 25

using MvvmSample.Model;
using System;
using System.Collections.ObjectModel;
using System.Windows.Input;
using Xamarin.Forms;

namespace MvvmSample.ViewModel
{
 public class PersonViewModel

https://developer.xamarin.com/guides/xamarin-forms/xaml/xaml-basics/data_bindings_to_mvvm/

 119

 {
 public ObservableCollection<Person> People { get; set; }
 public Person SelectedPerson { get; set; }

 public ICommand AddPerson { get; set; }
 public ICommand DeletePerson { get; set; }

 public PersonViewModel()
 {
 this.People = new ObservableCollection<Person>();

 // sample data
 Person person1 =
 new Person { FullName = "Alessandro",
 Address ="Italy",
 DateOfBirth =new DateTime(1977,5,10) };
 Person person2 =
 new Person { FullName = "James",
 Address ="United States",
 DateOfBirth =new DateTime(1960,2,1) };
 Person person3 =
 new Person { FullName = "Jacqueline",
 Address ="France",
 DateOfBirth =new DateTime(1980,4,2) };

 this.People.Add(person1);
 this.People.Add(person2);
 this.People.Add(person3);

 this.AddPerson =
 new Command(() => this.People.Add(new Person()));

 this.DeletePerson =
 new Command<Person>((person) => this.People.Remove(person))
;
 }
 }
}

The People and SelectedPerson properties expose a collection of Person objects and a single

Person, respectively, and the latter will be bound to the SelectedItem property of a ListView,

as you will see shortly. Notice how properties of type ICommand are assigned with instances of

the Command class, to which you can pass an Action delegate via a lambda expression that

executes the desired operation. The Command provides an out-of-the-box implementation of the

ICommand interface and its constructor can also receive a parameter, in which case you must

use its generic overload (see DeletePerson assignment). In that case, the Command works with

objects of type Person and the action is executed against the received object. Commands and

other properties are data-bound to views in the user interface.

 120

 Note: Here I demonstrated the most basic use of commands. However,
commands also expose a CanExecute Boolean method that determines whether an
action can be executed or not. Additionally, you can create custom commands that
implement ICommand and must explicitly implement the Execute and CanExecute
methods, where Execute is invoked to run an action. For further details, look at the
official documentation.

Now it is time to write the XAML code for the user interface. Code Listing 26 shows how to use
a ListView for this and how to bind two Button views to commands.

Code Listing 26

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:MvvmSample"
 x:Class="MvvmSample.MainPage" Padding="20">

 <StackLayout>
 <ListView x:Name="PeopleList"
 ItemsSource="{Binding People}"
 HasUnevenRows="True"
 SelectedItem="{Binding SelectedPerson}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.View>
 <StackLayout Margin="10">
 <Label Text="Full name:"/>
 <Entry Text="{Binding FullName}"/>
 <Label Text="Date of birth:"/>
 <DatePicker Date="{Binding DateOfBirth,
 Mode=TwoWay}"/>
 <Label Text="Address:"/>
 <Entry Text="{Binding Address}"/>
 </StackLayout>
 </ViewCell.View>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 <StackLayout Orientation="Horizontal">
 <Button Text="Add" Command="{Binding AddPerson}"/>
 <Button Text="Delete" Command="{Binding DeletePerson}"
 CommandParameter="{Binding Source={x:Reference PeopleLi
st},
 Path=SelectedItem}"/>
 </StackLayout>

https://developer.xamarin.com/api/type/System.Windows.Input.ICommand/

 121

 </StackLayout>
</ContentPage>

 Tip: Remember to set HasUnevenRows to false and to provide a RowHeight for the
ListView on iOS.

The ListView is very similar to the example shown when introducing data binding to

collections. However, notice how:

• The ListView.ItemsSource property is bound to the People collection in the view
model.

• The ListView.SelectedItem property is bound to the SelectedPerson property in the
view model.

• The first Button is bound to the AddPerson command in the view model.
• The second Button is bound to the DeletePerson command, and it passes the

selected Person object in the ListView with a special binding expression: Source
represents the data source, in this case the ListView, referred to with x:Reference;
Path points to the property in the source that exposes the object you want to pass to the
command as a parameter (simply referred to as command parameter).

The final step is to create an instance of the view model and assign it to the BindingContext of

the page, which you can do in the page code-behind, as demonstrated in Code Listing 27.

Code Listing 27

using MvvmSample.ViewModel;
using Xamarin.Forms;

namespace MvvmSample
{
 public partial class MainPage : ContentPage
 {
 // Not using a field here because properties
 // are optimized for data binding.
 private PersonViewModel ViewModel { get; set; }

 public MainPage()
 {
 InitializeComponent();

 this.ViewModel = new PersonViewModel();
 this.BindingContext = this.ViewModel;
 }
 }
}

 122

If you now run the application (see Figure 50), you will see the list of Person objects, you will be

able to use the two buttons, and the real benefit is that the whole logic is in the view model. With
this approach, if you change the logic in the properties or in the commands, you will not need to
change the page code. In Figure 50, you can see a new Person object added via command

binding.

Figure 50: Showing a list of people and adding a new person with MVVM

MVVM is very powerful, but real-world implementations can be very complex. For example, if
you want to navigate to another page and you have commands, the view model should contain
code related to the user interface (launching a page) that does not adhere to the principles of
MVVM. Obviously, there are solutions to this problem that require further knowledge of the
pattern, so I recommend you look at books and articles on the internet for further study. There’s
no need to reinvent the wheel: many robust and popular MVVM libraries already exist, and you
might want to choose one from among the following:

• Prism
• MVVM Light Toolkit
• FreshMvvm
• MvvmCross

I have personally worked with FreshMvvm, but all the aforementioned alternatives are powerful
enough to save you a lot of time.

https://github.com/PrismLibrary/Prism
http://www.mvvmlight.net/
http://www.michaelridland.com/xamarin/freshmvvm-mvvm-framework-designed-xamarin-forms/
https://www.mvvmcross.com/

 123

Chapter summary

XAML plays a fundamental role in Xamarin.Forms and allows for defining reusable resources
and for data-binding scenarios. Resources are reusable styles, data templates, and references
to objects you declare in XAML. In particular, styles allow you to set the same properties to all
views of the same type, and they can extend other styles with inheritance. XAML also includes a
powerful data-binding engine that allows you to quickly bind objects to visual elements in a two-
way communication flow.

In this chapter, you have seen how to bind both a single object and a collection to individual
visual elements and to the ListView, respectively. You have seen how to define data templates

so that the ListView can have knowledge of how items must be presented, and you have

learned about value converters, special objects that come in to help when you want to bind
objects of a type that is different from the type a view supports.

In the second part of the chapter, you walked through an introduction to the Model-View-
ViewModel pattern, focusing on separating the logic from the UI and understanding new objects
and concepts such as commands. So far, you have only worked with objects and views that
Xamarin.Forms offers out of the box, but more often than not, you will need to implement more
advanced features that require native APIs. This what you will learn in the next chapter.

 124

Chapter 8 Accessing Platform-Specific APIs

Until now, you have seen what Xamarin.Forms offers in terms of features that are available on
each supported platform, walking through pages, layouts, and controls that expose properties
and capabilities that will certainly run on Android, iOS, and Windows. Though this simplifies
cross-platform development, it is not enough to build real-world mobile applications. In fact,
more often than not, mobile apps need to access sensors, the file system, the camera, and the
network; send push notifications; and more. Each operating system manages these features
with native APIs that cannot be shared across platforms and, therefore, that Xamarin.Forms
cannot map into cross-platform objects.

However, if Xamarin.Forms did not provide a way to access native APIs, it would not be very
useful. Luckily, Xamarin.Forms provides multiple ways to access platform-specific APIs that you
can use to access practically everything from each platform. Thus, there is no limit to what you
can do with Xamarin.Forms. In order to access platform features, you will need to write C# code
in each platform project. This is what this chapter explains, together with all the options you
have to access iOS, Android, and Windows APIs from your shared codebase.

The Device class and the OnPlatform method

The Xamarin.Forms namespace exposes an important class called Device. This class allows

you to detect the platform your app is running on and the device idiom (tablet, phone, desktop).
This class is particularly useful when you need to adjust the user interface based on the
platform.

The following code demonstrates how to take advantage of the Device.RuntimePlatform

property to detect the running platform and make UI-related decisions based on its value:

// Label1 is a Label view in the UI
switch(Device.RuntimePlatform)
{
 case Device.iOS:
 Label1.FontSize = Device.GetNamedSize(NamedSize.Large, Label1);
 break;
 case Device.Android:
 Label1.FontSize = Device.GetNamedSize(NamedSize.Medium, Label1);
 break;
 case Device.WinPhone:
 Label1.FontSize = Device.GetNamedSize(NamedSize.Medium, Label1);
 break;
 case Device.Windows:
 Label1.FontSize = Device.GetNamedSize(NamedSize.Large, Label1);
 break;
}

 125

RuntimePlatform is of type string and can be easily compared against specific constants—

iOS, Android, WinPhone, and Windows—that represent the supported platforms. The

GetNamedSize method automatically resolves the Default, Micro, Small, Medium, and Large

platform font size and returns the corresponding double, which avoids the need to supply

numeric values that would be different for each platform. The Device.Idiom property allows

you to determine if the current device the app is running on is a phone, tablet, or desktop PC
(UWP only), and returns one of the values from the TargetIdiom enumeration:

switch(Device.Idiom)
{
 case TargetIdiom.Desktop:
 // UWP desktop
 break;
 case TargetIdiom.Phone:
 // Phones
 break;
 case TargetIdiom.Tablet:
 // Tablets
 break;
 case TargetIdiom.Unsupported:
 // Unsupported devices
 break;
}

You can also decide how to adjust UI elements based on the platform and idiom in XAML. Code
Listing 28 demonstrates how to adjust the Padding property of a page, based on the platform.

Code Listing 28

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:App1.Views"
 x:Class="App1.Views.MainPage">
 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness"
 iOS="0, 20, 0, 0"
 Android="0, 10, 0, 0"
 WinPhone="0, 10, 0, 0" />
 </ContentPage.Padding>
</ContentPage>

With the OnPlatform tag, you can specify a different property value based on the iOS,

Android, and WinPhone platforms. The property value depends on the x:TypeArguments

attribute, which represents the .NET type for the property, Thickness in this particular case.

Similarly, you can also work with OnIdiom and the TargetIdiom enumeration in XAML.

 126

 Tip: In iOS, it is best practice to set a page padding of 20 from the top, like in the
previous snippet. If you don’t do this, your page will overlap the system bar.

Device-based localization

The Device class is useful not only to fine-tune the user interface according to the device, but

also for other features, such as localization. For example, the Device class exposes the

FlowDirection property that makes it easier to implement right-to-left localization, and whose

value can be bound to the FlowDirection property of each view, like in the following example:

<ContentPage FlowDirection="{x:Static Device.FlowDirection}">

The ContentPage’s content will be displayed according to the localization information retrieved

from the device. In addition to XAML, you can also work with this property in C# code.

Working with the dependency service

Most of the time, mobile apps need to offer interaction with the device hardware, sensors,
system apps, and file system. Accessing these features from shared code is not possible
because their APIs have unique implementations on each platform. Xamarin.Forms provides a
simple solution to this problem that relies on the service locator pattern: in the shared project,
you write an interface that defines the required functionalities. Then, inside each platform
project, you write classes that implement the interface through native APIs. Finally, you use the
DependencyService class and its Get method to retrieve the proper implementation based on

the platform your app is running on.

For example, suppose your app needs to work with SQLite local databases. Assuming you have
installed the sqlite-net-standard NuGet package in your solution, in the .NET Standard project,
you can write the following sample interface called IDatabaseConnection, which defines the

signature of a method that must return the database path:

public interface IDatabaseConnection
{
 SQLite.SQLiteConnection DbConnection();
}

 Tip: A complete walkthrough of using local SQLite databases in Xamarin.Forms is
available on MSDN Magazine from the author of this ebook.

At this point, you need to provide an implementation of this interface in each platform project,
because file names, path names, and, more generally, the file system, are platform-specific.
Add a new class file called DatabaseConnection.cs to the iOS, Android, and Windows
projects. Code Listing 29 provides the iOS implementation, Code Listing 30 provides the
Android implementation, and Code Listing 31 provides the Windows implementation.

https://www.nuget.org/packages/sqlite-net-standard/
https://msdn.microsoft.com/magazine/mt736454

 127

Code Listing 29

using System;
using SQLite;
using System.IO;
using App1.iOS;

[assembly: Xamarin.Forms.Dependency(typeof(DatabaseConnection))]
namespace App1.iOS
{
 public class DatabaseConnection : IDatabaseConnection
 {
 public SQLiteConnection DbConnection()
 {
 string dbName = "MyDatabase.db3";
 string personalFolder =
 System.Environment.
 GetFolderPath(Environment.SpecialFolder.Personal);
 string libraryFolder =
 Path.Combine(personalFolder, "..", "Library");
 string path = Path.Combine(libraryFolder, dbName);
 return new SQLiteConnection(path);
 }
 }
}

Code Listing 30

using Xamarin.Forms;
using App1.Droid;
using SQLite;
using System.IO;

[assembly: Dependency(typeof(DatabaseConnection))]
namespace App1.Droid
{
 public class DatabaseConnection: IDatabaseConnection
 {
 public SQLiteConnection DbConnection()
 {
 string dbName = "MyDatabase.db3";
 string path = Path.Combine(System.Environment.
 GetFolderPath(System.Environment.
 SpecialFolder.Personal), dbName);
 return new SQLiteConnection(path);
 }
 }
}

 128

Code Listing 31

using SQLite;
using Xamarin.Forms;
using System.IO;
using Windows.Storage;
using App1.UWP;

[assembly: Dependency(typeof(DatabaseConnection))]
namespace App1.UWP
{
 public class DatabaseConnection : IDatabaseConnection
 {
 public SQLiteConnection DbConnection()
 {
 {
 string dbName = "MyDatabase.db3";
 string path = Path.Combine(ApplicationData.
 Current.LocalFolder.Path, dbName);
 return new SQLiteConnection(path);
 }
 }
 }
}

Each implementation decorates the namespace with the Dependency attribute, assigned at the

assembly level, which uniquely identifies the implementation of the IDatabaseConnection

interface at runtime. In the DbConnection method body, you can see how each platform

leverages its own APIs to work with filenames. In the .NET Standard project, you can simply
resolve the proper implementation of the IDatabaseConnection interface as follows:

// Get the connection to the database
SQLiteConnection
database = DependencyService.Get<IDatabaseConnection>().DbConnection();

The DependencyService.Get generic method receives the interface as the type parameter and

resolves the implementation of that interface according to the current platform. With this
approach, you do not need to worry about determining the current platform and invoking the
corresponding native implementations, since the dependency service does the job for you. This
approach applies to all native APIs you need to invoke, and provides the most powerful option
to access platform-specific features in Xamarin.Forms.

Working with plugins

When accessing native APIs, most of the time your actual need is to access features that exist
cross-platform, but with APIs that are totally different from one another. For example, iOS,

 129

Android, and Windows devices all have a camera, they all have a GPS sensor that returns the
current location, and so on.

For scenarios in which you need to work with capabilities that exist cross-platform, you can
leverage plugins. These are libraries that consist of an abstract implementation of native APIs
that provide capabilities that are available cross-platform. They also avoid the need to use the
dependency service and write platform-specific code in a large number of situations. Plugins are
free and open source, and are available as NuGet packages. You can find an updated list of
available plugins on GitHub.

 Tip: Microsoft is working on a library, currently in preview, called Xamarin
Essentials. This free and open source library currently includes 31 plugins and
eliminates the need to install individual libraries. Because this library is still in
preview, and because you need to understand how plugins work to use it, it is not
covered here. You can have a look at the documentation and at the source code on
GitHub, and sign up to be notified when it is offered as a stable release.

Among others, popular plugins are the Connectivity plugin (which makes it easy to handle
network connectivity), the Media plugin (which makes it simple to capture pictures and videos
from the .NET Standard project), and the Geolocator plugin (which provides an abstraction to
access geolocation).

For example, suppose you want to detect if a network connection is available before accessing
the internet in your app. You can use the NuGet Package Manager to download and install the
Connectivity plugin, shown in Figure 51. For each plugin, there is a link to the documentation
page on GitHub, which I certainly recommend you visit when you use any plugins.

https://developer.xamarin.com/guides/xamarin-forms/platform-features/plugins/
https://github.com/xamarin/XamarinComponents
https://docs.microsoft.com/en-us/xamarin/essentials/
https://docs.microsoft.com/en-us/xamarin/essentials/
https://github.com/xamarin/Essentials

 130

Figure 51: Installing plugins

Make sure you select all the projects in the solution (in the box on the right), and then click
Install. I will not go into plugins’ architecture here; I will only explain how to use them. If you are
interested in their architecture, you can read this blog post from the Xamarin team.

As a general rule, the root namespace of a plugin exposes a singleton class that exposes the
requested feature. For example, the root Plugin.Connectivity namespace exposes the

CrossConnectivity class, whose Current property represents the singleton instance that you

can use as follows in your shared code, and therefore without the need to work with platform
projects:

if(CrossConnectivity.Current.IsConnected)
{
 // Connection is available
}

CrossConnectivity.Current.ConnectivityChanged +=

https://blog.xamarin.com/creating-reusable-plugins-for-xamarin-forms/

 131

 ((sender, e)=>
 {
 // Connection status changed
 });

Among others, this class exposes the IsConnected property, which returns true if a network

connection is available, and the ConnectivityChanged event, which is raised when the

connection changes. The class also exposes the IsRemoteReachable method, which you can

use to check whether a remote site is reachable, and the Bandwidths property, which returns a

collection of available bandwidths (not supported on iOS). By convention, the name of each
singleton class exposed by plugins begins with Cross.

As you can see in the previous snippet, you have a cross-platform abstraction that you use in
the .NET Standard that does not require complex, platform-specific implementations calling
native APIs manually. Plugins can save a huge amount of time, but they can only provide a
cross-platform interface for those features that are commonly available.

For example, the Connectivity plugin exposes networking features that are common to iOS,
Android, and Windows, but not native features that cannot be exposed with a cross-platform
abstraction, and would instead require working with native APIs directly. However, I strongly
recommend you check if a plugin exists when you need to access native features not included
in Xamarin.Forms out of the box. In most cases, you will need common features, and plugins
will help you save time and keep your code simpler to maintain.

 Tip: Another example of plugins is provided in the next chapter, which discusses
the app lifecycle.

Working with native views

In previous sections, you looked at how to interact with native Android, iOS, and Windows
features by accessing their APIs directly in C# code or through plugins. In this section, you will
instead see how to use native views in Xamarin.Forms, which is extremely useful when you
need to extend views provided by Xamarin.Forms, or when you wish to use native views that
Xamarin.Forms does not wrap into shared objects out of the box.

Embedding native views in XAML

Xamarin.Forms allows you to add native views directly into the XAML markup. This feature is a
recent addition, and it makes it really easy to use native visual elements. To understand how
native views in XAML work, consider Code Listing 32.

Code Listing 32

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 132

 xmlns:ios="clr-namespace:UIKit;
 assembly=Xamarin.iOS;targetPlatform=iOS"
 xmlns:androidWidget="clr-namespace:Android.Widget;
 assembly=Mono.Android;targetPlatform=Android"
 xmlns:formsandroid="clr-namespace:Xamarin.Forms;
 assembly=Xamarin.Forms.Platform.Android;
 targetPlatform=Android"
 xmlns:win="clr-namespace:Windows.UI.Xaml.Controls;
 assembly=Windows, Version=255.255.255.255,
 Culture=neutral, PublicKeyToken=null,
 ContentType=WindowsRuntime;targetPlatform=Windows"
 x:Class="App1.MainPage" Title="Native views">
 <ContentPage.Content>
 <StackLayout>
 <ios:UILabel Text="Native Text" View.HorizontalOptions="Start"/
>
 <androidWidget:TextView Text="Native Text"
 x:Arguments="{x:Static formsandroid:Forms.Context}" />
 <win:TextBlock Text="Native Text"/>
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

In the XAML of the root page, you first need to add XML namespaces that point to the
namespaces of native platforms. The formsandroid namespace is required by Android widgets

to get the current UI context. Remember that you can choose a different name for the
namespace identifier. Using native views is then really simple, since you just need to declare
the specific view for each platform you want to target.

In Code Listing 32, the XAML markup includes a UILabel native label on iOS, a TextView

native label on Android, and a TextBlock native view on Windows. With Android views, you

must supply the current Xamarin.Forms UI context, which is done with a special syntax that
binds the static (x:Static) Forms.Context property to the view. You can interact with views in

C# code as you would normally do, such as with event handlers, but the good news is that you
can also assign native properties to each view directly in your XAML.

Working with custom renderers

Renderers are classes that Xamarin.Forms uses to access and render native views, and that
bind the Xamarin.Forms’s views and layouts discussed in Chapters 4 and 5 to their native
counterparts.

 133

For example, the Label view discussed in Chapter 4 maps to a LabelRenderer class that

Xamarin.Forms uses to render the native UILabel, TextView, and TextBlock views on iOS,

Android, and Windows, respectively. Xamarin.Forms’s views completely depend on renderers to
expose their look and behavior. The good news is that you can override the default renderers
with the so-called custom renderers, which you can use to extend or override features in the
Xamarin.Forms views. A custom renderer is a class that inherits from the renderer that maps
the native view and is the place where you can change the layout, override members, and
change the view’s behavior. An example will be helpful to understand custom renderers more.

Suppose you want an Entry view to autoselect its content when the user taps the text box.

Xamarin.Forms has no support for this scenario, so you can create a custom renderer that
works at the platform level. In the .NET Standard project, add a new class called
AutoSelectEntry that looks like the following:

using Xamarin.Forms;
namespace App1
{
 public class AutoSelectEntry: Entry
 {
 }
}

The reason for creating a class that inherits from Entry is that, otherwise, the custom renderer

you will create shortly would be applied to all the Entry views in your user interface. By creating

a derived view, you can decide to apply the custom renderer only to this one. If you instead
want to apply the custom renderer to all the views in the user interface of that type, you can skip
this step. The next step is creating a class that inherits from the built-in renderer (the
EntryRenderer in this case), and provides an implementation inside each platform project.

 Note: In the next code examples, you will find many native objects and members.
I will only highlight those that are strictly necessary to your understanding. The
descriptions for all the others can be found in the Xamarin.iOS, Xamarin.Android, and
Universal Windows Platform documentation.

Code Listing 33 shows how to implement a custom renderer in iOS, Code Listing 34 shows the
Android version, and Code Listing 35 shows the Windows version.

Code Listing 33

[assembly: ExportRenderer(typeof(AutoSelectEntry),
 typeof(AutoSelectEntryRenderer))]
namespace App1.iOS
{
 public class AutoSelectEntryRenderer: EntryRenderer
 {
 protected override void OnElementChanged(ElementChangedEventArgs<En
try> e)
 {
 base.OnElementChanged(e);

 134

 var nativeTextField = Control;
 nativeTextField.EditingDidBegin += (object sender, EventArgs eI
os) =>
 {
 nativeTextField.PerformSelector(new ObjCRuntime
 .Selector("selectAll"),
 null, 0.0f);
 };
 }
 }
}

Code Listing 34

using Xamarin.Forms;
using Xamarin.Forms.Platform.Android;
using NativeAccess;
using NativeAccess.Droid;

[assembly: ExportRenderer(typeof(AutoSelectEntry),
 typeof(AutoSelectEntryRenderer))]
namespace App1.Droid
{
 public class AutoSelectEntryRenderer: EntryRenderer
 {
 protected override void OnElementChanged(ElementChangedEventArgs<En
try> e)
 {
 base.OnElementChanged(e);
 if (e.OldElement == null)
 {
 var nativeEditText = (global::Android.Widget.EditText)Contr
ol;
 nativeEditText.SetSelectAllOnFocus(true);
 }
 }
 }
}

Code Listing 35

using App1;
using App1.UWP;
using Xamarin.Forms;

 135

using Xamarin.Forms.Platform.UWP;

[assembly: ExportRenderer(typeof(AutoSelectEntry),
 typeof(AutoSelectEntryRenderer))]
namespace App1.UWP
{
 public class AutoSelectEntryRenderer: EntryRenderer
 {
 protected override void OnElementChanged(ElementChangedEventArgs<En
try> e)
 {
 base.OnElementChanged(e);
 if (e.OldElement == null)
 {
 var nativeEditText = Control;
 nativeEditText.SelectAll();
 }
 }
 }
}

In each platform implementation, you override the OnElementChanged method to get the

instance of the native view via the Control property, and then you invoke the code necessary

to select all the text box content using native APIs. The ExportRenderer attribute at the

assembly level tells Xamarin.Forms to render views of the specified type (AutoSelectEntry in

this case) with an object of type AutoSelectEntryRenderer, instead of the built-in

EntryRenderer. Once you have the custom renderer ready, you can use the custom view in

XAML as you would normally do, as demonstrated in Code Listing 36.

Code Listing 36

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:App1"
 Title="Main page"
 x:Class="App1.MainPage">

 <StackLayout Orientation="Vertical" Padding="20">
 <Label Text="Enter some text:"/>

 <local:AutoSelectEntry x:Name="MyEntry" Text="Enter text..."
 HorizontalOptions="FillAndExpand"/>
 </StackLayout>
</ContentPage>

 136

 Tip: The local XML namespace is defined by default, so adding your view is even
simpler. Additionally, IntelliSense will show your custom view in the list of available
objects from that namespace.

If you now run this code, you will see that the text in the AutoSelectEntry view will be

automatically selected when the text box is tapped. Custom renderers are very powerful
because they allow you to completely override the look and behavior of any views. However,
sometimes you just need some minor customizations that can instead be provided through
effects.

Hints for effects

Effects are a recent addition to the Xamarin.Forms toolbox and can be thought of as simplified
custom renderers, limited to changing some layout properties without changing the behavior of
a view. An effect is made of two classes: a class that inherits from PlatformEffect and must

be implemented in all the platform projects; and a class that inherits from RoutingEffect and

resides in the .NET Standard (or shared) project, whose responsibility is resolving the platform-
specific implementation of the custom effect. You handle the OnAttached and OnDetached

events to provide the logic for your effect. Because their structure is similar to custom renderers’
structures, I will not cover effects in more detail here, but it is important you know they exist.
You can check out the official documentation, which explains how to consume built-in effects
and create custom ones.

Introducing platform-specifics

Xamarin.Forms provides the so-called platform-specifics, which allow for consuming features
that are available only on specific platforms. Platform-specifics represent a limited number of
features, but they allow you to work without implementing custom renderers or effects.

 Note: Platform-specifics do not represent features that are available cross-
platform. They instead provide quick access to features that are available only on
specific platforms. As an additional clarification, a platform-specific might be
available on iOS, while the same platform-specific might not exist for Android and
UWP.

For instance, suppose you are working on an iOS app and you want the separator of a
ListView to be full width (which is not the default). Without platform-specifics, you would need

to implement a custom renderer to accomplish this. With platform-specifics, you just need the
code shown in Code Listing 37.

Code Listing 37

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/effects/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/platform/platform-specifics/

 137

 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.
Forms.Core"
 x:Class="NativeAccess.PlatformSpecificsPage">
 <ContentPage.Content>
 <StackLayout>
 <ListView ios:ListView.SeparatorStyle="FullWidth"
 x:Name="ListView1">
 <!-- Bind your data and add a data template here... -->
 </ListView>
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

In the case of iOS, you need to import the
Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace. Then you can use

attached properties provided by this namespace on the view of your interest. In the example
shown in Code Listing 37, the attached property ListView.SeparatorStyle allows you to

customize the separator width. Platform-specifics can also be used in C# code. In this case, you
need two using directives to import the Xamarin.Forms.PlatformConfiguration and

Xamarin.Forms.PlatformConfiguration.iOSSpecific. Then you can invoke the On method

on the view of your interest, passing the target platform, and supplying the platform-specific
implementation you need. The following code provides an example that represents the same
scenario seen in Code Listing 37, but in C# code:

this.ListView1.On<iOS>().SetSeparatorStyle(SeparatorStyle.FullWidth);

Platform-specifics work the same way on Android and UWP. In the case of Android, the
namespace you import is Xamarin.Forms.PlatformConfiguration.AndroidSpecific (for

both XAML and C#), whereas for UWP the namespace is
Xamarin.Forms.PlatformConfiguration.WindowsSpecific. The list of built-in platform-

specifics in Xamarin.Forms is available in the documentation.

 Tip: A platform-specific for one platform will simply be ignored on other platforms.

Chapter summary

Mobile apps often need to work with features that you can only access through native APIs.
Xamarin.Forms provides access to the entire set of native APIs on iOS, Android, and Windows
via a number of possible options. With the Device class, you can get information on the current

system from your shared code. With the DependencyService class and its Get method, you

can resolve cross-platform abstractions of platform-specific code in your .NET Standard library.

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/platform/platform-specifics/

 138

With plugins, you have ready-to-use cross-platform abstractions for the most common
scenarios, such as (but not limited to) accessing the camera, network information, settings, or
battery status. In terms of native visual elements, you can embed iOS, Android, and Windows
native views directly in your XAML. You can also write custom renderers or effects to change
the look and feel of your views, and you can use platform-specifics to quickly implement a few
features that are available only on specific platforms. Actually, each platform also manages the
app lifecycle with its own APIs. Fortunately, Xamarin.Forms has a cross-platform abstraction
that makes it simpler, as explained in the next chapter.

 139

Chapter 9 Managing the App Lifecycle

The application lifecycle involves events such as startup, suspend, and resume. Every platform
manages the application lifecycle differently, so implementing platform-specific code in iOS,
Android, and Windows projects would require some effort. Luckily, Xamarin.Forms allows you to
manage the app lifecycle in a unified way and takes care of performing the platform-specific
work on your behalf. This chapter provides a quick explanation of the app lifecycle and of how
you can easily manage your app’s behavior.

Introducing the App class

The App class is a singleton class that inherits from Application and is defined inside the

App.xaml.cs file. It can be thought of as an object that represents your application running and
includes the necessary infrastructure to handle resources, navigation, and the application
lifecycle. If you need to store some data into variables that should be available to all pages in
the application, you can expose static fields and properties in the App class. At a higher level,

the App class exposes some fundamental members that you might need across the whole app

lifecycle: the MainPage property you assign with the root page of your application, and the

OnStart, OnSleep, and OnResume methods you use to manage the application lifecycle that are

described in the next section.

Managing the app lifecycle

The application lifecycle can be summarized in four events: startup, suspension, resume, and
shutdown. The Android, iOS, and Windows platforms manage these events differently, but
Xamarin.Forms provides a unified system that allows for managing an app’s startup,
suspension, and resume from a single, shared C# codebase. These events are represented by
the OnStart, OnSleep, and OnResume methods that you can see in the App.xaml.cs file whose

body is empty. Currently, no specific method handles the app shutdown, because in most cases
handling suspension is sufficient. For instance, you might load some app settings within
OnStart at startup, save settings when the app is suspended within OnSleep, and reload

settings when the app comes back to the foreground within OnResume. For a better

understanding of this example, you can install the Settings plugin from NuGet to all the projects
in the solution.

 Tip: Full guidance on the Settings plugin is available on its GitHub page.

In the Helpers\Settings.cs file, replace the autogenerated code with the content of Code Listing
38, which implements a setting of type DateTime that you can use to get and set the date and

time for app lifecycle events.

https://www.nuget.org/packages/Xam.Plugins.Settings/
https://github.com/jamesmontemagno/SettingsPlugin

 140

Code Listing 38

using Plugin.Settings;
using Plugin.Settings.Abstractions;
using System;

namespace App1.Helpers
{
 public static class Settings
 {
 private static ISettings AppSettings
 {
 get
 {
 return CrossSettings.Current;
 }
 }

 private const string AccessDateSettings = "access_date";
 private static readonly DateTime AccessDateDefault = DateTime.Now;

 public static DateTime AccessDate
 {
 get
 {
 return AppSettings.GetValueOrDefault(AccessDateSettings,
 AccessDateDefault);
 }
 set
 {
 AppSettings.AddOrUpdateValue(AccessDateSettings, value);
 }
 }
 }
}
using Plugin.Settings;
using Plugin.Settings.Abstractions;
using System;

namespace App1.Helpers
{
 public static class Settings
 {
 private static ISettings AppSettings
 {
 get
 {
 return CrossSettings.Current;
 }

 141

 }

 private const string AccessDateSettings = "access_date";
 private static readonly DateTime AccessDateDefault = DateTime.Now;

 public static DateTime AccessDate
 {
 get
 {
 return AppSettings.GetValueOrDefault(AccessDateSettings,
 AccessDateDefault);
 }
 set
 {
 AppSettings.AddOrUpdateValue(AccessDateSettings, value);
 }
 }
 }
}

As you can see in Code Listing 39, you can get and set the setting’s value according to the app
lifecycle event. In this case, storing the access date makes sense when the app starts or
resumes, but not when it is suspended (in which case you might want to add a specific setting).

Code Listing 39

using App1.Helpers;
using System;

using Xamarin.Forms;

namespace App1
{
 public partial class App : Application
 {
 public App()
 {
 InitializeComponent();

 MainPage = new App1.MainPage();
 }

 protected override void OnStart()
 {
 // Handle when your app starts.
 Settings.AccessDate = DateTime.Now;
 }

 142

 protected override void OnResume()
 {
 // Handle when your app resumes.
 Settings.AccessDate = DateTime.Now;
 }

 protected override void OnSleep()
 {
 // Handle when your app sleeps.

 // Add a new setting to store the date/time for OnSleep.
 }
 }
}

With the help of breakpoints and the debugger, you will be able to demonstrate that the
application enters the appropriate methods according to the lifecycle event.

Sending and receiving messages

Xamarin.Forms includes an interesting static class called MessagingCenter. This class can

send broadcast messages that subscribers can receive and take actions, based on a
publisher/subscriber model. In its most basic form, you use the MessagingCenter to send a

message as follows:

MessagingCenter.Send<MainPage>(this, "MESSAGE");

The Send method’s type parameters specify the types subscribers should expect, and its

arguments are the sender (MainPage in this case, as an example) and the message in the form

of a string. You can specify multiple type parameters, and therefore multiple arguments before
the message.

 Tip: The compiler is able to infer type parameters for Send, so it is not mandatory
to specify them explicitly.

Subscribers can then listen for messages and take actions as follows:

MessagingCenter.Subscribe<MainPage>
 (this, "MESSAGE", (sender) =>
 {
 // Do something here
 });

 143

When MessagingCenter.Send is invoked somewhere, objects listening for a particular

message will execute the action specified within Subscribe (this does not have to necessarily

be a lambda expression; it can be an expanded delegate). When their job is finished,
subscribers can invoke MessagingCenter.Unsubscribe to stop listening to a message,

passing the sender as the type parameter, the current object, and the message, as follows:

MessagingCenter.Unsubscribe<MainPage>(this, "MESSAGE");

The MessagingCenter class can be very useful when you have logics that are decoupled from

the user interface, and can even be useful with MVVM implementations.

Chapter summary

Managing the application lifecycle can be very important, especially when you need to get and
store data at the application startup or suspension. Xamarin.Forms prevents the need to write
platform-specific code and offers a cross-platform solution through the OnStart, OnSleep, and

OnResume methods that allow handling the startup, suspension, and resume events,

respectively, from a single C# codebase, regardless of the platform the app is running on. Not
only is this a powerful feature, but it really simplifies your work as a developer. Finally, you have
seen in this chapter the MessagingCenter class, a static object that allows for sending and

subscribing messages, which is useful with logics decoupled from the user interface.

 144

Appendix: Useful Resources

Xamarin.Forms is a fully-featured development platform and therefore this ebook could not
cover every possible scenario. In this appendix, you’ll find a list of resources that you might want
to consider for further study.

Working with SQLite databases

SQLite is a serverless, open-source, local database engine that you can use in your
Xamarin.Forms mobile applications to store structured data. SQLite is included in iOS and
Android, and can be easily installed in Windows 10 devices. Because the need to store local
data is very common, the documentation provides detailed information on how to use SQLite in
your mobile apps. Additionally, the author of this ebook has published an easy introduction to
SQLite with Xamarin.Forms in MSDN Magazine in an article called “Working With Local
Databases in Xamarin.Forms using SQLite.”

Consuming web services and cloud services

Another common requirement for mobile apps is consuming resources on the internet or, more
generally, through a network. This includes push notifications, web services, WCF services, and
RESTful services, both on premises and in the cloud. Generally speaking, you consume
resources on a network via the HttpClient class and its asynchronous methods. However,

Microsoft also offers libraries for storing data to Azure and for implementing offline data
synchronization. All these scenarios, with examples, are described on a page in the
documentation called Data & Cloud Services, which also provides documentation about adding
artificial intelligence via Microsoft Cognitive Services to your mobile apps.

Publishing applications

In most cases, you will want to publish your native mobile apps to Google Play, the Apple App
Store, and the Windows Store. Actually, the publishing process is not related to Xamarin.Forms,
but involves the platform projects. The official Xamarin documentation provides guidance for
publishing Android and iOS applications, whereas you can refer to the Universal Windows
Platform documentation for publishing apps for Windows 10.

Code examples and starter kits

As the platform is becoming more and more popular, it is easier to find sample code on the
internet. A good starting point is the official repository on GitHub, which contains a number of
sample applications that target several development scenarios. I have also published an open-

https://developer.xamarin.com/guides/xamarin-forms/application-fundamentals/databases/
https://msdn.microsoft.com/magazine/mt736454
https://msdn.microsoft.com/magazine/mt736454
https://developer.xamarin.com/guides/xamarin-forms/cloud-services/
https://developer.xamarin.com/guides/android/deployment,_testing,_and_metrics/publishing_an_application/
https://developer.xamarin.com/guides/ios/deployment,_testing,_and_metrics/app_distribution/
https://developer.microsoft.com/en-us/store/publish-apps
https://github.com/xamarin/xamarin-forms-samples

 145

source starter kit, which demonstrates how to get data from the internet, store data in a local
SQLite database, implement data binding and navigation, and more.

Creating plugins

If you are interested in building plugins, you can take advantage of an extension called Plugin
for Xamarin Templates. This extension can be downloaded via the Extensions and Updates tool
you already know, and adds a new project template called Plugin for Xamarin, available under
the Visual C# node of the New Project dialog window (see Figure 52).

Figure 52: Creating a new plugin

The project contains the basic infrastructure for a plugin, such as a C# interface that defines
objects the plugin will expose, and platform-specific implementations for Android, iOS, and
UWP. A free, interesting lecture on the Xamarin University website explains how to use and
develop plugins for Xamarin.

https://github.com/AlessandroDelSole/XamarinFormsStarterKit
https://university.xamarin.com/guestlectures/using-developing-plugins-for-xamarin

	Table of Contents
	The Story Behind the Succinctly Series of Books
	taying on the cutting edge
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	Note on the Third Edition
	About the Author
	Introduction
	Chapter 1 Getting Started with Xamarin.Forms
	Introducing Xamarin and Xamarin.Forms
	Supported platforms

	Setting up the development environment
	Configuring a Mac

	Creating Xamarin.Forms solutions
	The Xamarin.Forms library
	The Xamarin.Android project
	The Xamarin.iOS project
	Automatic iOS provisioning
	Remote Xamarin.iOS update

	The Universal Windows Platform project

	Debugging and testing applications locally
	Setting up the iOS Simulator
	Running apps on physical devices
	The Xamarin Live Player app

	Analyzing and profiling applications
	Chapter summary

	Chapter 2 Sharing Code Among Platforms
	Introduction to code-sharing strategies
	Sharing code with .NET Standard
	Sharing code with shared projects
	Chapter summary

	Chapter 3 Building the User Interface with XAML
	The structure of the user interface in Xamarin.Forms
	Coding the user interface in C#
	The modern way: designing the user interface with XAML
	Productivity features for XAML IntelliSense
	Fuzzy matching and linting
	Light bulb: Quick actions and refactorings
	Go To Definition and Peek Definition

	Responding to events
	Understanding type converters
	Xamarin.Forms Previewer
	Hints for XAML Standard

	Chapter summary

	Chapter 4 Organizing the UI with Layouts
	Understanding the concept of layout
	Alignment and spacing options
	The StackLayout
	The FlexLayout
	The Grid
	Spacing and proportions for rows and columns
	Introducing spans

	The AbsoluteLayout
	The RelativeLayout
	The ScrollView
	The Frame
	The ContentView
	Styling the user interface with CSS
	Defining CSS styles as a XAML resource
	Consuming CSS files in XAML
	Consuming CSS styles in C# code

	Chapter summary

	Chapter 5 Xamarin.Forms Common Controls
	Understanding the concept of view
	Views’ common properties

	Introducing common controls
	User input with the Button
	Working with text: Label, Entry, and Editor
	Formatted strings and bindable spans

	Managing fonts
	Working with dates and time: DatePicker and TimePicker
	Displaying HTML contents with WebView
	App Transport Security in iOS

	Implementing value selection: Switch, Slider, Stepper
	Introducing the SearchBar
	Long-running operations: ActivityIndicator and ProgressBar
	Working with images

	Introducing gesture recognizers
	Displaying alerts
	Introducing the Visual State Manager
	Chapter summary

	Chapter 6 Pages and Navigation
	Introducing and creating pages
	Single views with the ContentPage
	Splitting contents with the MasterDetailPage
	Displaying content within tabs with the TabbedPage
	Swiping pages with the CarouselPage

	Navigating among pages
	Passing objects between pages
	Animating transitions between pages
	Managing the page lifecycle
	Handling the hardware Back button

	Chapter summary

	Chapter 7 Resources and Data Binding
	Working with resources
	Declaring resources
	Introducing styles
	Style inheritance
	Implicit styling

	Working with data binding
	IntelliSense support for data binding and resources
	Bindable spans
	Working with collections and with the ListView
	Working with the TableView
	Showing and selecting values with the Picker view
	Binding images
	Hints for value converters

	Introducing Model-View-ViewModel

	Chapter summary

	Chapter 8 Accessing Platform-Specific APIs
	The Device class and the OnPlatform method
	Device-based localization

	Working with the dependency service
	Working with plugins
	Working with native views
	Embedding native views in XAML
	Working with custom renderers
	Hints for effects
	Introducing platform-specifics

	Chapter summary

	Chapter 9 Managing the App Lifecycle
	Introducing the App class
	Managing the app lifecycle
	Sending and receiving messages
	Chapter summary

	Appendix: Useful Resources
	Working with SQLite databases
	Consuming web services and cloud services
	Publishing applications
	Code examples and starter kits
	Creating plugins

