
Chapter 2

Getting Started

New ideas are often most effectively understood and appreciated by ac-
tually doing something with them. So it is with data mining. Fun-
damentally, data mining is about practical application—application of
the algorithms developed by researchers in artificial intelligence, machine
learning, computer science, and statistics. This chapter is about getting
started with data mining.

Our aim throughout this book is to provide hands-on practise in data
mining, and to do so we need some computer software. There is a choice
of software packages available for data mining. These include commercial
closed source software (which is also often quite expensive) as well as free
open source software. Open source software (whether freely available or
commercially available) is always the best option, as it offers us the
freedom to do whatever we like with it, as discussed in Chapter 1. This
includes extending it, verifying it, tuning it to suit our needs, and even
selling it. Such software is often of higher quality than commercial closed
source software because of its open nature.

For our purposes, we need some good tools that are freely available
to everyone and can be freely modified and extended by anyone. There-
fore we use the open source and free data mining tool Rattle, which is
built on the open source and free statistical software environment R. See
Appendix A for instructions on obtaining the software. Now is a good
time to install R. Much of what follows for the rest of the book, and
specifically this chapter, relies on interacting with R and Rattle.

We can, quite quickly, begin our first data mining project, with Rat-
tle’s support. The aim is to build a model that captures the essence of
the knowledge discovered from our data. Be careful though—there is a

     ,
      DOI 10.1007/978-1-4419-98 - _2, © Springer Science+Business Media, LLC 2011

G. Williams, Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery
Use R,

21
90 3



22 2 Getting Started

lot of effort required in getting our data into shape. Once we have qual-
ity data, Rattle can build a model with just four mouse clicks, but the
effort is in preparing the data and understanding and then fine-tuning
the models.

In this chapter, we use Rattle to build our first data mining model—a
simple decision tree model, which is one of the most common models in
data mining. We cover starting up (and quitting from) R, an overview
of how we interact with Rattle, and then how to load a dataset and build
a model. Once the enthusiasm for building a model is satisfied, we then
review the larger tasks of understanding the data and evaluating the
model. Each element of Rattle’s user interface is then reviewed before we
finish by introducing some basic concepts related to interacting directly
with and writing instructions for R.

2.1 Starting R

R is a command line tool that is initiated either by typing the letter
R (capital R—R is case-sensitive) into a command line window (e.g., a
terminal in GNU/Linux) or by opening R from the desktop icon (e.g., in
Microsoft Windows and Mac/OSX). This assumes that we have already
installed R, as detailed in Appendix A.

One way or another, we should see a window (Figure 2.1) displaying
the R prompt (> ), indicating that R is waiting for our commands. We
will generally refer to this as the R Console.

The Microsoft Windows R Console provides additional menus specif-
ically for working with R. These include options for working with script
files, managing packages, and obtaining help.

We start Rattle by loading rattle into the R library using library().
We supply the name of the package to load as the argument to the com-
mand. The rattle() command is then entered with an empty argument
list, as shown below. We will then see the Rattle GUI displayed, as in
Figure 2.2.

> library(rattle)

> rattle()

The Rattle user interface is a simple tab-based interface, with the idea
being to work from the leftmost tab to the rightmost tab, mimicking the
typical data mining process.



2.1 Starting R 23

Figure 2.1: The R Console for GNU/Linux and Microsoft Windows. The
prompt indicates that R is awaiting user commands.



24 2 Getting Started

Figure 2.2: The initial Rattle window displays a welcome message and a little
introduction to Rattle and R.

Tip: The key to using Rattle, as hinted at in the status bar on starting
up Rattle, is to supply the appropriate information for a particular tab
and to then click the Execute button to perform the action. Always
make sure you have clicked the Execute button before proceeding to the
next step.

2.2 Quitting Rattle and R

A rather important piece of information, before we get into the details,
is how to quit from the applications. To exit from Rattle, we simply click
the Quit button. In general, this won’t terminate the R Console. For R,
the startup message (Figure 2.1) tells us to type q() to quit. We type
this command into the R Console, including the parentheses so that the
command is invoked rather than simply listing its definition. Pressing
Enter will then ask R to quit:

> q()

Save workspace image? [y/n/c]:



2.3 First Contact 25

We are prompted to save our workspace image. The workspace refers
to all of the datasets and any other objects we have created in the cur-
rent R session. We can save all of the objects currently available in a
workspace between different invocations of R. We do so by choosing the
y option. We might be in the middle of some complex analysis and wish
to resume it at a later time, so this option is useful.

Many users generally answer n each time here, having already cap-
tured their analyses into script files. Script files allow us to automatically
regenerate the results as required, and perhaps avoid saving and manag-
ing very large workspace files.

If we do not actually want to quit, we can answer c to cancel the
operation and return to the R Console.

2.3 First Contact

In Chapter 1, we identified that a significant amount of effort within a
data mining project is spent in processing our data into a form suitable
for data mining. The amount of such effort should not be underestimated,
but we do skip this step for now.

Once we have processed our data, we are ready to build a model—and
with Rattle we can build the model with just a few mouse clicks. Using a
sample dataset that someone else has already prepared for us, in Rattle
we simply:

1. Click on the Execute button.
Rattle will notice that no dataset has been identified, so it will take
action, as in the next step, to ensure we have some data. This is
covered in detail in Section 2.4 and Chapter 4.

2. Click on Yes within the resulting popup.
The weather dataset is provided with Rattle as a small and simple
dataset to explore the concepts of data mining. The dataset is
described in detail in Chapter 3.

3. Click on the Model tab.
This will change the contents of Rattle’s main window to display
options and information related to the building of models. This is
where we tell Rattle what kind of model we want to build and how
it should be built. The Model tab is described in more detail in
Section 2.5, and model building is discussed in considerable detail
in Chapters 8 to 14.



26 2 Getting Started

4. Click on the Execute button.
Once we have specified what we want done, we ask Rattle to do it
by clicking the Execute button. For simple model builders for small
datasets, Rattle will only take a second or two before we see the
results displayed in the text view window.

The resulting decision tree model, displayed textually in Rattle’s text
view, is based on a sample dataset of historic daily weather observations
(the curious can skip a few pages ahead to see the actual decision tree in
Figure 2.5 on page 30).

The data comes from a weather monitoring station located in Can-
berra, Australia, via the Australian Bureau of Meteorology. Each obser-
vation is a summary of the weather conditions on a particular day. It
has been processed to include a target variable that indicates whether it
rained the day following the particular observation. Using this historic
data, we have built a model to predict whether it will rain tomorrow.
Weather data is commonly available, and you might be able to build a
similar model based on data from your own region.

With only one or two more clicks, further models can be built. A few
more clicks and we have an evaluation chart displaying the performance
of the model. Then, with just a click or two more, we will have the model
applied to a new dataset to generate scores for new observations.

Now to the details. We will continue to use Rattle and also the simple
command line facility. The command line is not strictly necessary in
using Rattle, but as we develop our data mining capability, it will become
useful. We will load data into Rattle and explain the model that we have
built. We will build a second model and compare their performances.
We will then apply the model to a new dataset to provide scores for
a collection of new observations (i.e., predictions of the likelihood of it
raining tomorrow).

2.4 Loading a Dataset

With Rattle we can load a sample dataset in preparation for modelling, as
we have just done. Now we want to illustrate loading any data (perhaps
our own data) into Rattle.

If we have followed the four steps in Section 2.3, then we will now
need to reset Rattle. Simply click the New button within the toolbar.
We are asked to confirm that we would like to clear the current project.

http://www.bom.gov.au/climate/data


2.4 Loading a Dataset 27

Alternatively, we might have exited Rattle and R, as described in Sec-
tion 2.1, and need to restart everything, as also described in Section 2.1.
Either way, we need to have a fresh Rattle ready so that we can follow
the examples below.

On starting Rattle, we can, without any other action, click the Execute
button in the toolbar. Rattle will notice that no CSV file (the default
data format) has been specified (notice the “(None)” in the Filename:
chooser) and will ask whether we wish to use one of the sample datasets
supplied with the package. Click on Yes to do so, to see the data listed,
as shown in Figure 2.3.

Figure 2.3: The sample weather.csv file has been loaded into memory as
a dataset ready for mining. The dataset consists of 366 observations and 24
variables, as noted in the status bar. The first variable has a role other than
the default Input role. Rattle uses heuristics to initialise the roles.



28 2 Getting Started

The file weather.csv will be loaded by default into Rattle as its dataset.
Within R, a dataset is actually known as a data frame, and we will see
this terminology frequently.

The dataset summary (Figure 2.3) provides a list of the variables,
their data types, default roles, and other useful information. The types
will generally be Numeric (if the data consists of numbers, like temper-
ature, rainfall, and wind speed) or Categoric (if the data consists of
characters from the alphabet, like the wind direction, which might be N

or S, etc.), though we can also see an Ident (identifier). An Ident is often
one of the variables (columns) in the data that uniquely identifies each
observation (row) of the data. The Comments column includes general
information like the number of unique (or distinct) values the variable
has and how many observations have a missing value for a variable.

2.5 Building a Model

Using Rattle, we click the Model tab and are presented with the Model
options (Figure 2.4). To build a decision tree model, one of the most
common data mining models, click the Execute button (decision trees are
the default). A textual representation of the model is shown in Figure 2.4.

The target variable (which stores the outcome we want to model or
predict) is RainTomorrow, as we see in the Data tab window of Figure 2.3.
Rattle automatically chose this variable as the target because it is the last
variable in the data file and is a binary (i.e., two-valued) categoric. Using
the weather dataset, our modelling task is to learn about the prospect of
it raining tomorrow given what we know about today.

The textual presentation of the model in Figure 2.4 takes a little
effort to understand and is further explained in Chapter 11. For now,
we might click on the Draw button provided by Rattle to obtain the plot
that we see in Figure 2.5. The plot provides a better idea of why it is
called a decision tree. This is just a different way of representing the
same model.

Clicking the Rules button will display a list of rules that are derived
directly from the decision tree (we’ll need to scroll the panel contained
in the Model tab to see them). This is yet another way to represent the
same model. The rules are listed here, and we explain them in detail
next.



2.5 Building a Model 29

Figure 2.4: The weather dataset has been loaded, and a decision tree model
has been built.

Rule number: 7 [RainTomorrow=Yes cover=27 (11%) prob=0.74]

Pressure3pm< 1012

Sunshine< 8.85

Rule number: 5 [RainTomorrow=Yes cover=9 (4%) prob=0.67]

Pressure3pm>=1012

Cloud3pm>=7.5

Rule number: 6 [RainTomorrow=No cover=25 (10%) prob=0.20]

Pressure3pm< 1012

Sunshine>=8.85

Rule number: 4 [RainTomorrow=No cover=195 (76%) prob=0.05]

Pressure3pm>=1012

Cloud3pm< 7.5

A well-recognised advantage of the decision tree representation for a
model is that the paths through the decision tree can be interpreted as
a collection of rules, as above. The rules are perhaps the more readable
representation of the model. They are listed in the order of the prob-



30 2 Getting Started

Figure 2.5: The decision tree built “out of the box” with Rattle. We traverse
the tree by following the branches corresponding to the tests at each node.
The > =< notation on the root (top) node indicates that we travel left if
Pressure3pm is greater than 1011.9 and down the right branch if it is less
than or equal to 1011.9. The <= > is similar, but reversed. The leaf nodes
include a node number for reference, a decision of No or Yes to indicate whether
it will RainTomorrow, the number of training observations, and the strength
or confidence of the decision.

ability (prob) that we see listed with each rule. The interpretation of
the probability will be explained in more detail in Chapter 11, but we
provide an intuitive reading here.

Rule number 7 (which also corresponds to the “7)” in Figure 2.4 and
leaf node number 7 in Figure 2.5) is the strongest rule predicting rain
(having the highest probability for a Yes). We can read it as saying
that if the atmospheric pressure (reduced to mean sea level) at 3 pm was
less than 1012 hectopascals and the amount of sunshine today was less
than 8.85 hours, then it seems there is a 74% chance of rain tomorrow
(yval = yes and prob = 0.74). That is to say that on most days when
we have previously seen these conditions (as represented in the data) it
has rained the following day.



2.6 Understanding Our Data 31

Progressing down to the other end of the list of rules, we find the
conditions under which it appears much less likely that there will be rain
the following day. Rule number 4 has two conditions: the atmospheric
pressure at 3 pm greater than or equal to 1012 hectopascals and cloud
cover at 3 pm less than 7.5. When these conditions hold, the historic
data tells us that it is unlikely to be raining tomorrow. In this particular
case, it suggests only a 5% probability (prob=0.05) of rain tomorrow.

We now have our first model. We have data-mined our historic ob-
servations of weather to help provide some insight about the likelihood
of it raining tomorrow.

2.6 Understanding Our Data

We have reviewed the modelling part of data mining above with very
little attention to the data. A realistic data mining project, though, will
precede modelling with quite an extensive exploration of data, in addition
to understanding the business, understanding what data is available, and
transforming such data into a form suitable for modelling. There is a lot
more involved than just building a model. We look now at exploring our
data to better understand it and to identify what we might want to do
with it.

Rattle’s Explore tab provides access to some common plots as well
as extensive data exploration possibilities through latticist (Andrews,
2010) and rggobi (Lang et al., 2011). We will cover exploratory data
analysis in detail in Chapters 5 and 6. We present here an initial flavour
of exploratory data analysis.

One of the first things we might want to know is how the values of the
target variable (RainTomorrow) are distributed. A histogram might be
useful for this. The simplest way to create one is to go to the Data tab,
click on the Input role for RainTomorrow, and click the Execute button.
Then go to the Explore tab, choose the Distributions option, and then
select Bar Plot for RainTomorrow. The plot of Figure 2.6 will be shown.

We can see from Figure 2.6 that the target variable is highly skewed.
More than 80% of the days have no rain. This is typical of data mining,
where even greater skewness is not uncommon. We need to be aware of
the skewness, for example, in evaluating any models we build—a model
that simply predicts that it never rains is going to be over 80% accurate,
but pretty useless.



32 2 Getting Started

Figure 2.6: The target variable, RainTomorrow, is skewed, with Yes being
quite underrepresented.

We can display other simple plots from the Explore tab by selecting
the Distributions option. Under both the Box Plot and Histogram columns,
select MaxTemp and Sunshine (as in Figure 2.7). Then click on Execute
to display the plots in Figure 2.8. The plots begin to tell a story about
the data. We sketch the story here, leaving the details to Chapter 5.

The top two plots are known as box-and-whisker plots. The top left
plot tells us that the maximum temperature is generally higher the day
before it rains (the plot above the x-axis label Yes) than before the days
when it does not rain (above the No).

The top right plot suggests an even more dramatic skew for the
amount of sunshine the day prior to the prediction. Generally we see
that if there is less sunshine the day before, then the chance of rain
(Yes) seems to be increased.

Both box plots also give another clue about the distribution of the
values of the target variable. The width of the boxes in a box plot
provides a visual indication of this distribution.

Each bottom plot overlays three separate plots that give further in-
sight into the distribution of the observations. The three plots within
each figure are a histogram (bars), a density plot (lines), and a rug plot
(short spikes on the x-axis), each of which we now briefly describe.

The histogram has partitioned the numeric data into segments of
equal width, showing the frequency for each segment. We see again that



2.6 Understanding Our Data 33

Figure 2.7: The weather dataset has been loaded and a decision tree model
has been built.

sunshine (the bottom right) is quite skewed compared with the maximum
temperature.

The density plots tend to convey a more accurate picture of the dis-
tribution of the data. Because the density plot is a simple line, we can
also display the density plots for each of the target classes (Yes and No).

Along the x-axis is the rug plot. The short vertical lines represent
actual observations. This can give us an idea of where any extreme values
are, and the dense parts show where more of the observations lie.

These plots are useful in understanding the distribution of the nu-
meric data. Rattle similarly provides a number of simple standard plots
for categoric variables. A selection are shown in Figure 2.9. All three
plots show a different view of the one variable, WindDir9am, as we now
describe.

The top plot of Figure 2.9 shows a very simple bar chart, with bars
corresponding to each of the levels (or values) of the categoric variable of
interest (WindDir9am). The bar chart has been sorted from the overall
most frequent to the overall least frequent categoric value. We note that
each value of the variable (e.g., the value “SE,” representing a wind direc-



34 2 Getting Started

Figure 2.8: A sample of distribution plots for two variables.

tion of southeast) has three bars. The first bar is the overall frequency
(i.e., the number of days) for which the wind direction at 9 am was from
the southeast. The second and third bars show the breakdown for the
values across the respective values of the categoric target variable (i.e.,
for No and Yes). We can see that the distribution within each wind di-
rection differs between the three groups, some more than others. Recall
that the three groups correspond to all observations (All), observations
where it did not rain on the following day (No), and observations where
it did (Yes).

The lower two plots show essentially the same information, in different
forms. The bottom left plot is a dot plot. It is similar to the bar chart, on
its side, and with dots representing the “top” of the bars. The breakdown
into the levels of the target variable is compactly shown as dots within
the same row.

The bottom right plot is a mosaic plot, with all bars having the same
height. The relative frequencies between the values of WindDir9am are
now indicated by the widths of the bars. Thus, SE is the widest bar, and
WSW is the thinnest. The proportion between No and Yes within each bar



2.7 Evaluating the Model: Confusion Matrix 35

Figure 2.9: A sample of the three distribution plots for the one categoric
variable.

is clearly shown.
A mosaic plot allows us to easily identify levels that have very differ-

ent proportions associated with the levels of the target variable. We can
see that a north wind direction has a higher proportion of observations
where it rains the following day. That is, if there is a northerly wind
today, then the chance of rain tomorrow seems to be increased.

These examples demonstrate that data visualisation (or exploratory
data analysis) is a powerful tool for understanding our data—a picture
is worth a thousand words. We actually learn quite a lot about our data
even before we start to specifically model it. Many data miners begin
to deliver significant benefits to their clients simply by providing such
insights. We delve further into exploring data in Chapter 5.

2.7 Evaluating the Model: Confusion Matrix

We often begin a data mining project by exploring the data to gain our
initial insights. In all likelihood, we then also transform and clean up



36 2 Getting Started

our data in various ways. We have illustrated above how to then build
our first model. It is now time to evaluate the performance or quality of
the model.

Evaluation is a critical step in any data mining process, and one that
is often left underdone. For the sake of getting started, we will look at
a simple evaluation tool. The confusion matrix (also referred to as the
error matrix ) is a common mechanism for evaluating model performance.

In building our model we used a 70% subset of all of the available data.
Figure 2.3 (page 27) shows the default sampling strategy of 70/15/15.
We call the 70% sample the training dataset. The remainder is split
equally into a validation dataset (15%) and a testing dataset (15%).

The validation dataset is used to test different parameter settings or
different choices of variables whilst we are data mining. It is important to
note that this dataset should not be used to provide any error estimations
of the final results from data mining since it has been used as part of the
process of building the model.

The testing dataset is only to be used to predict the unbiased error
of the final results. It is important not to use this testing dataset in any
way in building or even fine-tuning the models that we build. Otherwise,
it no longer provides an unbiased estimate of the model performance.

The testing dataset and, whilst we are building models, the validation
dataset, are used to test the performance of the models we build. This
often involves calculating the model error rate. A confusion matrix sim-
ply compares the decisions made by the model with the actual decisions.
This will provide us with an understanding of the level of accuracy of the
model in terms of how well the model will perform on new, previously
unseen, data.

Figure 2.10 shows the Evaluate tab with the Error Matrix (confusion
matrix) using the Testing dataset for the Tree model that we have pre-
viously seen in Figures 2.4 and 2.5. Two tables are presented. The first
lists the actual counts of observations and the second the percentages.
We can observe that for 62% of the predictions the model correctly pre-
dicts that it won’t rain (called the true negatives). That is, 35 days out
of the 56 days are correctly predicted as not raining. Similarly, we see
the model correctly predicts rain (called the true positives) on 18% of
the days.

In terms of how correct the model is, we observe that it correctly
predicts rain for 10 days out of the 15 days on which it actually does
rain. This is a 67% accuracy in predicting rain. We call this the true

https://secure.wikimedia.org/wikipedia/en/wiki/confusion matrix


2.7 Evaluating the Model: Confusion Matrix 37

Figure 2.10: A confusion matrix applying the model to the testing dataset is
displayed.

positive rate, but it is also known as the recall and the sensitivity of the
model. Similarly, the true negative rate (also called the specificity of the
model) is 85%.

We also see six days when we are expecting rain and none occurs
(called the false positives). If we were using this model to help us decide
whether to take an umbrella or raincoat with us on our travels tomorrow,
then it is probably not a serious loss in this circumstance—we had to
carry an umbrella without needing to use it. Perhaps more serious though
is that there are five days when our model tells us there will be no rain
yet it rains (called the false negatives). We might get inconveniently
wet without our umbrella. The concepts of true and false positives and
negatives will be further covered in Chapter 15.

The performance measure here tells us that we are going to get wet
more often than we would like. This is an important issue—the fact that
the different types of errors have different consequences for us. We’ll also
see more about this in Chapter 15.

It is useful to compare the performance as measured using the val-
idation and testing datasets with the performance as measured using



38 2 Getting Started

the training dataset. To do so, we can select the Validation and then the
Training options (and for completeness the Full option) from the Data line
of the Evaluate tab and then Execute each. The resulting performance
will be reported. We reproduce all four here for comparison, including
the count and the percentages.

Evaluation Using the Training Dataset:
Count Predict

No Yes

Actual No 205 10
Yes 15 26

Percentage Predict
No Yes

Actual No 80 4
Yes 6 10

Evaluation Using the Validation Dataset:
Count Predict

No Yes

Actual No 39 5
Yes 5 5

Percentage Predict
No Yes

Actual No 72 9
Yes 9 9

Evaluation Using the Testing Dataset:
Count Predict

No Yes

Actual No 35 6
Yes 5 10

Percentage Predict
No Yes

Actual No 62 11
Yes 9 18

Evaluation Using the Full Dataset:
Count Predict

No Yes

Actual No 279 21
Yes 25 41

Percentage Predict
No Yes

Actual No 76 6
Yes 7 11

We can see that there are fewer errors in the training dataset than
in either the validation or testing datasets. That is not surprising since
the tree was built using the training dataset, and so it should be more
accurate on what it has already seen. This provides a hint as to why
we do not validate our model on the training dataset—the evaluation
will provide optimistic estimates of the performance of the model. By
applying the model to the validation and testing datasets (which the



2.8 Interacting with Rattle 39

model has not previously seen), we expect to obtain a more realistic
estimate of the performance of the model on new data.

Notice that the overall accuracy from the training dataset is 90%
(i.e., adding the diagonal percentages, 80% plus 10%), which is excellent.
For the validation and testing datasets, it is around 80%. This is more
likely how accurate the model will be longer-term as we apply it to new
observations.

2.8 Interacting with Rattle

We have now stepped through some of the process of data mining. We
have loaded some data, explored it, cleaned and transformed it, built a
model, and evaluated the model. The model is now ready to be deployed.
Of course, there is a lot more to what we have just done than what we
have covered here. The remainder of the book provides much of these
details. Before proceeding to the details, though, we might review how
we interact with Rattle and R.

We have seen the Rattle interface throughout this chapter and we now
introduce it more systematically. The interface is based on a set of tabs
through which we progress as we work our way through a data mining
project. For any tab, once we have set up the required information, we
will click the Execute button to perform the actions. Take a moment to
explore the interface a little. Notice the Help menu and that the help
layout mimics the tab layout.

The Rattle interface is designed as a simple interface to a powerful
suite of underlying tools for data mining. The general process is to step
through each tab, left to right, performing the corresponding actions.
For any tab, we configure the options and then click the Execute button
(or F2) to perform the appropriate tasks. It is important to note that the
tasks are not performed until the Execute button (or F2 or the Execute
menu item under Tools) is clicked.

The Status Bar at the base of the window will indicate when the
action is completed. Messages from R (e.g., error messages) may appear
in the R Console from which Rattle was started. Since Rattle is a simple
graphical interface sitting on top of R itself, it is important to remember
that some errors encountered by R on loading the data (and in fact during
any operation performed by Rattle) may be displayed in the R Console.



40 2 Getting Started

The R code that Rattle passes on to R to execute underneath the
interface is recorded in the Log tab. This allows us to review the R
commands that perform the corresponding data mining tasks. The R
code snippets can be copied as text from the Log tab and pasted into
the R Console from which Rattle is running, to be directly executed. This
allows us to deploy Rattle for basic tasks yet still gives us the full power
of R to be deployed as needed, perhaps through using more command
options than are exposed through the Rattle interface. This also allows
us the opportunity to export the whole session as an R script file.

The log serves as a record of the actions taken and allows those actions
to be repeated directly and automatically through R itself at a later time.
Simply select (to display) the Log tab and click on the Export button.
This will export the log to a file that will have an R extension. We can
choose to include or exclude the extensive comments provided in the log
and to rename the internal Rattle variables (from “crs$” to a string of
our own choosing).

We now traverse the main elements of the Rattle user interface, specif-
ically the toolbar and menus. We begin with a basic concept—a project.

Projects

A project is a packaging of a dataset, variable selections, explorations,
and models built from the data. Rattle allows projects to be saved for
later resumption of the work or for sharing the data mining project with
other users.

A project is typically saved to a file with a rattle extension. In fact,
the file is a standard binary RData file used by R to store objects in a
more compact binary form. Any R system can load such a file and hence
have access to these objects, even without running Rattle.

Loading a rattle file into Rattle (using the Open button) will load
that project into Rattle, restoring the data, models, and other displayed
information related to the project, including the log and summary infor-
mation. We can then resume our data mining from that point.

From a file system point of view, we can rename the files (as well as the
filename extension, though that is not recommended) without impacting
the project file itself—that is, the filename has no formal bearing on the
contents, so use it to be descriptive. It is best to avoid spaces and unusual
characters in the filenames.



2.8 Interacting with Rattle 41

Projects are opened and saved using the appropriate buttons on the
toolbar or from the Project menu.

Toolbar

The most important button on the Toolbar (Figure 2.11) is the Execute
button. All action is initiated with an Execute, often with a click of the
Execute button. A keyboard shortcut for Execute is the F2 function key.
A menu item for Execute is also available. It is worth repeating that the
user interface paradigm used within Rattle is to set up the parameters
on a tab and then Execute the tab.

Figure 2.11: The Rattle menu and toolbar.

The next few buttons on the Toolbar relate to the concept of a project
within Rattle. Projects were discussed above.

Clicking on the New button will restore Rattle to its pristine startup
state with no dataset loaded. This can be useful when a source dataset
has been externally modified (external to Rattle and R). We might, for
example, have manipulated our data in a spreadsheet or database pro-
gram and re-exported the data to a CSV file. To reload this file into
Rattle, if we have previously loaded it into the current Rattle session, we
need to clear Rattle as with a click of the New button. We can then
specify the filename and reload it.

The Report button will generate a formatted report based on the cur-
rent tab. A number of report templates are provided with Rattle and
will generate a document in the open standard ODT format, for the
open source and open standards supporting LibreOffice. Whilst sup-
port for user-generated reports is limited, the log provides the necessary
commands used to generate the ODT file. We can thus create our own
ODT templates and apply them within the context of the current Rattle
session.

The Export button is available to export various objects and entities
from Rattle. Details are available together with the specific sections in
the following chapters. The nature of the export depends on which tab
is active and within the tab, which option is active. For example, if

https://secure.wikimedia.org/wikipedia/en/wiki/OpenDocument


42 2 Getting Started

the Model tab is on display then Export will save the current model as
PMML (the Predictive Modelling Markup Language—see Chapter 16).
The Export button is not available for all tabs and options.

Menus

The menus (Figure 2.11) provide alternative access to many of the func-
tions of the interface. A key point in introducing menus is that they can
be navigated from the keyboard and contain keyboard shortcuts so that
we can navigate more easily through Rattle using the keyboard.

The Project menu provides access to the Open and Save options for
loading and saving projects from or to files. The Tools menu provides
access to some of the other toolbar functions as well as access to spe-
cific tabs. The Settings menu allows us to control a number of optional
characteristics of Rattle. This includes tooltips and the use of the more
modern Cairo graphics device.

Extensive help is available through the Help menu. The structure of
the menu follows that of the tabs of the main interface. On selecting a
help topic, a brief text popup will display some basic information. Many
of the popups then have the option of displaying further information,
which will be displayed within a Web browser. This additional docu-
mentation comes directly from the documentation provided by R or the
relevant R package.

Interacting with Plots

It is useful to know how we interact with plots in Rattle. Often we will
generate plots and want to include them in our own reports. Plots are
generated from various places within the Rattle interface.

Rattle optionally uses the Cairo device, which is a vector graphics
engine for displaying high-quality graphic plots. If the Cairo device
is not available within your installation, then Rattle resorts to the de-
fault window device for the operating system (x11() for GNU/Linux
and window() for Microsoft Windows). The Settings menu also allows
control of the choice of graphics device (allowing us to use the default by
disabling support for Cairo). The Cairo device has a number of advan-
tages, one being that it can be encapsulated within other windows, as is
done with Rattle. This allows Rattle to provide some operating-system-
independent functionality and a common interface. If we choose not to



2.9 Interacting with R 43

use the Cairo device, we will have the default devices, which still work
just fine, but with less obvious functionality.

Figure 2.8 (page 34) shows a typical Rattle plot window. At the
bottom of the window, we see a series of buttons that allow us to Save
the plot to a file, to Print it, and Close it.

The Save button allows us to save the graphics to a file in one of
the supported formats. The supported formats include pdf (for high-
resolution pictures), png (for vector images and text), jpg (for colourful
images), svg (for general scalable vector graphics), and, in Microsoft
Windows, wmf (for Windows Metafile, Microsoft Windows-specific vector
graphics). A popup will request the filename to save to. The default is
to save in PDF format, saving to a file with the filename extension of
.pdf. You can choose to save in the other formats simply by specifying
the appropriate filename extension.

The Print button will send the plot to a printer. This requires the un-
derlying R application to have been set up properly to access the required
printer. This should be the case by default.

Once we are finished with the plot, we can click the Close button to
shut down that particular plot window.

Keyboard Navigation

Keyboard navigation of the menus is usually initiated with the F10 func-
tion key. The keyboard arrow keys can then be used to navigate. Pressing
the keyboard’s Enter key will then select the highlighted menu item.

Judicious use of the keyboard (in particular, the arrow keys, the Tab
and Shift-Tab keys, and the Enter key, together with F2 and F10) allows
us to completely control Rattle from the keyboard if desired or required.

2.9 Interacting with R

R is a command line tool. We saw in Section 2.1 how to interact with R
to start up Rattle. Essentially, R displays a prompt to indicate that it is
waiting for us to issue a command. Two such commands are library()

and rattle(). In this section, we introduce some basic concepts and
commands for interacting with R directly.



44 2 Getting Started

Basic Functionality

Generally we instruct R to evaluate functions—a technical term used
to describe mathematical objects that return a result. All functions in
R return a result, and that result can be passed to other functions to
do other things. This simple idea is actually a very powerful concept,
allowing functions to do well what they are designed to do (like building
a model) and pass on their output to other functions to do something
with it (like formatting it for easy reading).

We saw in Section 2.1 two function calls, which we repeat below.
The first was a call to the function library(), where we asked R to load
rattle. We then started up Rattle with a call to the rattle() function:

> library(rattle)

> rattle()

Irrespective of the purpose of the function, for each function call we
usually supply arguments that refine the behaviour of the function. We
did that above in the call to library(), where the argument was rattle.
Another simple example is to call dim() (dimensions) with the argument
weather.

> dim(weather)

[1] 366 24

Here, weather is an object name. We can think of it simply as a
reference to some object (something that contains data). The object in
this case is the weather dataset as used in this chapter. It is organised
as rows and columns. The dim() function reports the number of rows
and columns.

If we type a name (e.g., either weather or dim) at the R prompt,
R will respond by showing us the object. Typing weather (followed by
pressing the Enter key) will result in the actual data. We will see all 366
rows of data scrolled on the screen. If we type dim and press Enter, we
will see the definition of the function (which in this case is a primitive
function coded into the core of R):

> dim

function (x) .Primitive("dim")



2.9 Interacting with R 45

A common mistake made by new users is to type a function name
by itself (without arguments) and end up a little confused about the
resulting output. To actually invoke the function, we need to supply the
argument list, which may be an empty list. Thus, at a minimum, we add
() to the function call on the command line:

> dim()

Error in dim: 0 arguments passed to 'dim' which requires 1

As we see, executing this function will generate an error message. We
note that dim() actually needs one argument, and no arguments were
passed to it. Some functions can be invoked with no arguments, as is the
case for rattle().

The examples above illustrate how we will show our interaction with
R. The “> ” is R’s prompt, and when we see that we know that R is
waiting for commands. We type the string of characters dim(weather)

as the command—in this case a call to the dim function. We then press
the Enter key to send the command to R. R responds with the result from
the function. In the case above, it returned the result [1] 366 24.

Technically, dim() returns a vector (a sequence of elements or values)
of length 2. The [1] simply tells us that the first number we see from the
vector (the 366) is the first element of the vector. The second element is
24.

The two numbers listed by R in the example above (i.e., the vector
returned by dim()) are the number of rows and columns, respectively, in
the weather dataset—that is, its dimensions.

For very long vectors, the list of the elements of the vector will be
wrapped to fit across the screen, and each line will start with a number
within square brackets to indicate what element of the vector we are up
to. We can illustrate this with seq(), which generates a sequence of
numbers:

> seq(1, 50)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50

We saw above that we can view the actual data stored in an object
by typing the name of the object (weather) at the command prompt.



46 2 Getting Started

Generally this will print too many lines (although only 366 in the case
of the weather dataset). A useful pair of functions for inspecting our
data are head() and tail(). These will list just the top and bottom six
observations (or rows of data), by default, from the data frame, based
on the order in which they appear there. Here we request, through the
arguments to the function, to list the top two observations (and we also
use indexing, described shortly, to list only the first nine variables):

> head(weather[1:9], 2)

Date Location MinTemp MaxTemp Rainfall

1 2007-11-01 Canberra 8 24.3 0.0

2 2007-11-02 Canberra 14 26.9 3.6

Evaporation Sunshine WindGustDir WindGustSpeed

1 3.4 6.3 NW 30

2 4.4 9.7 ENE 39

Similarly, we can request the bottom three rows of the dataset.

> tail(weather[1:9], 3)

Date Location MinTemp MaxTemp Rainfall

364 2008-10-29 Canberra 12.5 19.9 0

365 2008-10-30 Canberra 12.5 26.9 0

366 2008-10-31 Canberra 12.3 30.2 0

Evaporation Sunshine WindGustDir WindGustSpeed

364 8.4 5.3 ESE 43

365 5.0 7.1 NW 46

366 6.0 12.6 NW 78

The weather dataset is more complex than the simple vectors we have
seen above. In fact, it is a special kind of list called a data frame, which
is one of the most common data structures in R for storing our datasets.
A data frame is essentially a list of columns. The weather dataset has
24 columns. For a data frame, each column is a vector, each of the same
length.

If we only want to review certain rows or columns of the data frame,
we can index the dataset name. Indexing simply uses square brackets to
list the row numbers and column numbers that are of interest to us:



2.9 Interacting with R 47

> weather[4:8, 2:4]

Location MinTemp MaxTemp

4 Canberra 13.3 15.5

5 Canberra 7.6 16.1

6 Canberra 6.2 16.9

7 Canberra 6.1 18.2

8 Canberra 8.3 17.0

Notice the notation for a sequence of numbers. The string 4:8 is actually
equivalent to a call to seq() with two arguments, 4 and 8. The function
returns a vector containing the integers from 4 to 8. It’s the same as
listing them all and combining them using c():

> 4:8

[1] 4 5 6 7 8

> seq(4, 8)

[1] 4 5 6 7 8

> c(4, 5, 6, 7, 8)

[1] 4 5 6 7 8

Getting Help

It is important to know how we can learn more about using R. From the
command line, we obtain help on commands by calling help():

> help(dim)

A shorthand is to precede the argument with a ? as in: ?dim. This is
automatically converted into a call to help().

The help.search() function will search the documentation to list
functions that may be of relevance to the topic we supply as an argument:

> help.search("dimensions")

The shorthand here is to precede the string with two question marks as
in ??dimensions.

A third command for searching for help on a topic is RSiteSearch().
This will submit a query to the R project’s search engine on the Internet:



48 2 Getting Started

> RSiteSearch("dimensions")

Quitting R

Recall that to exit from R, as we saw in Section 2.1, we issue q():

> q()

Our first session with R is now complete. The command line, as we
have introduced here, is where we access the full power of R. But not
everyone wants to learn and remember commands, so Rattle will get us
started quite quickly into data mining, with only our minimal knowledge
of the command line.

R and Rattle Interactions

Rattle generates R commands that are passed on through to R at various
times during our interactions with Rattle. In particular, whenever the
Execute button is clicked, Rattle constructs the appropriate R commands
and then sends them off to R and awaits R’s response.

We can also interact with R itself directly, and even interleave our
interactions with Rattle and R. In Section 2.5, for example, we saw a
decision tree model represented textually within Rattle’s text view. The
same can also be viewed in the R Console using print(). We can replicate
that here once we have built the decision tree model as described in
Section 2.5.

The R Console window is where we can enter R commands directly.
We first need to make the window active, usually by clicking the mouse
within that window. For the example below, we assume we have run
Rattle on the weather dataset to build a decision tree as described in
Section 2.5.

We can then type the print() command at the prompt. We see this
in the code box below. The command itself consists of the name of an R
function we wish to call on (print() in this case), followed by a list of
arguments we pass to the function. The arguments provide information
about what we want the function to do. The reference we see here,
crs$rpart, identifies where the model itself has been saved internally
by Rattle. The parameter digits= specifies the precision of the printed
numbers. In this case we are choosing a single digit.



2.9 Interacting with R 49

After typing the full command (including the function name and ar-
guments) we then press the Enter key. This has the effect of passing the
command to R. R will respond with the text exactly as shown below.
The text starts with an indication of the number of observations (256).
This is followed by the same textual presentation of the model we saw in
Section 2.5.

> print(crs$rpart, digits=1)

n= 256

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 256 40 No (0.84 0.16)

2) Pressure3pm>=1e+03 204 20 No (0.92 0.08)

4) Cloud3pm< 8 195 10 No (0.95 0.05) *

5) Cloud3pm>=8 9 3 Yes (0.33 0.67) *

3) Pressure3pm< 1e+03 52 20 No (0.52 0.48)

6) Sunshine>=9 25 5 No (0.80 0.20) *

7) Sunshine< 9 27 7 Yes (0.26 0.74) *

Commands versus Functions

We have referred above to the R command line, where we enter commands
to be executed. We also talked about functions that we type on the
command line that make up the command to be executed. In this book,
we will adopt a particular terminology around functions and commands,
which we describe here.

In its true mathematical sense, a function is some operation that con-
sumes some data and returns some result. Functions like dim(), seq(),
and head(), as we have seen, do this. Functions might also have what we
often call side effects—that is, they might do more than simply returning
some result. In fact, the purpose of some functions is actually to perform
some other action without necessarily returning a result. Such functions
we will tend to call commands. The function rattle(), for example,
does not return any result to the command line as such. Instead, its
purpose is to start up the GUI and allow us to start data mining. Whilst
rattle() is still a function, we will usually refer to it as a command
rather than a function. The two terms can be used interchangeably.



50 2 Getting Started

Programming Styles for R

R is a programming language supporting different programming styles.
We can use R to write programs that analyse data—we program the
data analyses. Note that if we are only using Rattle, then we will not
need to program directly. Nonetheless, for the programs we might write,
we can take advantage of the numerous programming styles offered by
R to develop code that analyses data in a consistent, simple, reusable,
transparent, and error-free way.

Mistakenly, we are often trained to think that writing sentences in a
programming language is primarily for the benefit of having a computer
perform some activity for us. Instead, we should think of the task as
really writing sentences that convey to other humans a story—a story
about analysing our data. Coincidentally, we also want a computer to
perform some activity.

Keeping this simple message in mind, whenever writing in R, helps
to ensure we write in such a way that others can easily understand what
we are doing and that we can also understand what we have done when
we come back to it after six months or more.

Environments as Containers in R

For a particular project, we will usually analyse a collection of data,
possibly transforming it and storing different bits of information about
it. It is convenient to package all of our data and what we learn about
it into some container, which we might save as a binary R object and
reload more efficiently at a later time. We will use R’s concept of an
environment for this.

As a programming style, we can create a storage space and give it a
name (i.e., it will look like a programming language variable) to act as
a container. The container is an R environment and is initialised using
new.env() (new environment). Here, we create a new environment and
give it the name en:

> en <- new.env()

The object en now acts as a single container into which we can place
all the relevant information associated with the dataset and that can also
be shared amongst several models. We will store and access the relevant
information from this container.



2.9 Interacting with R 51

Data is placed into the container using the $ notation and the assign-
ment operator, as we see in the following example:

> en$obs <- 4:8

> en$obs

[1] 4 5 6 7 8

> en$vars <- 2:4

> en$vars

[1] 2 3 4

The variables obs and vars are now contained within the environment
referenced as en.

We can operate on variables within an environment without using
the $ notation (which can become quite cumbersome) by wrapping the
commands within evalq():

> evalq(

{

nobs <- length(obs)

nvars <- length(vars)

}, en)

> en$nobs

[1] 5

> en$nvars

[1] 3

The use of evalq() becomes most convenient when we have more
than a couple of statements to write.

At any time, we can list the contents of the container using ls():

> ls(en)

[1] "nobs" "nvars" "obs" "vars"

Another useful function, provided by gdata (Warnes, 2011), is ll(),
which provides a little more information:



52 2 Getting Started

> library(gdata)

> ll(en)

Class KB

nobs integer 0

nvars integer 0

obs integer 0

vars integer 0

We can also convert the environment to a list using as.list():

> as.list(en)

$nvars

[1] 3

$nobs

[1] 5

$vars

[1] 2 3 4

$obs

[1] 4 5 6 7 8

By keeping all the data related to a project together, we can save and
load the project through this one object. We also avoid “polluting” the
global environment with lots of objects and losing track of what they all
related to, possibly confusing ourselves and others.

We can now also quite easily use the same variable names, but within
different containers. Then, when we write scripts to build models, for
example, often we will be able to use exactly the same scripts, changing
only the name of the container. This encourages the reuse of our code
and promotes efficiencies.

This approach is also sympathetic to the concept of object-oriented
programming. The container is a basic “object” in the object-oriented
programming context.

We will use this approach of encapsulating all of our data and infor-
mation within a container when we start building models. The following
provides the basic template:



2.9 Interacting with R 53

> library(rpart)

> weatherDS <- new.env()

> evalq({

data <- weather

nobs <- nrow(data)

vars <- c(2:22, 24)

form <- formula(RainTomorrow ~ .)

target <- all.vars(form)[1]

train <- sample(nobs, 0.7*nobs)

}, weatherDS)

> weatherRPART <- new.env(parent=weatherDS)

> evalq({

model <- rpart(formula=form, data=data[train, vars])

predictions <- predict(model, data[-train, vars])

}, weatherRPART)

Here we have created two containers, one for the data and the other for
the model. The model container (weatherRPART) has as its parent the
data container (weatherDS), which is achieved by specifying the parent=
argument. This makes the variables defined in the data container avail-
able within the model container.

To save a container to a file for use at a later time, or to document
stages within the data mining project, use save():

> save(weatherDS, file="weatherDS.Rdata")

It can later be loaded using load():

> load("weatherDS.Rdata")

It can at times become tiresome to be wrapping our code up within
a container. Whilst we retain the discipline of using containers we can
also quickly interact with the variables in a container without having to
specify the container each time. WE use attach and detach to add a
container into the so called search path used by R to find variables. Thus
we could do something like the following:

> attach(weatherRPART)

> print(model)

> detach(weatherRPART)



54 2 Getting Started

However, creating new variables to store within the environment will not
work in the same way. Thus:

> attach(weatherRPART)

> new.model <- model

> detach(weatherRPART)

does not place the variable new.model into the weatherRPART environ-
ment. Instead it goes into the global environment.

A convenient feature, particularly with the layout used within the
evalq() examples above and generally throughout the book, is that we
could ignore the string that starts a block of code (which is the line
containing “evalq({”) and the string that ends a block of code (which
is the line containing “}, weatherDS)”) and simply copy-and-paste the
other commands directly into the R console. The variables (data, nobs,
etc.) are then created in the global environment, and nothing special is
needed to access them. This is useful for quickly testing out ideas, for
example, and is provided as a choice if you prefer not to use the container
concept yourself. Containers do, however, provide useful benefits.

Rattle uses containers internally to collect together the data it needs.
The Rattle container is called crs (the current rattle store). Once a
dataset is loaded into Rattle, for example, it is stored as crs$dataset.
We saw crs$rpart above as referring to the decision tree we built above.

2.10 Summary

In this chapter, we have become familiar with the Rattle interface for data
mining with R. We have also built our first data mining model, albeit
using an already prepared dataset. We have also introduced some of the
basics of interacting with the R language.

We are now ready to delve into the details of data mining. Each
of the following chapters will cover a specific aspect of the data mining
process and illustrate how this is accomplished within Rattle and then
further extended with direct coding in R.

Before proceeding, it is advisable to review Chapter 1 as an intro-
duction to the overall data mining process if you have not already done
so.



2.11 Command Summary 55

2.11 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:
<- function Assign a value into a named reference.
c() function Concatenate values into a vector.
dim() function Return the dimensions of a dataset.
evalq() function Access the environment for storing data.
head() function Return the first few rows of a dataset.
help() command Display help for a specific function.
help.search() command Search for help on a specific topic.
latticist package Interactive visualisation of data.
library() command Load a package into the R library.
ll() function Longer list of an environment.
load() command Load R objects from a file.
ls() function List the contents of an environment.
new.env() function Create a new object to store data.
nrow() function Number of rows in a dataset.
print() command Display representation of an R object.
q() command Quit from R.
R shell Start up the R statistical environment.
rattle() command Start the Rattle GUI.
rggobi package Interactive visualisation of data.
rpart() function Build a decision tree predictive model.
rpart package Provides decision tree functions.
RSiteSearch() command Search the R Web site for help.
sample() function Random selection of its first argument.
save() command Save R objects into a file.
seq() function Return a sequence of numbers.
table() function Make a table from some variables.
tail() function Return the last few rows of a dataset.
weather dataset Sample dataset from rattle.
window() command Open a new plot in Microsoft Windows.
x11() command Open a new plot in Unix/Linux.



http://www.springer.com/978-1-4419-9889-7


