

1

2

By
Ryan Hodson

Foreword by Daniel Jebaraj

3

Copyright © 2012 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration

form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal, educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

dited by
This publication was edited by Daniel Jebaraj, vice president, Syncfusion, Inc.

I

E

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books .. 8

Introduction ... 10

The Objective-C Language .. 10

Sample Code ... 11

Setting Up .. 11

Installation .. 12

Creating an Application .. 12

Getting to Know the Xcode IDE ... 14

Editing Files ... 15

Compiling Code ... 15

Summary .. 16

Chapter 1 Hello, Objective-C ... 17

Creating a Class... 17

Components of a Class .. 18

Defining Methods ... 19

Instantiating Objects ... 20

Calling Methods ... 21

Adding Method Parameters ... 21

Defining Properties .. 22

Summary .. 23

Chapter 2 Data Types ... 24

Displaying Values ... 24

Primitive Data Types .. 25

Booleans .. 25

Chars.. 26

Short Integers .. 26

“Normal” Integers ... 26

Long Integers ... 27

Floats ... 27

Doubles .. 27

Structs .. 28

Arrays ... 28

5

Void .. 30

nil and NULL .. 31

Primitive Data Type Summary ... 31

Foundation Data Structures ... 31

NSNumber ... 31

NSDecimalNumber .. 32

NSString ... 34

NSMutableString .. 35

NSArray ... 36

NSMutableArray ... 38

NSSet and NSMutableSet ... 39

NSDictionary and NSMutableDictionary .. 41

The id Data Type .. 42

The Class Data Type ... 43

Foundation Data Structures Summary ... 43

Chapter 3 Properties .. 45

Declaring Properties .. 45

Implementing Properties .. 45

Instance Variables .. 46

Customizing Accessors .. 47

Dot Syntax.. 48

Summary .. 49

Chapter 4 Memory Management ... 50

Manual Memory Management ... 50

Auto-Releasing Objects ... 55

Manual Retain-Release Attributes ... 56

Automatic Reference Counting .. 57

ARC Attributes ... 58

Summary .. 59

Chapter 5 Methods ... 60

Instance vs. Class Methods ... 60

The super Keyword .. 61

Initialization Methods ... 61

Class Initialization .. 63

6

Deallocation Methods .. 64

Deallocation in MMR .. 64

Deallocation in ARC ... 65

Private Methods ... 65

Selectors .. 67

Method Names and Selectors ... 69

Performing Selectors ... 70

Checking for the Existence of Selectors .. 70

Using Selectors .. 71

Summary .. 73

Chapter 6 Categories and Extensions ... 74

Categories .. 74

Protected Methods ... 77

Caveats .. 80

Extensions .. 80

Private Methods ... 82

Summary .. 83

Chapter 7 Protocols ... 84

Creating a Protocol .. 84

Adopting a Protocol .. 85

Advantages of Protocols .. 86

Protocols As Pseudo-Types ... 87

Dynamic Conformance Checking .. 88

Forward-Declaring Protocols ... 89

Summary .. 90

Chapter 8 Exceptions and Errors ... 91

Exception Handling .. 91

The NSException Class ... 92

Generating Exceptions... 92

Catching Exceptions .. 93

Throwing Exceptions.. 94

Error Handling .. 96

The NSError Class ... 97

Error Domains .. 97

7

Capturing Errors ... 98

Custom Errors .. 99

Summary .. 100

Chapter 9 Blocks .. 102

Creating Blocks .. 102

Parameter-less Blocks ... 103

Using Blocks as Callbacks ... 103

Storing and Executing Blocks .. 105

Parameter-less Block Variables ... 106

Working with Variables ... 106

Blocks Are Closures ... 107

Mutable Block Variables ... 108

Defining Methods that Accept Blocks .. 109

Summary .. 110

Conclusion ..111

iOS Succinctly ... 111

8

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

S

9

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/#!/Syncfusion
https://www.facebook.com/Syncfusion

10

Introduction

Objective-C is the programming language behind native Apple applications. The language was
originally designed in the 1980s as a way to add object-oriented capabilities to the ANSI C
programming language, and it has since been used to create everything from command line
tools to Mac programs to mobile apps. You can think of Objective-C as Apple’s version of the C#
programming language.

However, learning Objective-C is only one aspect of iPhone, iPad, and Mac app development.
On top of the language lay a handful of frameworks that provide the tools necessary to build
apps for any of these platforms. For example, the UIKit framework defines the basic UI
components you see on your iPhone (buttons, lists, images, etc.), while the Core Data
framework provides an API for saving and retrieving data from a device. Objective-C is the glue
that lets you pull together these tools and assemble them into a useful program.

Figure 1: Objective-C pulling together aspects of several frameworks

Objective-C Succinctly is the first installment in a two-part series on Apple app development. In
this book, we’ll explore the entire Objective-C language using hands-on examples. We’ll focus
on learning core language concepts by building command line tools, which means we won’t be
building graphical applications in this book. This lays the foundation for iOS Succinctly, which
explores the iOS framework underlying iPhone and iPad apps. Both books utilize Xcode,
Apple’s official integrated development environment.

The Objective-C Language

For developers coming from a C# background, Objective-C retains many of the same workflows
and object-oriented concepts. You still write code, compile it into an executable, and, of course,

https://developer.apple.com/xcode/

11

use objects to organize your application. Objective-C provides standard object-oriented
constructs like interfaces, classes, class/instance methods, and accessors. That said, there are
a few important differences between Objective-C and languages like C++ and C#.

The first thing you’ll notice is that Objective-C uses a completely different syntax for
communicating between objects. For example, compare the method calling syntax of C# to the
message sending syntax of Objective-C:

person.sayHello(); // C# method calling.
[person sayHello]; // Objective-C message sending.

Instead of calling a method that’s bound to an object, Objective-C “sends messages” from
object to object using the square bracket notation. For most practical purposes, you can
approach message sending as method calling, and we’ll use the terms interchangeably unless it
leads to confusion.

Second, Objective-C is designed to be a superset of C, meaning it’s possible to compile C code
with any Objective-C compiler. This also means you can combine Objective-C and C in the
same project or even in the same file. In addition, most modern compilers add C++ to the mix,
so it’s actually possible to mix Objective-C, C++, and C in a single file. This can be very
confusing for newcomers to Objective-C, but it also makes the entire C/C++ ecosystem
accessible to Mac and iOS apps.

We’ll explore these differences and much more throughout Objective-C Succinctly.

Sample Code

You will learn more from this book if you recreate the samples using the code provided in the
book.

A select set of samples using the code provided in the book is available online. These samples
are essential to understanding Objective-C. These samples are available for download from
https://bitbucket.org/syncfusion/objective_c_succinctly. Samples that apply to specific sections
are mentioned in the section they apply, using the following format:

Included code sample: {name of the sample folder}

Setting Up

There are a number of compilers for Objective-C, but this book will focus on the Xcode IDE,
which comes with a compiler, text editor, debugger, interface editor, and everything else you
need to create iOS apps in a convenient package. At the time of this writing, Xcode is only
available for OS X, so you’ll need to be on a Mac before you can run any of the code in this
book.

We’ll start by walking through the installation of Xcode, and then we’ll learn how to create an
application and explore some of the prominent features of the IDE.

https://bitbucket.org/syncfusion/objective_c_succinctly

12

Installation

Figure 2: The Xcode logo in the Mac App Store

Xcode can be downloaded from the Mac App Store. Navigate to the link or search for Xcode in
the Mac App Store, and then click Free in the upper left-hand corner to start the download. The
Xcode app is rather large, so it will take at least a few minutes to download. If you’re not sure
whether the download is working, you can check its status in the Purchases tab of the Mac App
Store:

Figure 3: The Purchases tab in the Mac App Store

Scroll down to find the Xcode download and you should see a progress bar indicating how far
along it is. Once the download has completed, the installation should be straightforward, and
you should (hopefully) see a friendly welcome screen when you launch the program.

Figure 4: The Xcode welcome screen

Creating an Application

Our first Objective-C application will be a simple command-line “Hello, World!” program. To
create the Xcode project, click Create a new Xcode project in the welcome screen. As an
alternative, you can also select File > New > Project.... This gives you the opportunity to select

http://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12

13

a project template. As you can see, templates are categorized as either iOS apps or Mac OS X
apps. In the second part of this series, we’ll work with several of the iOS templates, but for now,
let’s stick to the simple Command Line Tool template under Mac OS X > Application:

Figure 5: Mac OS X template categories and Command Line Tool template icon

Next, you should be presented with some configuration options for your new project. For the
Product Name, use HelloObjectiveC. If you were planning on distributing this program, you
would need to acquire a Company Identifier by registering as a developer with Apple, but since
this is a personal project, you can use edu.self. This serves as a unique namespace for the
application. For Type, select Foundation (more on this later), and be sure to select the Use
Automatic Reference Counting check box since we don’t want to manually manage memory.
Your final configuration options should look like the following:

Figure 6: Configuration options for our new project

Finally, you should be able to select a location to save your project. Save it wherever you like,
but deselect the Source Control option at the bottom of the window. This would initialize a Git
repository in your project folder, but we’re working with such a small project that we don’t need
to worry about revision control.

Figure 7: Deselecting the Source Control option

After selecting a location for the project and clicking Create, Xcode creates a new folder called
HelloObjectiveC. In it, you should find another HelloObjectiveC folder containing the project
files, along with a HelloObjectiveC.xcodeproj folder; however, the latter acts more like a file
than a folder. HelloObjectiveC.xcodeproj defines the metadata for your application, as well as
local configuration settings for the IDE.

The only file that you actually need in a .xcodeproj folder is the project.pbxproj file, which
contains build settings and other project-related information. That is to say, if your project was

https://developer.apple.com/programs/ios/

14

under source control, project.pbxproj is the only file in HelloObjectiveC.xcodeproj that would
need to be under version control.

Double-clicking the HelloObjectiveC.xcodeproj folder will launch Xcode and open the project.

Getting to Know the Xcode IDE

Xcode is a large application with many capabilities, and it has a correspondingly complex
interface. It’s worth taking some time to familiarize yourself with the various UI components
highlighted in the following screenshot.

Figure 8: Main components of the Xcode IDE

As you can see, the Xcode interface is split into three main windows: a project navigator (blue),
an editor/work area (yellow), and a utilities area (purple). The navigator lets you select files, find
code breaks, and debug your program. The editor is where you’ll do the bulk of your work—it’s
where you edit code and, for graphical applications, where you design your user interfaces and
control the flow of an app. But again, for Objective-C Succinctly, we won’t need any of the
interface editing tools. Finally, the utilities area lets you define options for the selected
component (e.g., the build targets associated with a particular file).

15

You can control which of these windows are visible using the view selector (green) in the upper
right corner; however, it’s not possible to hide the work area. Clicking the center button in the
view selector will display an output window where we can see log data for our application.

Editing Files

Our command-line template comes with a single Objective-C file, main.m. The .m extension is
used for files that only contain Objective-C code, and the .mm extension is for files with a mix of
Objective-C and C, Objective-C and C++, or a combination of all three. To edit main.m, select it
in the navigator panel, and you should see the following code appear in the editor window:

//
// main.m
// HelloObjectiveC
//
// Created by Ryan Hodson on 8/21/12.
// Copyright (c) 2012 __MyCompanyName__. All rights reserved.
#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])
{

 @autoreleasepool {

 // Insert code here...
 NSLog(@"Hello, World!");

 }
 return 0;
}

The next chapter provides an in-depth explanation of this code, but for now, the only important
thing is the NSLog() function, which outputs a string to the console. Also notice that Objective-C

strings are prefixed with an @ symbol (as are most constructs that are exclusive to Objective-C),

and they must be double-quoted.

Compiling Code

Included code sample: HelloObjectiveC

To compile this code and run the resulting executable, simply click the Run button in the upper-
left corner of the IDE. Alternatively, you can select Product > Run in the main menu bar, or use
the Cmd+R keyboard shortcut. This should open the output panel at the bottom of the screen
with a “Hello, World!” message:

16

Figure 9: HelloObjectiveC log output

Summary

And those are the basics of installing the Xcode IDE and using it to create and compile an
Objective-C project. We didn’t do any coding, but hopefully you’re feeling more comfortable with
the Xcode interface and are at least able to navigate your way through a project’s files. In the
next chapter, we’ll start actually writing Objective-C code, defining classes, instantiating objects,
and sending messages to them.

17

Chapter 1 Hello, Objective-C

This chapter is designed to help you acclimate to Objective-C programming style. By the end of
this chapter, you will be able to instantiate objects, create and call methods, and declare
properties. Remember that the goal is to provide a very brief survey of the major object-oriented
aspects of Objective-C, not a detailed description of each component. Later chapters fill in many
of the conceptual details omitted from this chapter.

Creating a Class

Included code sample: HelloObjectiveC With Class

Let’s dive right in and create a new Objective-C file. In the Xcode IDE, navigate to File > New >
File... or use the Cmd+N shortcut to add a file to your project. The next dialog lets you select
which kind of file you would like to create. Under the Cocoa Touch category, select Objective-
C class.

Figure 10: The Objective-C class icon

You’re given an opportunity to specify a name for your new class. Let’s call our class Person.

For the parent class, use NSObject, which is the top-level object from which all Objective-C

classes inherit.

Figure 11: Defining a new Person class

Clicking Next will open a file browser and ask you to enter a Group for your class, as well as a
Target. Use the default Group, which should be HelloObjectiveC. Groups are an Xcode-
specific mechanism for grouping similar files, but they aren’t implemented on the file level. Our
new class will appear in the same folder as the rest of the project files, regardless of what group
it’s in. For Targets, make sure HelloObjectiveC is selected. This ensures the new class is
compiled whenever we build the HelloObjectiveC target.

18

Figure 12: Selecting build targets for the new class

Finally, click Create to create the class. In the Xcode file navigator, you should now find two new
classes: Person.h and Person.m. Just like the C programming language, Objective-C uses .h
as the extension for header files, which contain the interface for a particular function or class—
this is not to be confused with a C# interface, which is called a protocol in Objective-C. The .m
file is the corresponding implementation for the Person class.

Separating a class’ interface from its implementation makes it possible to hide implementation
details from third-party objects. Other files that need to interact with the class import the header
file—never the implementation file. This provides the abstract definition necessary to call
methods and access properties while being completely independent of the class’
implementation.

Components of a Class

In the project navigator, select Person.h to open it in the editor panel. You should see the
following Objective-C code:

#import <Foundation/Foundation.h>

@interface Person : NSObject

@end

The #import directive includes another file in the current context. Including a header file gives

us access to all of the classes and functions it defines. In this case, we included the Foundation
framework. The Foundation framework defines the basic constructs of the Objective-C
language—things like strings, arrays, dictionaries, etc.—so it’s a necessary part of virtually
every Objective-C program.

The @interface directive begins an interface for a class. Next comes the class name, Person,

followed by a colon and the parent class, NSObject. As noted earlier, NSObject is the top-level

object in Objective-C. It contains the necessary methods for creating and destroying instances,
along with some other useful functionality shared by all objects.

Any methods or properties would be declared before the @end directive, but right now, Person.h

is an empty interface. We’ll change that in a minute, but first let’s take a quick glance at the
implementation file, Person.m:

#import "Person.h"

19

@implementation Person

@end

This looks a lot like the header file, but it includes the Person.h header. Implementation files

must include their associated header, otherwise they won’t be able to find the class that they’re
trying to implement.

Also notice that this #import directive uses quotation marks instead of angled brackets.

Quotation marks should be used to import local headers, while brackets indicate global headers.
Global headers reside outside of the project and are linked to the compiler during the build
process. Apple’s standard frameworks are always included in angled brackets, whereas your
project files should be imported with quotation marks.

And of course, the .m file uses the @implementation directive instead of @interface. Note

that you don’t have to specify the parent class here, since this information is already contained
in the header.

Defining Methods

Next, we’ll add a method declaration to the Person class. Remember that this is a two-step

process: first we have to add it to the interface, and then the implementation. So, change
Person.h to the following:

#import <Foundation/Foundation.h>

@interface Person : NSObject

- (void)sayHello;

@end

As you can see, instance methods are declared with a hyphen, the return type in parentheses
(void), followed by the method name and a semicolon. Now that we have that in the interface,

switch over to Person.m to define the implementation. Note that Xcode added a little yellow
triangle next to the @implementation line. If you click it, you’ll find a warning message that says

Incomplete implementation. This is one of Xcode’s numerous debugging features. Let’s fix that
issue by changing Person.m to the following:

#import "Person.h"

@implementation Person

- (void)sayHello {
 NSLog(@"Hello, my name is HAL.");

20

}

@end

Like the interface declaration, the implementation for an instance method begins with a hyphen,
the return type, and the function name. The implementation itself is defined in the curly braces
after the method name, just like a C# method. For sayHello, we just output a message to the

console using NSLog().

As you type, Xcode presents some autocompletion options, and it also should have closed your
curly braces for you. These behaviors can be changed by navigating to Xcode > Preferences...
in the menu bar and clicking the Text Editing icon.

Instantiating Objects

Let’s try instantiating our Person class and calling our new sayHello method. Remember that

like any C program, main() is the entry point into our HelloObjectiveC application. So, back in

main.m, change NSLog(@"Hello, World!"); to the following:

#import <Foundation/Foundation.h>
#import "Person.h"

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 Person *somePerson = [[Person alloc] init];

 }
 return 0;

}

The Person *somePerson expression declares a variable called somePerson and tells the

compiler that it’s going to hold an instance of the Person class. The asterisk next to the variable

name indicates that it’s a pointer, which is the most common way to reference objects in
Objective-C. We’ll discuss pointers in more detail down the road.

Next, the [[Person alloc] init] code creates a new instance of the Person class. The

square bracket notation may take some getting used to, but it’s conceptually the same as the
parentheses used for method calls in C# and other Simula-style languages. The previous code
sample is equivalent to the following in C#:

Person somePerson = new Person();
somePerson.init();

The [Person alloc] call allocates the memory required for the new instance, and the init

call is used to execute any kind of custom initialization code. Note that there are no “constructor

21

methods” in Objective-C as there are in C# or C++—you must manually call the the init

method (or some variant thereof) to set up your object. As a result, virtually all object creation in
Objective-C is a two-step process: allocate, and then initialize. You will see this pattern quite
often in Objective-C programs.

Calling Methods

Now that we have an object to work with, we can call our sayHello method. Note that the

correct terminology in Objective-C is “sending a message,” not “calling a method,” but for our
purposes, we can treat them as synonymous. Add the following line to main.m:

[somePerson sayHello];

Just like the alloc/init methods in the previous example, custom method invocation uses

square brackets. Again, this is the same as executing somePerson.sayHello() in C#. Running

your program should display Hello, my name is HAL. in the Xcode output panel:

Figure 13: Output generated from the sayHello method

Adding Method Parameters

Aside from the square brackets, Objective-C’s method naming conventions are one of the
biggest adjustments for developers coming from C#, C++, Java, Python, or pretty much any
other language that’s not Smalltalk. Objective-C method names are designed to be as
descriptive as possible. The idea is to define a method in such a way that reading it aloud
literally tells you what it does.

As an example, let’s add a name parameter to our sayHello method. First, we need to update

the method declaration in the header (Person.h):

- (void)sayHelloToName:(NSString *)aName;

Adding a parameter actually changed the name of the function—the parameter is not an
isolated entity as it is in C# (e.g., sayHello(name)). The (NSString *) portion defines the

data type of the parameter, and aName is the actual variable that can be accessed in the

implementation code, which we’ll define now. Change sayHello in Person.m to the code

sample that follows. Xcode should autocomplete the new method name when you start typing it.

- (void)sayHelloToName:(NSString *)aName {
 NSLog(@"Hello %@, my name is HAL.", aName);

22

}

This new NSLog() configuration uses a format string to add the aName argument to the output.

We’ll cover NSLog() in more detail in the next chapter, but for now all you need to know is that it

replaces %@ in the format string with aName. This is roughly equivalent to String.Format() in

C#.

Calling the parameter aName might seem redundant with sayHelloToName, but it makes more

sense when you read the method as it would be invoked. In main.m, change the sayHello call

to:

[somePerson sayHelloToName:@"Bill"];

Now, you should be able to run your program and see Hello Bill, my name is HAL. in the

output panel. As you can see, Objective-C method names are verbose, but quite informative.
Unlike the C#-style sayHello(name) invocation, Objective-C makes it very hard to accidentally

pass the wrong value to a method. Of course, the trade-off is that method names are long, but
that’s why Xcode provides such a convenient autocompletion feature. We’ll see many more
verbose (and more practical) examples of Objective-C method names throughout this book.

Defining Properties

Included code sample: With Properties

As with any object-oriented language, Objective-C methods are a means to manipulate the
internal state of an object. This state is typically represented as a set of properties attached to
an object. For example, we can add a name property to our Person interface to store each

instance’s name dynamically:

@property (copy) NSString *name;

The @property declaration begins a new property, the (copy) tuple specifies the behavior of

the property, and NSString *name defines a property called name that holds a string value.

Typically, property declarations are placed before method declarations, but as long as it’s
somewhere between @interface and @end in Person.h, you’ll be fine.

Using @property instead of private attributes gives you access to the @synthesize directive in

the implementation file. It lets you automatically create accessor methods for the associated
property. For example, in Person.m, add the following (again, property implementations usually

come before method implementations):

@synthesize name = _name;

23

@synthesize is a convenience directive that tells the compiler to generate getter and setter

methods for the property. The part after the = sign is used as the instance variable (i.e. private

member) for the property, which means we can use _name to access the name property inside

of Person.m. For example, try changing the sayHelloToName method to:

- (void)sayHelloToName:(NSString *)aName {
 NSLog(@"Hello %@, my name is %@.", aName, _name);
}

By default, the getter method name is the same as the property name, and the setter has set

prepended to the capitalized property name. So, we can dynamically set our Person object’s

name by changing main.m to the following:

Person *somePerson = [[Person alloc] init];
[somePerson setName:@"HAL 9000"];
[somePerson sayHelloToName:@"Bill"];

Running your program should now produce Hello Bill, my name is HAL 9000.

Summary

This chapter presented the basic components of an Objective-C class. We learned how to
separate classes into interface (.h) and implementation files (.m), instantiate objects, define and

call methods, and declare properties. Hopefully, you’re feeling a little bit more comfortable with
Objective-C’s square bracket notation and other syntactic quirks.

Remember that this chapter was designed to be a quick introduction to Objective-C’s OOP
constructs, not an in-depth discussion of each component. In the upcoming chapters, we’ll take
a more detailed look at data types, property declarations, method definitions, as well as the
common design patterns of Objective-C programs.

24

Chapter 2 Data Types

Objective-C has two categories of data types. First, remember that Objective-C is a superset of
C, so you have access to all of the native C data types like char, int, float, etc., Objective-C

also defines a few of its own low-level types, including a Boolean type. Let’s call all of these
“primitive data types."

Second, Objective-C provides several high-level data structures like strings, arrays, dictionaries,
and dates. These high-level data types are implemented as Objective-C objects, so you’ll see
many of the same object-oriented constructs from the previous chapter. Since these are all
defined in the Foundation framework, we’ll call them “foundation data structures."

Figure 14: Our two categories of data types

This chapter covers both primitive data types and the most important foundation data structures.
By the end of this chapter, you should have a solid grasp of every data structure you could
possibly need for your Objective-C programs.

Displaying Values

In addition to data types, we’ll also learn a lot more about NSLog() string formatting in this

chapter. This will let us display variables of all sorts in the Xcode console, which is an
indispensable skill for debugging applications.

As we saw in the previous chapter, NSLog() can be called with a format string. Inside of the

format string, you use the % symbol to designate placeholder values, and NSLog() will fill them

in with values passed as additional parameters. For example, the %@ in the following code is

replaced with the aName variable:

NSLog(@"Hello %@, my name is HAL.", aName);

The %@ is used as a placeholder for objects (Objective-C strings are implemented as objects),

but primitive data types use their own format specifiers, which will be covered in their respective
sections.

25

Primitive Data Types

The first half of this chapter looks at the native Objective-C data types and discusses how to
display them using NSLog() format strings. The size of the data types presented in this section

is system-dependent—the only way to truly know how big your data types are is to use the
sizeof() function. For example, you can check the size of a char with the following:

NSLog(@"%lu", sizeof(char));

This should output 1, which means that char takes up 1 byte of memory. The %lu placeholder is

for unsigned long integers (discussed in more detail later), which is the return type for
sizeof(). Upcoming sections discuss the most common sizes for Objective-C data types, but

remember that this may differ from your system.

Booleans

Objective-C programs use the BOOL data type to store Boolean values. Objective-C also defines

its own true and false keywords, which are YES and NO, respectively. To display BOOL values via

NSLog(), use %i in the format string:

BOOL isHuman = NO;
NSLog(@"It's alive: %i", isHuman);

The %i specifier is used to display integers, so this should output It's alive: 0.

Technically, BOOL is a macro for the signed char type (discussed in the next section). This

means that BOOL variables can store many more values than just YES and NO, which are actually

macros for 1 and 0, respectively. However, most developers will never use this extra

functionality, since it can be a source of frustrating bugs in conditional statements:

BOOL isHuman = 127;
if (isHuman) {
 // This will execute.
 NSLog(@"isHuman is TRUE");
}
if (isHuman == YES) {
 // But this *won't* execute.
 NSLog(@"isHuman is YES");
}

Any value greater than 0 will evaluate to true, so the first condition will execute, but the second

will not because 127 != 1. Depending on how you’re using your BOOL variables, this may or

may not be a desirable distinction.

26

Chars

Objective-C uses the same char data type as ANSI C. It denotes a single-byte signed integer,

and can be used to store values between -128 and 127 or an ASCII character. To display a

char as an integer, just use the generic %i specifier introduced in the previous code sample. To

format it as an ASCII character, use %c:

char letter = 'z';
NSLog(@"The ASCII letter %c is actually the number %i", letter, letter);

As with all integer data types, it’s possible to allocate an unsigned char, which can record

values from 0 to 255. Instead of the %i specifier, you should use %u as a placeholder for

unsigned integers:

unsigned char tinyInt = 255;
NSLog(@"The unsigned char is: %u", tinyInt);

Short Integers

Short integers are 2-byte signed integers and should be used for values between -32768 and

32767. To display them with NSLog(), use the %hi specifier (the h is a “modifier” for the same

%i used in the previous two sections). For example:

short int littleInt = 27000;
NSLog(@"The short int is: %hi", littleInt);

Unsigned shorts can be created the same way as unsigned chars and can hold up to 65535.

Again, the u in %hu is the same one in %u for generic unsigned integers:

unsigned short int ulittleInt = 42000;
NSLog(@"The unsigned short integer is: %hu", ulittleInt);

“Normal” Integers

Next on the list is int, which is a 4-byte integer on most systems. Again, remember that data

type size is system-dependent—the only way to know for sure how big your data types are is to
use the sizeof() function:

NSLog(@"%lu", sizeof(int));

If your int type is indeed 4 bytes, it can hold values between -2147483648 and 2147483647.

int normalInt = 1234567890;

27

NSLog(@"The normal integer is: %i", normalInt);

This also means that the unsigned version can record 0–4294967295.

Long Integers

If int isn’t big enough to meet your needs, you can move up to the long int data type, which

is 8 bytes on most modern systems. This is large enough to represent values between -
9223372036854775808 and 9223372036854775807. Long integers can be displayed via

NSLog() by prepending the letter l to the %i or %u specifiers, as shown in the following code:

long int bigInt = 9223372036854775807;
NSLog(@"The big integer is: %li", bigInt);

unsigned long int uBigInt = 18446744073709551615;
NSLog(@"The even bigger integer is: %lu", uBigInt);

18446744073709551615 is the maximum value for the unsigned version, which is hopefully the

largest integer you’ll ever need to store.

The idea behind having so many integer data types is to give developers the power to balance
their program’s memory footprint vs. its numerical capacity.

Floats

Objective-C programs can use the float type for representing 4-byte floating point numbers.

Literal values should be suffixed with f to mark the value as single precision instead of a

double (discussed in the next section). Use the %f specifier to output floats with NSLog():

float someRealNumber = 0.42f;
NSLog(@"The floating-point number is: %f", someRealNumber);

You can also specify the output format for the float itself by including a decimal before the f. For

example, %5.3f will display 3 digits after the decimal and pad the result so there are 5 places

total (useful for aligning the decimal point when listing values).

While floating-point values have a much larger range than their fixed-point counterparts, it’s
important to remember that they are intrinsically not precise. Careful consideration must be paid
to comparing floating-point values, and they should never be used to record precision-sensitive
data (e.g., money). For representing fixed-point values in Objective-C, please see
NSDecimalNumber in the the Foundation Data Structures section.

Doubles

The double data type is a double-precision floating-point number. For the most part, you can

treat it as a more accurate version of float. You can use the same %f specifier for displaying

doubles in NSLog(), but you don’t need to need to append f to literal values:

28

double anotherRealNumber = 0.42;
NSLog(@"The floating-point number is: %5.3f", anotherRealNumber);

Structs

Objective-C also provides access to C structs, which can be used to define custom data
structures. For example, if you’re working on a graphics program and interact with many 2-
dimensional points, it’s convenient to wrap them in a custom type:

typedef struct {
 float x;
 float y;
} Point2D;

The typedef keyword tells the compiler we’re defining a new data type, struct creates the

actual data structure, which comprises the variables x and y, and finally, Point2D is the name of

the new data type. After declaring this struct, you can use Point2D just like you would use any

of the built-in types. For instance, the following snippet creates the point (10.0, 0.5) and

displays it using our existing NSLog() format specifiers.

Point2D p1 = {10.0f, 0.5f};
NSLog(@"The point is at: (%.1f, %.1f)", p1.x, p1.y);

The {10.0f, 0.5f} notation is called a compound literal, and it can be used to initialize a

struct. After initialization, you can also assign new values to a struct’s properties with the =

operator:

p1.x = -2.5f;
p1.y = 2.5f;

Structures are important for performance-intensive applications, but they sometimes prove
difficult to integrate with the high-level Foundation data structures. Unless you’re working with 3-
D graphics or some other CPU-heavy application, you’re usually better off storing custom data
structures in a full-fledged class instead of a struct.

Arrays

While Objective-C provides its own object-oriented array data types, it still gives you access to
the low-level arrays specified by ANSI C. C arrays are a contiguous block of memory allocated
when they’re declared, and all of their elements must be of the same type. Unlike C# arrays, this
means you need to define an array’s length when it’s declared, and you can’t assign another
array to it after it’s been initialized.

Because there is no way for a program to automatically determine how many elements are in an
array, there is no convenient NSLog() format specifier for displaying native arrays. Instead,

29

we’re stuck with manually looping through each element and calling a separate NSLog(). For

example, the following code creates and displays an array of 5 integers:

int someValues[5] = {15, 32, 49, 90, 14};
for (int i=0; i<5; i++) {
 NSLog(@"The value at index %i is: %i", i, someValues[i]);
}

As you can see, C arrays look much like atomic variables, except you have to provide their
length in square brackets ([5]). They can be initialized with the same compound literal syntax

as structs, but all the values must be of the same type. Individual elements can be accessed by
passing the item number in square brackets, which is common in most programming languages.
In addition, you can access elements via pointers.

Pointers

Pointers provide a low-level way to directly access memory addresses in a C program. And,
since C arrays are just contiguous blocks of memory, pointers are a natural way to interact with
items in an array. In fact, the variable holding a native array is actually a pointer to the first
element in the array.

Pointers are created by prefixing the variable name with an asterisk (*). For example, we can

create a second reference to the first element in the someValues array with the following code:

int someValues[5] = {15, 32, 49, 90, 14};
int *pointer = someValues;

Instead of storing an int value, the *pointer variable points to the memory address containing

the value. This can be visualized as the following:

Figure 15: Pointer to the first element of an array

To get the underlying value out of the memory address, we need to dereference the pointer
using the asterisk operator, like so:

NSLog(@"The first value is: %i", *pointer);

This should display 15 in your output panel, since that is the value stored in the memory
address pointed to by the pointer variable. So far, this is just a very confusing way to access a

30

normal (non-pointer) int variable. However, things get much more interesting when you start
moving pointers around with the ++ and -- operators. For example, we can increment the pointer
to the next memory address as follows:

pointer++;
NSLog(@"The next value is: %i", *pointer);

Since an array is a contiguous block of memory, the pointer will now rest at the address of the
second element of the array. As a result, the NSLog() call should display 32 instead of 15. This

can be visualized as the following:

Figure 16: Incrementing the pointer to the second element of an array

Pointers provide an alternative way to iterate through an array. Instead of accessing items via
the square brackets (e.g., someValues[i]), you can simply increment the pointer and

dereference it to get the next value:

for (int i=0; i<5; i++) {
 pointer++;
 NSLog(@"The value at index %i is: %i", i, *pointer);
}

Pointers have innumerable uses in high-performance applications, but in reality, you probably
won’t need to use pointers with native arrays unless you’re building a data-intensive application
that is seriously concerned with speed.

However, pointers are still very important to Objective-C programs because every object is
referenced through a pointer. This is why all of the data structures in the upcoming Foundation
Data Structures section are declared as pointers (e.g., NSNumber *someNumber, not NSNumber
someNumber).

Void

The void type represents the absence of a value. Instead of typing variables, void is used with

functions and methods that don’t return a value. For example, the sayHello method from the

previous chapter didn’t return anything, and it was thus defined with the void data type:

- (void)sayHello;

31

nil and NULL

The nil and NULL keywords are both used to represent empty pointers. This is useful for

explicitly stating that a variable doesn’t contain anything, rather than leaving it as a pointer to its
most recent memory address.

There is, however, a strict distinction between the two. The nil constant should only be used as

an empty value for Objective-C objects—it should not be used to for native C-style pointers
(e.g., int *somePointer). NULL can be used for either primitive pointers or Objective-C object

pointers, though nil is the preferred choice.

Primitive Data Type Summary

The first half of this chapter introduced the primitive data types available to Objective-C
programmers. We also took a brief look pointers and the nil and NULL keywords.

It’s important to remember that the value stored in a variable is completely independent from
how it’s interpreted. unsigned ints can be interpreted as signed ints without changing the

variable in any way. That’s why it’s so important to make sure you’re using the right format string
in NSLog(). Otherwise, you’ll be left wondering why your unsigned variables look like they’re

storing negative numbers. As we’ll see in the next section, this isn’t as much of a problem with
object-oriented data types.

The remainder of this chapter focuses on the Foundation framework, which defines several
object-oriented data structures that all Objective-C developers should be familiar with.

Foundation Data Structures

Primitive data types are essential to any Objective-C program, but it’s often tedious to work on
such a low level. The Foundation framework abstracts these native types into high-level, object-
oriented tools, which lets you focus on how your application works instead of how to store your
data.

The data structures that follow are common to most high-level programming languages, but
since it’s Objective-C, they have unique method names for manipulating the data they contain.
The goal of this section is to introduce you to the most important aspects of the core classes
defined in the Foundation framework, rather than to provide a comprehensive API reference. If
you’re looking for the latter, please visit the Foundation Framework Reference.

NSNumber

NSNumber is a generic container for numeric types (i.e. BOOL, char, short, int, long, float,

and double). It lets you take one of the primitive types discussed earlier in this chapter and

interact with it in an object-oriented fashion. This is called boxing, and it’s an essential tool for
integrating Objective-C with C and C++ libraries.

NSNumber provides several convenient methods to convert to and from primitive values. For

example, you can store an integer in NSNumber with the following:

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/ObjC_classic/_index.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/Reference/Reference.html%23//apple_ref/doc/uid/TP40003704

32

int someInteger = -27;
NSNumber *someNumber = [NSNumber numberWithInt:someInteger];

Likewise, floats can be created with numberWithFloat:, doubles can be created with

numberWithDouble:, BOOLs can be created with numberWithBool:, etc., The recorded value

can be accessed with the corresponding accessor method:

NSLog(@"The stored number is: %i", [someNumber intValue]);

Accessors for other primitives follow the same pattern: floatValue, doubleValue, boolValue, etc.

Remember that the %@ specifier is used as a placeholder for objects. Most classes in the

Foundation framework define their own display formats. NSNumber will simply display its stored

value, so the following format string will output the exact same thing as the previous snippet.
Not having to figure out which specifier to use is one of the convenient perks of using NSNumber.

NSLog(@"The stored number is: %@", someNumber);

Note that NSNumber is an immutable type, so you’ll have to create a new instance if you need to

change the stored value. This may seem like a lot of overhead, but compared to everything else
going on in an Objective-C program, it’s not actually that much of a performance hit. Of course,
if it becomes a problem, you can always fall back to the native C primitives.

One of the other perks of NSNumber is the ability to set a variable to nil to indicate an empty

value. There is no way to do this with primitive numerical values.

NSDecimalNumber

The NSDecimalNumber class is Objective-C’s fixed-point class. It can represent much more
precise numbers than float or double, and is thus the preferred way to represent money or

other precision-sensitive data. The easiest way to create an NSDecimalNumber is to use the

decimalNumberWithString: method, like so:

NSDecimalNumber *subtotal = [NSDecimalNumber
 decimalNumberWithString:@"10.99"];

Since NSDecimalNumber uses more precise arithmetic algorithms than floating-point numbers,

you can’t use the standard +,-,*, or / operators. Instead, NSDecimalNumber provides its own

methods for all of these operations:

 - decimalNumberByAdding:(NSDecimalNumber *)aNumber

 - decimalNumberBySubtracting:(NSDecimalNumber *)aNumber

 - decimalNumberByMultiplyingBy:(NSDecimalNumber *)aNumber

 - decimalNumberByDividingBy:(NSDecimalNumber *)aNumber

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSDecimalNumber_Class/Reference/Reference.html%23//apple_ref/doc/uid/TP40003644

33

Like NSNumber, NSDecimalNumber is an immutable type, so all of these methods return a new

instance of NSDecimalNumber. For example, the next snippet multiplies a product’s price by a

discount percentage:

NSDecimalNumber *subtotal = [NSDecimalNumber
 decimalNumberWithString:@"10.99"];
NSDecimalNumber *discount = [NSDecimalNumber
 decimalNumberWithString:@".25"];
NSDecimalNumber *total = [subtotal decimalNumberByMultiplyingBy:discount];
NSLog(@"The product costs: $%@", total);

However, if you run this code sample, you’ll notice that it outputs a few extra places after the
decimal. Fortunately, NSDecimalNumber provides detailed options for configuring its rounding

behavior. This is the primary reason to use NSDecimalNumber over the primitive float or

double data types. To define your rounding behavior, create an instance of

NSDecimalNumberHandler with your desired parameters, and then pass it to

NSDecimalNumber’s arithmetic operations via the withBehavior parameter. The following

configuration is useful for working with currencies:

NSDecimalNumberHandler *roundUp = [NSDecimalNumberHandler
 decimalNumberHandlerWithRoundingMode:NSRoundUp
 scale:2
 raiseOnExactness:NO
 raiseOnOverflow:NO
 raiseOnUnderflow:NO
 raiseOnDivideByZero:YES];

NSDecimalNumber *roundedTotal = [subtotal
 decimalNumberByMultiplyingBy:discount
 withBehavior:roundUp];

NSLog(@"The product costs: $%@", roundedTotal);

The NSRoundUp argument tells NSDecimalNumber operations to round up (the other options are

NSRoundPlain, NSRoundDown, and NSRoundBankers). Next, the scale parameter defines the

maximum number of digits after the decimal point (note that negative values will start removing
significant figures to the left of the decimal point). The rest of the parameters define the
exception handling behavior of NSDecimalNumber operations. In this case, we’re telling it to

ignore everything that could go wrong unless we try to divide by zero. Together, these
arguments make sure that we always have two decimals in our currency values and that they
are always rounded up.

Generally, an instance of NSDecimalNumber is only useful for interacting with other

NSDecimalNumber objects, but you may occasionally need to convert them to another data type:

double totalAsDouble = [roundedTotal doubleValue];
NSString *totalAsString = [roundedTotal stringValue];

34

The stringValue method is particularly useful for exporting values to a database or some other

persistent storage (NSDecimalNumber should never be stored as a double unless you really

don’t care about loss of precision). It’s also worth mentioning that the Core Data framework
does provide a native storage mechanism for NSDecimalNumber, although that’s outside the

scope of this book.

NSString

NSString is the immutable string class used by the vast majority of Objective-C programs.
We’ve already seen it in action in the Hello, Objective-C chapter, but let’s take a closer look at
some of its methods. At heart, NSString is a glorified C array of integers representing

characters. Its two most basic methods are:

 -(NSUInteger)length – Return the number of characters in the string.

 -(unichar)characterAtIndex:(NSUInteger)theIndex – Return the character at

theIndex.

These two methods make it possible to iterate through individual characters in a string. For
example:

NSString *quote = @"Open the pod bay doors, HAL.";
for (int i=0; i<[quote length]; i++) {
 NSLog(@"%c", [quote characterAtIndex:i]);
}

Yet the real power of NSString comes in its higher-level functionality. Some of the most

common methods are described in the following list, but keep in mind that this list is far from
complete.

 +(id)stringWithFormat:(NSString *)format ... – Create a string using the same

placeholder format as NSLog().

 -(NSString *)stringByAppendingString:(NSString *)aString – Append a string

to the receiving object.

 -(NSString *)stringByAppendingFormat:(NSString *)format ... – Append a

string using the same placeholder format as NSLog().

 -(NSString *)lowercaseString – Return the lowercase representation of the

receiving string.

 -(NSString *)substringWithRange:(NSRange)aRange – Return a substring residing

in aRange (see following example for usage).

 -(NSRange)rangeOfString:(NSString *)aString – Search for aString in the

receiving string and return the location and length of the result as an NSRange (see

following example for usage).

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html%23//apple_ref/doc/uid/TP40003744

35

 -(NSString *)stringByReplacingOccurancesOfString:(NSString *)target
withString:(NSString *)replacement – Replace all occurrences of target with

replacement.

This last method is a good example of how the verbose nature of Objective-C method names
makes programs self-documenting. It’s long to type, but no one will mistake what you are trying
to accomplish with this method. The following example demonstrates a few of these higher-level
methods and shows you how to use NSRange, which is a struct containing location and

length fields. NSMakeRange() is a convenience function defined by the Foundation framework

for creating an NSRange.

NSString *quote = @"Open the pod bay doors, HAL.";
NSRange range = NSMakeRange(4, 18);
NSString *partialQuote = [quote substringWithRange:range];
NSLog(@"%@", partialQuote);

NSString *target = @"HAL";
NSRange result = [quote rangeOfString:target];
NSLog(@"Found %@ at index %lu. It's %lu characters long.",
 target, result.location, result.length);

NSString also has the ability to directly read and write the contents of a file, but we’ll leave that

until the second book of this series, iOS Succinctly.

NSMutableString

As you probably could have guessed, NSMutableString is the mutable counterpart of

NSString. A mutable string is one that lets you change individual characters without generating

an entirely new string. If you’re making many small changes to a string, a mutable string is more
efficient, since it changes the characters in place. An immutable string, on the other hand, would
have to allocate a new string for each change.

NSMutableString is implemented as a subclass of NSString, so you have access to all of the

NSString methods, along with the addition of a few new methods for manipulating the character

array in place:

 -(void)appendString:(NSString *)aString – Append aString to the end of the

receiving string.

 -(void)appendFormat:(NSString *)format ... – Append a string using the same

placeholder format as NSLog().

 -(void)insertString:(NSString *)aString atIndex (NSUInteger)anIndex –

Insert a string into the specified index.

 -(void)deleteCharactersInRange:(NSRange)aRange – Remove characters from the

receiving string.

 -(void)replaceCharactersInRange:(NSRange)aRange withString:(NSString
*)aString – Replace the characters in aRange with aString.

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_DataTypes/Reference/reference.html

36

Note that these methods all have void return types, whereas the corresponding NSString

methods return NSString objects. This is indicative of the behavior of mutable strings: nothing

needs to be returned, because the characters are manipulated in place.

// With immutable strings.
NSString *quote = @"I'm sorry, Dave. I'm afraid I can't do that.";
NSString *newQuote = [quote
 stringByReplacingCharactersInRange:NSMakeRange(11, 4)
 withString:@"Capt'n"];
NSLog(@"%@", newQuote);

// With a mutable string.
NSMutableString *mquote = [NSMutableString stringWithString:quote];
[mquote replaceCharactersInRange:NSMakeRange(11, 4)
 withString:@"Capt'n"];
NSLog(@"%@", mquote);

As you can see in this sample, the basic workflow behind mutable strings is much different than
immutable strings. Mutable string methods operate on the object, so you can use the same
variable over and over, changing its contents on the fly. Immutable string methods need multiple
variables; of course, you could assign the new string to the same variable over and over, but
new strings would still be generated behind the scenes.

Sometimes it’s hard to know when to use immutable versus mutable data types. Mutable strings
generally have very specific use cases (e.g., a linguistic parser that operates on tokens), so if
you’re not sure if you need one, you probably don’t. For something like the previous example,
an immutable string would be more appropriate.

NSArray

Arrays are ordered collections of objects that let you maintain and sort lists of data. Like
NSString, NSArray is immutable, so its contents cannot be changed without requesting an

entirely new array. The most important NSArray methods are shown in the following list. Once

again, this is merely a survey, not a comprehensive overview:

 +(id)arrayWithObjects:(id)firstObject, ... – Create a new array by passing in

a list of objects.

 -(NSUInteger)count – Return the number of elements in the array.

 -(id)objectAtIndex:(NSUInteger)anIndex – Return the element in the array at

index anIndex.

 -(BOOL)containsObject:(id)anObject – Return whether or not anObject is an

element of the array.

 -(NSUInteger)indexOfObject:(id)anObject – Return the index of the first

occurrence of anObject in the array. If the object is not in the array, return the

NSNotFound constant.

37

 -(NSArray *)sortedArrayUsingFunction:(NSInteger (*)(id, id, void
*))compareFunction context:(void *)context – Sort an array by comparing

objects with a user-defined function (see the second example that follows for usage).

Note that all of these methods use the generic object type id for their arguments. Consequently,

NSArray can only handle objects—it cannot be used with primitive data types. The practical

function of classes like NSNumber should now be much clearer: they facilitate boxing. That is,

they make it possible to use char, int, float, etc., with NSArray by wrapping them in an

object-oriented container. For example, the following snippet shows how you can use NSArray

to manage a list of float values:

NSNumber *n1 = [NSNumber numberWithFloat:22.5f];
NSNumber *n2 = [NSNumber numberWithFloat:8.0f];
NSNumber *n3 = [NSNumber numberWithFloat:-2.9f];
NSNumber *n4 = [NSNumber numberWithFloat:13.1f];
NSArray *numbers = [NSArray arrayWithObjects:n1, n2, n3, n4, nil];
NSLog(@"%@", numbers);

Compared to primitive C arrays, NSArray provides plenty of high-level functionality, but of

course, it comes at a cost. Boxing can be an expensive operation for high-performance
applications. Imagine a graphics program using tens of thousands of floats to represent

vertices in 3-D space. Creating that many NSNumber objects just for the sake of NSArray

compatibility is not an efficient use of memory or CPU cycles. In that kind situation, you’re
probably better off sticking with native C arrays and directly working with primitive data types.

The signature for the sortedArrayUsingFunction: method may look intimidating, but it’s

actually a relatively straightforward way to define a custom sort algorithm for an array. First, you
need to define the sort function:

Included code sample: ArraySort

NSInteger sortFunction(id item1, id item2, void *context) {
 float number1 = [item1 floatValue];
 float number2 = [item2 floatValue];
 if (number1 < number2) {
 return NSOrderedAscending;
 } else if (number1 > number2) {
 return NSOrderedDescending;
 } else {
 return NSOrderedSame;
 }
}

This defines a very simple ascending sort, but it demonstrates the essential components of a
sort function. The item1 and item2 arguments are the two items currently being compared.

Since the values are boxed in an NSNumber, we need to pull out the values before comparing

them. Then we do the actual comparison, returning NSOrderedAscending when item1 should

be placed before item2, NSOrderedDescending when it should be after item2, and returning

NSOrderedSame when they do not need to be sorted. We can use this sort function like so:

38

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 NSNumber *n1 = [NSNumber numberWithFloat:22.5f];
 NSNumber *n2 = [NSNumber numberWithFloat:8.0f];
 NSNumber *n3 = [NSNumber numberWithFloat:-2.9f];
 NSNumber *n4 = [NSNumber numberWithFloat:13.1f];
 NSArray *numbers = [NSArray arrayWithObjects:n1, n2, n3, n4, nil];
 NSLog(@"%@", numbers);

 NSArray *sortedNumbers = [numbers
 sortedArrayUsingFunction:sortFunction
 context:NULL];
 NSLog(@"%@", sortedNumbers);

 }
 return 0;
}

The second NSLog() output should show the numbers in ascending order from -2.9 to 22.5.

sortedNumbers is an entirely new array, and that the numbers variable remains unaltered. They

do, however, point to the same instances of n1, n2, n3, and n4.

NSMutableArray

NSMutableArray is the mutable counterpart of NSArray. It’s possible to change items after the

array has been allocated and to extend or shrink the array by an arbitrary number of elements.
While not as efficient as NSArray, the ability to incrementally add or remove items makes

NSMutableArray a common data structure in Objective-C applications. NSMutableArray is a

subclass of NSArray, so they can be created, accessed, and sorted using the methods in the

previous section, but they also provide a few extra methods for manipulating their contents:

 +(id)arrayWithCapacity:(NSUInteger)numItems – Create an empty mutable array.

The numItems argument is used as a size hint, so it should be roughly the number of

initial number of items you plan to store.

 -(void)addObject:(id)anObject – Add the given object to the end of the existing

array.

 -(void)insertObject:(id)anObject atIndex:(NSUInteger)anIndex – Insert the

given object into the specified index.

 -(void)removeObjectAtIndex:(NSUInteger)anIndex – Remove the object at the

specified index.

 -(void)removeAllObjects – Clear the array.

 -(void)replaceObjectAtIndex:(NSUInteger)anIndex withObject:(id)anObject

– Overwrite the object at anIndex with anObject.

39

 -(void)exchangeObjectAtIndex:(NSUInteger)index1
withObjectAtIndex:(NSUInteger)index2 – Swap the locations of two objects in the

array.

Note that most of these mutable methods are essentially “write” methods, whereas the methods
discussed in the NSArray section are mostly “read” methods. In addition, the mutable sort
methods are the same as NSArray, except they sort the array in place instead of generating a

new array. These differences are much the same as NSString versus NSMutableString. A

simple example demonstrating the use of NSMutableArray as a queue follows:

// Define some people.
NSString *n1 = @"HAL";
NSString *n2 = @"Dave";
NSString *n3 = @"Heywood";

// Initialize an empty queue.
NSMutableArray *queue = [NSMutableArray arrayWithCapacity:4];

// Add to the queue.
[queue addObject:n1];
[queue addObject:n2];
[queue addObject:n3];

// Remove from the queue
NSLog(@"Removing %@ from queue.", [queue objectAtIndex:0]);
[queue removeObjectAtIndex:0];
NSLog(@"Removing %@ from queue.", [queue objectAtIndex:0]);
[queue removeObjectAtIndex:0];
NSLog(@"Removing %@ from queue.", [queue objectAtIndex:0]);
[queue removeObjectAtIndex:0];

NSSet and NSMutableSet

Sets also represent a collection of objects, but unlike arrays, they are unordered collections. In
addition, all of their elements must be unique. If you don’t care about the order of elements or
you want to make sure you don’t have any duplicates in the collection, you should use NSSet
and NSMutableSet instead of an array. In addition, sets are optimized for membership checking,
so if your code is asking a lot of questions like, “Is this object in this group?” you should
definitely be using a set instead of an array.

http://developer.apple.com/library/mac/#documentation/cocoa/reference/foundation/Classes/NSSet_Class/Reference/Reference.html%23//apple_ref/doc/uid/TP40003736
http://developer.apple.com/library/mac/#documentation/cocoa/reference/foundation/Classes/NSMutableSet_Class/Reference/NSMutableSet.html%23//apple_ref/doc/uid/TP40003694

40

Figure 17: Ordered arrays vs. unordered sets

Data structures reflect the underlying relationships between their elements. The array
interpretation of the previous figure could be something like, “Dave is in charge, then Heywood,
then Frank, and finally HAL,” whereas the set interpretation is more generic: “Dave, Heywood,
Frank, and HAL are part of the crew.”

Other than ordering, sets and arrays have very similar functions and APIs. Some of the most
important methods are:

 +(id)setWithObjects:(id)firstObject, ... – Create a new set by passing a list of

objects.

 +(id)setWithArray:(NSArray)anArray – Create a new set with the contents of an

array. This is a simple way to remove duplicate items from an NSArray.

 -(NSUInteger)count – Return the number of members in the set.

 -(BOOL)containsObject:(id)anObject – Return YES if the specified object is a

member of the set, NO otherwise. NSArray does have an identical method, but the NSSet

version is more efficient.

 -(NSArray *)allObjects – Return an NSArray containing all of the set’s members.

You can iterate through the members of a set using Objective-C’s fast-enumeration syntax, as
demonstrated in the following sample. Note that since NSSet is unordered, there is no

guarantee as to how the objects will appear during the iteration:

NSSet *crew = [NSSet setWithObjects:@"Dave", @"Heywood", @"Frank", @"HAL", nil];
for (id member in crew) {
 NSLog(@"%@", member);
}

41

The Foundation framework also provides a mutable version of NSSet called NSMutableSet.

Like NSMutableArray, you can alter a mutable set after creating it. Some of these “write”

methods are:

 -(void)addObject:(id)anObject – Add the specified object to the set. Duplicate

members will be ignored.

 -(void)removeObject:(id)anObject – Remove the specified object from the set.

 -(void)unionSet:(NSSet *)otherSet – Add each item in otherSet to the receiving

set if it’s not already a member.

Both the immutable and mutable versions of NSSet provide several other methods for logical

operations like intersections and equality. Please see the official reference for more information.

NSDictionary and NSMutableDictionary

Dictionaries, also called associative arrays, are unordered associations of key-value pairs. It’s
possible to use any object as a key or a value, so dictionaries can be used for anything from
dynamically assigning roles to objects to mapping string commands to functions.

Figure 18: Unordered key-value pairs

Like strings, arrays, and sets, there is an immutable and a mutable version. Some of the most
common methods for NSDictionary are:

 +(id)dictionaryWithObjectsAndKeys:(id)firstValue, (id)firstKey, ... –

Create a dictionary by passing key-value pairs as parameters. Every two objects in the
parameter list define a pair, and the first object defines the value, while the second
object defines the key for that value (see next example for usage).

 -(NSUInteger)count – Return the number of entries in the dictionary.

 -(id)objectForKey:(id)aKey – Return the object (value) associated with aKey, or nil

if there is no entry for aKey.

 -(NSArray *)allKeys – Return a new array containing all of the keys in the dictionary.

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSDictionary_Class/Reference/Reference.html

42

 -(NSArray *)allValues – Return a new array containing all of the values in the

dictionary.

 -(NSArray *)allKeysForObject:(id)anObject – Return a new array containing all

of the keys associated with anObject. Note that it’s possible to have multiple keys

associated with a single object, so keys must be returned as an array, not a single
object.

The two core methods for NSMutableDictionary are described in the following list. Again, note

that these are the “write” methods for the associated “read” methods of NSDictionary.

 -(void)setObject:(id)anObject forKey:(id<NSCopying>)aKey – Add a new key-

value pair to the dictionary. The aKey argument must conform to the NSCopying protocol

(refer to the Protocols chapter for more information). All of the objects we’ve discussed
so far conform to this protocol, so you don’t need to worry about it unless you’re using
custom classes as keys.

 -(void)removeObjectForKey:(id)aKey – Remove the entry using aKey as its key.

Like NSSet, dictionaries can be iterated over using the fast-enumeration syntax, as

demonstrated here:

NSMutableDictionary *crew = [NSMutableDictionary
dictionaryWithObjectsAndKeys:@"Dave", @"Capt'n",
 @"Heywood", @"Scientist",
 @"Frank", @"Engineer", nil];

[crew setObject:@"HAL" forKey:@"Crazy Computer"];
[crew removeObjectForKey:@"Engineer"];

for (id role in crew) {
 NSLog(@"%@: %@", role, [crew objectForKey:role]);
}

This should output the following in your console, although the items may appear in a different
order:

Scientist: Heywood
Crazy Computer: HAL
Capt'n: Dave

The id Data Type

While not technically a part of the Foundation framework, this is an appropriate time to introduce
the id type, which is the generic object data type. It can hold a pointer to any Objective-C

object, regardless of its class. This makes it possible to store different kinds of objects in a
single variable, opening the door to dynamic programming. For example, id lets you store an

NSNumber, an NSDecimalNumber, or an NSString in the same variable:

43

id mysteryObject = [NSNumber numberWithInt:5];
NSLog(@"%@", mysteryObject);

mysteryObject = [NSDecimalNumber decimalNumberWithString:@"5.1"];
NSLog(@"%@", mysteryObject);

mysteryObject = @"5.2";
NSLog(@"%@", mysteryObject);

Note that id implies that the value will be a pointer, so variable declarations don’t require an

asterisk before the variable name. In other words, variables should always be declared as id
mysteryObject, not id *mysteryObject.

Since an id variable doesn’t check what kind of object it contains, it’s the programmer’s

responsibility to makes sure he or she doesn’t call methods or access properties that aren’t
defined on the object (e.g., don’t try to call stringValue when the variable contains an

NSString instance.

The Class Data Type

Objective-C classes are actually objects themselves, and they can be stored in variables using
the Class type. You can get the class object associated with a particular class by sending it the

class message. The following example shows how to retrieve a class object, store it in a Class

variable, and use it to figure out which kind of object is stored in an id variable:

Class targetClass = [NSString class];

id mysteryObject = [NSNumber numberWithInt:5];
NSLog(@"%i", [mysteryObject isKindOfClass:targetClass]);

mysteryObject = [NSDecimalNumber decimalNumberWithString:@"5.1"];
NSLog(@"%i", [mysteryObject isKindOfClass:targetClass]);

mysteryObject = @"5.2";
NSLog(@"%i", [mysteryObject isKindOfClass:targetClass]);

The Class data type brings the same dynamic capabilities to classes that id brings to objects.

Foundation Data Structures Summary

The classes presented in the latter half of this chapter provide the foundation to nearly every
Objective-C program. Strings, arrays, sets, and dictionaries are the core of nearly every
programming language, and having such a high-level interface for representing data is an
important aspect of productivity. We also saw how Objective-C needs to box C primitives for use
with these Foundation framework classes, which provides a convenient API at the expense of
performance and memory. Of course, you’re always free to work with primitive data types in an
Objective-C program.

44

We also examined two more object-oriented data types available to Objective-C applications: id

and Class. Together, these open up a wide variety of possibilities for organizing an application.

45

Chapter 3 Properties

Now that we’ve explored what data types are available, we can talk about actually using them in
a productive manner. We learned how to declare properties in Hello, Objective-C, but this
chapter dives deeper into the nuances behind public properties and instance variables. First,
we’ll take a quick look at the basic syntax of properties and instance variables, and then we’ll
discuss how to use behavior attributes to modify accessor methods.

Declaring Properties

Properties can be declared in an interface using the @property directive. As a quick review,

let’s take a look at the Person.h file we created in the Hello, Objective-C chapter:

#import <Foundation/Foundation.h>

@interface Person : NSObject

@property (copy) NSString *name;

@end

This declares a property called name of type NSString. The (copy) attribute tells the runtime

what to do when someone tries to set the value of name. In this case, it creates an independent

copy of the value instead of pointing to the existing object. We’ll talk more about this in the next
chapter, Memory Management.

Implementing Properties

In Hello, Objective-C, we used the @synthesize directive to automatically create getter and

setter methods. Remember that the getter method is simply the name of the property, and the
default setter method is setName:

#import "Person.h"

@implementation Person

@synthesize name = _name;

@end

But, it’s also possible to manually create the accessor methods. Doing this manually helps to
understand what @property and @synthesize are doing behind the scenes.

46

Included code sample: ManualProperty

First, add a new property to the Person interface:

@property (copy) NSString *name;
@property unsigned int age;

Note that we’re storing age as a primitive data type (not a pointer to an object), so it doesn’t

need an asterisk before the property name. Back in Person.m, define the accessor methods

explicitly:

- (unsigned int)age {
 return _age;
}

- (void)setAge:(unsigned int)age {
 _age = age;
}

This is exactly what @synthesize would have done for us, but now we have the chance to

validate values before they are assigned. We are, however, missing one thing: the _age

instance variable. @synthesize automatically created a _name ivar, allowing us to forgo this for

the name property.

Instance Variables

Instance variables, also known as ivars, are variables intended to be used inside of the class.
They can be declared inside of curly braces after either the @interface or @implementation

directives. For example, in Person.h, change the interface declaration to the following:

@interface Person {
 unsigned int _age;
}

This defines an instance variable called _age, so this class should now compile successfully. By

default, instance variables declared in an interface are protected. The equivalent C# class
definition would be something like:

class Person {
 protected uint _age;
}

Objective-C scope modifiers are the same as in C#: private variables are only accessible to the
containing class, protected variables are accessible to all subclasses, and public variables are
available to other objects. You can define the scope of instance variables with the @private,

47

@protected, and @public directives inside of @interface, as demonstrated in the following

code:

@interface Person : NSObject {
 @private
 NSString *_ssn;
 @protected
 unsigned int _age;
 @public
 NSString *job;
}

Public ivars are actually a bit outside Objective-C norms. A class with public variables acts more
like a C struct than a class; instead of the usual messaging syntax, you need to use the ->

pointer operator. For example:

Person *frank = [[Person alloc] init];
frank->job = @"Astronaut";
NSLog(@"%@", frank->job);
// NOT: [frank job];

However, in most cases, you’ll want to hide implementation details by using an @property

declaration instead of public instance variables. Furthermore, because instance variables are
technically implementation details, many programmers like to keep all instance variables private.
With this in mind, ivars declared in @implementation are private by default. So, if you were to

move the _age declaration to Person.m instead of the header:

@implementation Person {
 unsigned int _age;
}

_age would be scoped as a private variable. Keep this in mind when working with instance

variables in subclasses, as the different defaults for interface versus implementation declaration
can be confusing for newcomers to Objective-C.

Customizing Accessors

But enough about instance variables; let’s get back to properties. Accessor methods can be
customized using several property declaration attributes (e.g., (copy)). Some of the most

important attributes are:

 getter=getterName – Customize the name of the getter accessor method. Remember

that the default is simply the name of the property.

 setter=setterName – Customize the name of the setter accessor method. Remember

that the default is set followed by the name of the property (e.g., setName).

48

 readonly – Make the property read-only, meaning only a getter will be synthesized. By

default, properties are read-write. This cannot be used with the setter attribute.

 nonatomic – Indicate that the accessor methods do not need to be thread safe.

Properties are atomic by default, which means that Objective-C will use a lock/retain
(described in the next chapter) to return the complete value from a getter/setter. Note,
however, that this does not guarantee data integrity across threads—merely that getters
and setters will be atomic. If you’re not in a threaded environment, non-atomic properties
are much faster.

A common use case for customizing getter names is for Boolean naming conventions. Many
programmers like to prepend is to Boolean variable names. This is easy to implement via the

getter attribute:

@property (getter=isEmployed) BOOL employed;

Internally, the class can use the employed variable, but other objects can use the isEmployed

and setEmployed accessors to interact with the object:

Person *frank = [[Person alloc] init];
[frank setName:@"Frank"];
[frank setEmployed:YES];
if ([frank isEmployed]) {
 NSLog(@"Frank is employed");
} else {
 NSLog(@"Frank is unemployed");
}

Many of the other property attributes relate to memory management, which will be discussed in
the upcoming section. It’s also possible to apply multiple attributes to a single property by
separating them with commas:

@property (getter=isEmployed, readonly) BOOL employed;

Dot Syntax

In addition to getter/setter methods, it’s also possible to use dot notation to access declared
properties. For C# developers, this should be much more familiar than Objective-C’s square-
bracket messaging syntax:

Person *frank = [[Person alloc] init];
frank.name = @"Frank"; // Same as [frank setName:@"Frank"];
NSLog(@"%@", frank.name); // Same as [frank name];

Note this is just a convenience—it translates directly to the getter/setter methods described
previously. Dot notation cannot be used for instance methods.

49

Summary

Properties are an integral aspect of any object-oriented programming language. They are the
data that methods operate on. The @property directive is a convenient way to configure a

property’s behavior, but it doesn’t do anything that can’t be done by manually creating getter
and setter methods.

In the next chapter, we’ll take a detailed look at how properties are stored in memory, as well as
a few new property attributes for controlling this behavior. After that, we’ll dive into methods,
which rounds out the core object-oriented tools of Objective-C.

50

Chapter 4 Memory Management

Memory must be allocated for each object your application uses, and it must be deallocated
when your application is done with it to ensure your application is using memory as efficiently as
possible. It’s important to understand Objective-C’s memory management environment to
ensure your program doesn’t leak memory or try to reference objects that no longer exist.

Figure 19: Counting references to an object

Unlike C#, Objective-C does not use garbage collection. Instead, it uses a reference-counting
environment that tracks how many places are using an object. As long as there is at least one
reference to the object, the Objective-C runtime makes sure the object will reside in memory.
However, if there are no longer any references to the object, the runtime is allowed to release
the object and use the memory for something else. If you try to access an object after it has
been released, your program will most likely crash.

There are two mutually exclusive ways to manage object references in Objective-C:

1. Manually send methods to increment/decrement the number of references to an object.

2. Let Xcode 4.2’s (and later) new automatic reference counting (ARC) scheme do the
work for you.

ARC is the preferred way to manage memory in new applications, but it’s still important to
understand what’s going on under the hood. The first part of this chapter shows you how to
manually track object references, and then we’ll talk about the practical implications of ARC.

Manual Memory Management

To experiment with any of the code in this section, you’ll need to turn off automatic reference
counting. You can do this by clicking the HelloObjectiveC project in Xcode’s navigation panel:

Figure 20: The HelloObjectiveC project in the navigation panel

51

This opens a window to let you adjust the build settings for the project. We’ll discuss build
settings in the second half of this series. For now, all we need to find is the ARC flag. In the
search field in the upper-right corner, type automatic reference counting, and you should see
the following setting appear:

Figure 21: Disabling automatic reference counting

Click the arrows next to Yes and change it to No to disable ARC for this project. This will let you

use the memory management methods discussed in the following paragraphs.

Manual memory management (also called manual retain-release or MMR) revolves around the
concept of object “ownership.” When you create an object, you’re said to own the object—it’s
your responsibility to free the object when you’re done with it. This makes sense, since you
wouldn’t want some other object to come along and release the object while you’re using it.

Object ownership is implemented through reference counting. When you claim ownership of an
object, you increase its reference count by one, and when you relinquish ownership, you
decrement its reference count by one. In this way, it’s possible to ensure that an object will
never be freed from memory while another object is using it. NSObject and the NSObject
protocol define the four core methods that support object ownership:

 +(id)alloc – Allocate memory for a new instance and claim ownership of that instance.

This increases the object’s reference count by one. It returns a pointer to the allocated
object.

 -(id)retain – Claim ownership of an existing object. It’s possible for an object to have

more than one owner. This also increments the object’s reference count. It returns a
pointer to the existing object.

 -(void)release – Relinquish ownership of an object. This decrements the object’s

reference count.

 -(id)autorelease – Relinquish ownership of an object at the end of the current

autorelease pool block. This decrements the object’s reference count, but lets you keep
using the object by deferring the actual release until a later point in time. It returns a
pointer to the existing object.

For every alloc or retain method you call, you need to call release or autorelease at some

point down the line. The number of times you claim an object must equal the number of times
you release it. Calling an extra alloc/retain will result in a memory leak, and calling an extra

release/autorelease will try to access an object that doesn’t exist, causing your program to

crash.

All of your object interactions—regardless of whether you’re using them in an instance method,
getter/setter, or a stand-alone function—should follow the claim/use/free pattern, as
demonstrated in the following sample:

http://developer.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Protocols/NSObject_Protocol/Reference/NSObject.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Protocols/NSObject_Protocol/Reference/NSObject.html

52

Included code sample: Manual Memory

int main(int argc, const char * argv[]) {

 // Claim the object.
 Person *frank = [[Person alloc] init];

 // Use the object.
 frank.name = @"Frank";
 NSLog(@"%@", frank.name);

 // Free the object.
 [frank release];

 return 0;
}

The [Person alloc] call sets frank’s reference count to one, and [frank release]

decrements it to zero, allowing the runtime to dispose of it. Note that trying to call another
[frank release] would result in a crash, since the frank variable no longer exists in memory.

When using objects as a local variable in a function (e.g., the previous example), memory
management is pretty straightforward: simply call release at the end of the function. However,

things can get trickier when assigning properties inside of setter methods. For example,
consider the following interface for a new class called Ship:

Included code sample: Manual Memory – weak reference

// Ship.h
#import "Person.h"

@interface Ship : NSObject

- (Person *)captain;
- (void)setCaptain:(Person *)theCaptain;

@end

This is a very simple class with manually defined accessor methods for a captain property.

From a memory-management perspective, there are several ways the setter can be
implemented. First, take the simplest case where the new value is simply assigned to an
instance variable:

// Ship.m
#import "Ship.h"

@implementation Ship {
 Person *_captain;
}

53

- (Person *)captain {
 return _captain;
}

- (void)setCaptain:(Person *)theCaptain {
 _captain = theCaptain;
}

@end

This creates a weak reference because the Ship instance doesn’t take ownership of the

theCaptain object when it gets assigned. While there’s nothing wrong with this, and your code

will still work, it’s important to understand the implications of weak references. Consider the
following snippet:

#import <Foundation/Foundation.h>
#import "Person.h"
#import "Ship.h"

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 Person *frank = [[Person alloc] init];
 Ship *discoveryOne = [[Ship alloc] init];

 frank.name = @"Frank";
 [discoveryOne setCaptain:frank];
 NSLog(@"%@", [discoveryOne captain].name);

 [frank release];

 // [discoveryOne captain] is now invalid.
 NSLog(@"%@", [discoveryOne captain]. name);

 [discoveryOne release];
 }
 return 0;
}

Calling [frank release] decrements frank’s reference count to zero, which means the

runtime is allowed to deallocate it. This means that [discoveryOne captain] now points to an

invalid memory address, even though discoveryOne never released it.

In the sample code provided, you will observe that we have added a dealloc method override

in the Person class. dealloc is called when memory is about to be released. We should

typically handle dealloc and release any nested object references that we hold. In this instance

we will release the nested name property that we hold. We will have more to say about dealloc

in the next chapter.

54

If you were to try to access the property, your program would most likely crash. As you can see,
you need to be very careful tracking object references when you use weakly referenced
properties.

Figure 22: Weak reference to the captain value

For more robust object relationships, you can use strong references. These are created by
claiming the object with a retain call when it is assigned:

Included code sample: Manual Memory - strong reference

- (void)setCaptain:(Person *)theCaptain {
 [_captain autorelease];
 _captain = [theCaptain retain];
}

With a strong reference, it doesn’t matter what other objects are doing with the theCaptain

object, since retain makes sure it will stay around as long as the Ship instance needs it. Of

course, you need to balance the retain call by releasing the old value—if you didn’t, your

program would leak memory whenever anyone assigned a new value to the captain property.

55

Figure 23: Strong reference to the captain value

Auto-Releasing Objects

The autorelease method works much like release, except the object’s reference count isn’t

decremented immediately. Instead, the runtime waits until the end of the current
@autoreleasepool block to call a normal release on the object. This is why the main.m

template is always wrapped in an @autoreleasepool—it makes sure all objects queued with

autorelease calls are actually released at the end of the program:

int main(int argc, const char * argv[]) {

 @autoreleasepool {

 // Insert code to create and autorelease objects here.
 NSLog(@"Hello, World!");

 // Any autoreleased objects are *actually* released here.
 }
 return 0;
}

The idea behind auto-releasing is to give an object’s owner the ability to relinquish ownership
without actually destroying the object. This is a necessary tool in situations where you need to
return a new object from a factory method. For example, consider the following class method
defined in Ship.m:

+ (Ship *)shipWithCaptain:(Person *)theCaptian {
 Ship *theShip = [[Ship alloc] init];
 [theShip setCaptain:theCaptian];
 return theShip;
}

This method creates, configures, and returns a new Ship instance. But there’s a serious

problem with this implementation: it results in a memory leak. The method never relinquishes
ownership of the object, and callers of shipWithCaptain don’t know that they need to free the

returned object (nor should they have to). As a result, the theShip object will never be released

from memory. This is precisely the situation autorelease was designed for. The proper

implementation is shown here:

+ (Ship *)shipWithCaptain:(Person *)theCaptian {
 Ship *theShip = [[Ship alloc] init];
 [theShip setCaptain:theCaptian];
 return [theShip autorelease]; // Must relinquish ownership!
}

Using autorelease instead of an immediate release lets the caller use the returned object

while still relinquishing ownership of it in the proper location. If you remember from the Data

56

Types chapter, we created all of our Foundation data structures using class-level factory
methods. For example:

NSSet *crew = [NSSet setWithObjects:@"Dave", @"Heywood", @"Frank", @"HAL", nil];

The setWithObjects method works exactly like the shipWithCaptain method described in the

previous example. It returns an autoreleased object so that the caller can use the object without
worrying about memory management. Note that there are equivalent instance methods for
initializing Foundation objects. For example, the crew object in the last sample can be manually

created as follows:

// Create and claim the set.
NSSet *crew = [[NSSet alloc] initWithObjects:@"Dave", @"Heywood", @"Frank", @"HAL",
nil];

// Use the set...

// Release the set.
[crew release];

However, using class methods like setWithObjects, arrayWithCapacity, etc., is generally

preferred over the alloc/init.

Manual Retain-Release Attributes

Dealing with the memory behind an object’s properties can be a tedious, repetitive task. To
simplify the process, Objective-C includes several property attributes for automating the
memory management calls in accessor functions. The attributes described in the following list
define the setter behavior in manual reference-counting environments. Do not try to use assign

and retain in an automatic reference counting environment.

 assign – Store a direct pointer to the new value without any retain/release calls. This

is the automated equivalent of a weak reference.

 retain – Store a direct pointer to the new value, but call release on the old value and

retain on the new one. This is the automated equivalent of a strong reference.

 copy – Create a copy of the new value. Copying claims ownership of the new instance,

so the previous value is sent a release message. This is like a strong reference to a

brand new instance of the object. Generally, copying is only used for immutable types
like NSString.

As a simple example, examine the following property declaration:

@property (retain) Person *captain;

The retain attribute tells the associated @synthesize declaration to create a setter that looks

something like:

57

- (void)setCaptain:(Person *)theCaptain {
 [_captain release];
 _captain = [theCaptain retain];
}

As you can imagine, using memory management attributes with @property is much easier than

manually defining getters and setters for every property of every custom class you define.

Automatic Reference Counting

Now that you’ve got a handle on reference counting, object ownership, and autorelease blocks,
you can completely forget about all of it. As of Xcode 4.2 and iOS 4, Objective-C supports
automatic reference counting (ARC), which is a pre-compilation step that adds in the necessary
memory management calls for you.

If you happened to have turned off ARC in the previous section, you should turn it back on.
Remember that you can do this by clicking on the HelloObjectiveC project in the navigation
panel, selecting the Build Settings tab, and searching for automatic reference counting.

Figure 24: Enabling Automatic Reference Counting in the project’s build settings

Automatic reference counting works by examining your code to figure out how long an object
needs to stick around and inserting retain, release, and autorelease methods to ensure it’s

deallocated when no longer needed, but not while you’re using it. So as not to confuse the ARC
algorithm, you must not make any retain, release, or autorelease calls yourself. For

example, with ARC, you can write the following method and neither theShip nor theCaptain

will be leaked, even though we didn’t explicitly relinquish ownership of them:

Included code sample: ARC

+ (Ship *)ship {
 Ship *theShip = [[Ship alloc] init];
 Person *theCaptain = [[Person alloc] init];
 [theShip setCaptain:theCaptain];
 return theShip;
}

58

ARC Attributes

In an ARC environment, you should no longer use the assign and retain property attributes.

Instead, you should use the weak and strong attributes:

 weak – Specify a non-owning relationship to the destination object. This is much like

assign; however, it has the convenient functionality of setting the property to nil if the

value is deallocated. This way, your program won’t crash when it tries to access an
invalid memory address.

 strong – Specify an owning relationship to the destination object. This is the ARC

equivalent of retain. It ensures that an object won’t be released as long as it’s assigned

to the property.

You can see the difference between weak and strong using the implementation of the ship

class method from the previous section. To create a strong reference to the ship’s captain, the
interface for Ship should look like the following:

// Ship.h
#import "Person.h"

@interface Ship : NSObject

@property (strong) Person *captain;

+ (Ship *)ship;

@end

And the implementation Ship should look like:

// Ship.m
#import "Ship.h"

@implementation Ship

@synthesize captain = _captain;

+ (Ship *)ship {
 Ship *theShip = [[Ship alloc] init];
 Person *theCaptain = [[Person alloc] init];
 [theShip setCaptain:theCaptain];
 return theShip;
}

@end

59

Then, you can change main.m to display the ship’s captain:

int main(int argc, const char * argv[]) {
 @autoreleasepool {
 Ship *ship = [Ship ship];
 NSLog(@"%@", [ship captain]);
 }
 return 0;
}

This will output something like <Person: 0x7fd6c8c14560> in the console, which tells us that

the theCaptain object created in the ship class method still exists.

But, try changing the (strong) property attribute to (weak) and re-compiling the program. Now,

you should see (null) in the output panel. The weak reference doesn’t ensure that the

theCaptain variable sticks around, so once it arrives at the end of the ship class method, the

ARC algorithm thinks that it can dispose of theCaptain. As a result, the captain property is set

to nil.

Summary

Memory management can be a pain, but it’s an essential part of building an application. For iOS
applications, proper object allocation/disposal is particularly important because of the limited
memory resources of mobile devices. We’ll talk more about this in the second part of this series,
iOS Succinctly.

Fortunately, the new ARC scheme makes memory management much easier on the average
developer. In most cases, it’s possible to treat an ARC project just like the garbage collection in
a C# program—just create your objects and let ARC dispose of them at its discretion. Note,
however, that this is merely a practical similarity—the ARC implementation is much more
efficient than garbage collection.

60

Chapter 5 Methods

In this chapter, we’ll explore Objective-C methods in much more detail than we have in previous
chapters. This includes an in-depth discussion of instance methods, class methods, important
built-in methods, inheritance, naming conventions, and common design patterns.

Instance vs. Class Methods

We’ve been working with both instance and class methods throughout this book, but let’s take a
moment to formalize the two major categories of methods in Objective-C:

 Instance methods – Functions bound to an object. Instance methods are the “verbs”
associated with an object.

 Class methods – Functions bound to the class itself. They cannot be used by instances
of the class. These are similar to static methods in C#.

As we’ve seen many times, instance methods are denoted by a hyphen before the method
name, whereas class methods are prefixed with a plus sign. For example, let’s take a simplified
version of our Person.h file:

@interface Person : NSObject

@property (copy) NSString *name;

- (void)sayHello;
+ (Person *)personWithName:(NSString *)name;

@end

Likewise, the corresponding implementation methods also need to be preceded by a hyphen or
a plus sign. So, a minimal Person.m might look something like:

#import "Person.h"

@implementation Person

@synthesize name = _name;

- (void)sayHello {
 NSLog(@"HELLO");
}

+ (Person *)personWithName:(NSString *)name {
 Person *person = [[Person alloc] init];
 person.name = name;

61

 return person;
}

@end

The sayHello method can be called by instances of the Person class, whereas the

personWithName method can only be called by the class itself:

Person *p1 = [Person personWithName:@"Frank"]; // Class method.
[p1 sayHello]; // Instance method.

Most of this should be familiar to you by now, but now we have the opportunity to talk about
some of the unique conventions in Objective-C.

The super Keyword

In any object-oriented environment, it’s important to be able to access methods from the parent
class. Objective-C uses a very similar scheme to C#, except instead of base, it uses the super

keyword. For example, the following implementation of sayHello would display HELLO in the

output panel, and then call the parent class’ version of sayHello:

- (void)sayHello {
 NSLog(@"HELLO");
 [super sayHello];
}

Unlike in C#, override methods do not need to be explicitly marked as such. You’ll see this with
both the init and dealloc methods discussed in the following section. Even though these are

defined on the NSObject class, the compiler doesn’t complain when you create your own init

and dealloc methods in subclasses.

Initialization Methods

Initialization methods are required for all objects—a newly allocated object is not considered
“ready to use” until one of its initialization methods has been called. They are the place to set
defaults for instance variables and otherwise set up the state of the object. The NSObject class

defines a default init method that doesn’t do anything, but it’s often useful to create your own.

For example, a custom init implementation for our Ship class could assign default values to

an instance variable called _ammo:

- (id)init {
 self = [super init];
 if (self) {
 _ammo = 1000;

62

 }
 return self;
}

This is the canonical way to define a custom init method. The self keyword is the equivalent

of C#’s this—it’s used to refer to the instance calling the method, which makes it possible for

an object to send messages to itself. As you can see, all init methods are required to return

the instance. This is what makes it possible to use the [[Ship alloc] init] syntax to assign

the instance to a variable. Also notice that because the NSObject interface declares the init

method, there is no need to add an init declaration to Ship.h.

While simple init methods like the one shown in the previous sample are useful for setting

default instance variable values, it’s often more convenient to pass parameters to an
initialization method:

- (id)initWithAmmo:(unsigned int)theAmmo {
 self = [super init];
 if (self) {
 _ammo = theAmmo;
 }
 return self;
}

A Brief Aside on Method Names

If you’re coming from a C# background, you might be uncomfortable with the initWithAmmo

method name. You’d probably expect to see the Ammo parameter separated from the actual

method name. For example, void init(uint ammo); however, Objective-C method naming is

based on an entirely different philosophy.

Recall that Objective-C’s goal is to force an API to be as descriptive as possible, ensuring that
there is absolutely no confusion as to what a method call is going to do. You can’t think of a
method as a separate entity from its parameters—they are a single unit. This design decision is
actually reflected in Objective-C’s implementation, which makes no distinction between a
method and its parameters. Internally, a method name is actually the concatenated parameter
list.

For example, consider the following three method declarations. Note that the second and third
are not built-in methods of NSObject, so you do need to add them to the class’ interface before

implementing them.

- (id)init;
- (id)initWithAmmo:(unsigned int)theAmmo;
- (id)initWithAmmo:(unsigned int)theAmmo captain:(Person *)theCaptain;

63

While this looks like method overloading, it’s technically not. These are not variations on the
init method—they are all completely independent methods with distinct method names. The

names of these methods are as follows:

init
initWithAmmo:
initWithAmmo:captain:

This is the reason you see notation like indexOfObjectWithOptions:passingTest: and

indexOfObjectAtIndexes:options:passingTest: for referring to methods in the official

Objective-C documentation (taken from NSArray).

From a practical standpoint, this means that the first parameter of your methods should always
be described by the “primary” method name. Ambiguous methods like the following are
generally frowned upon by Objective-C programmers:

- (id)shoot:(Ship *)aShip;

Instead, you should use a preposition to include the first parameter in the method name, like so:

- (id)shootOtherShip:(Ship *)aShip;

Including both OtherShip and aShip in the method definition may seem redundant, but

remember that the aShip argument is only used internally. Someone calling the method is going

to write something like shootOtherShip:discoveryOne, where discoveryOne is the variable

containing the ship you want to shoot. This is exactly the kind of verbosity that Objective-C
developers strive for.

Class Initialization

In addition to the init method for initializing instances, Objective-C also provides a way to set

up classes. Before calling any class methods or instantiating any objects, the Objective-C
runtime calls the initialize class method of the class in question. This gives you the

opportunity to define any static variables before anyone uses the class. One of the most
common use cases for this is to set up singletons:

static Ship *_sharedShip;

+ (void)initialize {
 if (self == [Ship class]) {
 _sharedShip = [[self alloc] init];
 }
}

+ (Ship *)sharedShip {
 return _sharedShip;

http://developer.apple.com/library/ios/#Documentation/Cocoa/Reference/Foundation/Classes/NSArray_Class/NSArray.html%23//apple_ref/doc/uid/TP40003620

64

}

Before the first time [Ship sharedShip] is called, the runtime will call [Ship initialize],

which makes sure the singleton is defined. The static variable modifier serves the same purpose
as it does in C#—it creates a class-level variable instead of an instance variable. The
initialize method is only called once, but it’s called on all super classes, so you have to take

care not to initialize class-level variables multiple times. This is why we included the self ==
[Ship class] conditional to make sure _shareShip is only allocated in the Ship class.

Also note that inside of a class method, the self keyword refers to the class itself, not an

instance. So, [self alloc] in the last example is the equivalent of [Ship alloc].

Deallocation Methods

The logical counterpart to an instance’s initialization method is the dealloc method. This

method is called on an object when its reference count reaches zero and its underlying memory
is about to be deallocated.

Deallocation in MMR

If you’re using manual memory management (not recommended), you need to release any
instance variables that your object allocated in the dealloc method. If you don’t free instance

variables before your object goes out of scope, you’ll have dangling pointers to your instance
variables, which means leaked memory whenever an instance of the class is released. For
example, if our Ship class allocated a variable called _gun in its init method, you would have

to release it in dealloc. This is demonstrated in the following example (Gun.h contains an

empty interface that simply defines the Gun class):

#import "Ship.h"
#import "Gun.h"

@implementation Ship {
 BOOL _gunIsReady;
 Gun *_gun;
}

- (id)init {
 self = [super init];
 if (self) {
 _gun = [[Gun alloc] init];
 }
 return self;
}

- (void)dealloc {
 NSLog(@"Deallocating a Ship");
 [_gun release];

65

 [super dealloc];
}

@end

You can see the dealloc method in action by creating a Ship and releasing it, like so:

int main(int argc, const char * argv[]) {
 @autoreleasepool {
 Ship *ship = [[Ship alloc] init];
 [ship autorelease];
 NSLog(@"Ship should still exist in autoreleasepool");
 }
 NSLog(@"Ship should be deallocated by now");
 return 0;
}

This also demonstrates how auto-released objects work. The dealloc method won’t be called

until the end of the @autoreleasepool block, so the previous code should output the following:

Ship should still exist in autoreleasepool
Deallocating a Ship
Ship should be deallocated by now

Note that the first NSLog() message in main() is displayed before the one in the dealloc

method, even though it was called after the autorelease call.

Deallocation in ARC

However, if you’re using automatic reference counting, all of your instance variables will be
deallocated automatically, and [super dealloc] will be called for you as well (you should

never call it explicitly). So, the only thing you have to worry about are non-object variables like
buffers created with C’s malloc().

Like init, you don’t have to implement a dealloc method if your object doesn’t need any

special handling before it is released. This is often the case for automatic reference-counting
environments.

Private Methods

A big hurdle for C# developers transitioning to Objective-C is the apparent lack of private
methods. Unlike C#, all methods in an Objective-C class are accessible to third parties;
however, it is possible to emulate the behavior of private methods.

Remember that clients only import the interface of a class (i.e. the header files)—they should
never see the underlying implementation. So, by adding new methods inside of the

66

implementation file without including them in the interface, we can effectively hide methods from
other objects. Albeit, this is more convention-based than “true” private methods, but it’s
essentially the same functionality: trying to call a method that’s not declared in an interface will
result in a compiler error.

Figure 25: Attempting to call a “private” method

For example, let’s say you needed to add a private prepareToShoot method to the Ship class.

All you have to do is omit it from Ship.h while adding it to Ship.m:

// Ship.h
@interface Ship : NSObject

@property (weak) Person *captain;

- (void)shoot;

@end

This declares a public method called shoot, which will use the private prepareToShoot

method. The corresponding implementation might look something like:

// Ship.m
#import "Ship.h"

@implementation Ship {
 BOOL _gunIsReady;
}

@synthesize captain = _captain;

- (void)shoot {
 if (!_gunIsReady) {
 [self prepareToShoot];
 _gunIsReady = YES;
 }
 NSLog(@"Firing!");
}

- (void)prepareToShoot {
 // Execute some private functionality.
 NSLog(@"Preparing the main weapon...");
}

@end

As of Xcode 4.3, you can define private methods anywhere in the implementation. If you use the
private method before the compiler has seen it (as in the previous example), the compiler
checks the rest of the implementation block for the method definition. Prior to Xcode 4.3, you

67

had to either define a private method before it was used elsewhere in the file, or forward-declare
it with a class extension.

Class extensions are a special case of categories, which are presented in the upcoming
chapter. Just as there is no way to mark a method as private, there is no way to mark a method
as protected; however, as we’ll see in the next chapter, categories provide a powerful alternative
to protected methods.

Selectors

Selectors are Objective-C’s way of representing methods. They let you dynamically “select” one
of an object’s methods, which can be used to refer to a method at run time, pass a method to
another function, and figure out whether an object has a particular method. For practical
purposes, you can think of a selector as an alternative name for a method.

Figure 26: Developers’ representation of a method vs. Objective-C’s representation

Internally, Objective-C uses a unique number to identify each method name that your program
uses. For instance, a method called sayHello might translate to 4984331082. This identifier is

called a selector, and it is a much more efficient way for the compiler to refer to methods than
their full string representation. It’s important to understand that a selector only represents the
method name—not a specific method implementation. In other words, a sayHello method

defined by the Person class has the same selector as a sayHello method defined by the Ship

class.

The three main tools for working with selectors are:

 @selector() – Return the selector associated with a source-code method name.

 NSSelectorFromString() – Return the selector associated with the string

representation of a method name. This function makes it possible to define the method
name at run time, but it is less efficient than @selector().

 NSStringFromSelector() – Return the string representation of a method name from a

selector.

68

As you can see, there are three ways to represent a method name in Objective-C: as source
code, as a string, or as a selector. These conversion functions are shown graphically in the
following figure:

Figure 27: Converting between source code, strings, and selectors

Selectors are stored in a special data type called SEL. The following snippet demonstrates the

basic usage of the three conversion functions shown in the previous figure:

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 SEL selector = @selector(sayHello);
 NSLog(@"%@", NSStringFromSelector(selector));
 if (selector == NSSelectorFromString(@"sayHello")) {
 NSLog(@"The selectors are equal!");
 }

 }

69

 return 0;
}

First, we use the @selector() directive to figure out the selector for a method called sayHello,

which is a source-code representation of a method name. Note that you can pass any method
name to @selector()—it doesn’t have to exist elsewhere in your program. Next, we use the

NSStringFromSelector() function to convert the selector back into a string so we can display

it in the output panel. Finally, the conditional shows that selectors have a one-to-one
correspondence with method names, regardless of whether you find them through hard-coded
method names or strings.

Method Names and Selectors

The previous example uses a simple method that takes no parameters, but it’s important to be
able to pass around methods that do accept parameters. Recall that a method name consists of
the primary method name concatenated with all of the parameter names. For example, a
method with the signature

- (void)sayHelloToPerson:(Person *)aPerson
 withGreeting:(NSString *)aGreeting;

would have a method name of:

sayHelloToPerson:withGreeting:

This is what you would pass to @selector() or NSSelectorFromString() to return the

identifier for that method. Selectors only work with method names (not signatures), so there is
not a one-to-one correspondence between selectors and signatures. As a result, the method
name in the last example will also match a signature with different data types, including the
following:

- (void)sayHelloToPerson:(NSString *)aName

 withGreeting:(BOOL)useGreeting;

The verbosity of Objective-C’s naming conventions avoids most confusing situations; however,
selectors for one-parameter methods can still be tricky because appending a colon to the
method name actually changes it into a completely different method. For example, in the
following sample, the first method name doesn’t take a parameter, while the second one does:

sayHello
sayHello:

Again, naming conventions go a long way toward eliminating confusion, but you still need to
make sure you know when it’s necessary to add a colon to the end of a method name. This is a

70

common issue if you’re new to selectors, and it can be hard to debug, as a trailing colon still
creates a perfectly valid method name.

Performing Selectors

Of course, recording a selector in a SEL variable is relatively useless without the ability to

execute it later on. Since a selector is merely a method name (not an implementation), it always
needs to be paired with an object before you can call it. The NSObject class defines a

performSelector: method for this very purpose.

[joe performSelector:@selector(sayHello)];

This is the equivalent of calling sayHello directly on joe:

[joe sayHello];

For methods with one or two parameters, you can use the related
performSelector:withObject: and performSelector:withObject:withObject: methods.

The following method implementation:

- (void)sayHelloToPerson:(Person *)aPerson {
 NSLog(@"Hello, %@", [aPerson name]);
}

could be called dynamically by passing the aPerson argument to the

performSelector:withObject: method, as demonstrated here:

[joe performSelector:@selector(sayHelloToPerson:) withObject:bill];

This is the equivalent of passing the parameter directly to the method:

[joe sayHelloToPerson:bill];

Likewise, the performSelector:withObject:withObject: method lets you pass two

parameters to the target method. The only caveat with these is that all parameters and the
return value of the method must be objects—they don’t work with primitive C data types like
int, float, etc. If you do need this functionality, you can either box the primitive type in one of

Objective-C’s many wrapper classes (e.g., NSNumber) or use the NSInvocation object to

encapsulate a complete method call.

Checking for the Existence of Selectors

It’s not possible to perform a selector on an object that hasn’t defined the associated method.
But unlike static method calls, it’s not possible to determine at compile time whether

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSInvocation_Class/Reference/Reference.html

71

performSelector: will raise an error. Instead, you have to check if an object can respond to a

selector at run time using the aptly named respondsToSelector: method. It simply returns YES

or NO depending on whether the object can perform the selector:

SEL methodToCall = @selector(sayHello);
if ([joe respondsToSelector:methodToCall]) {
 [joe performSelector:methodToCall];
} else {
 NSLog(@"Joe doesn't know how to perform %@.",
 NSStringFromSelector(methodToCall));
}

If your selectors are being dynamically generated (e.g., if methodToCall is selected from a list

of options) or you don’t have control over the target object (e.g., joe can be one of several

different types of objects), it’s important to run this check before trying to call
performSelector:.

Using Selectors

The whole idea behind selectors is to be able to pass around methods just like you pass around
objects. This can be used, for example, to dynamically define an “action” for a Person object to

execute later on in the program. For example, consider the following interface:

Included code sample: Selectors

@interface Person : NSObject

@property (copy) NSString *name;
@property (weak) Person *friend;
@property SEL action;

- (void)sayHello;
- (void)sayGoodbye;
- (void)coerceFriend;

@end

Along with the corresponding implementation:

#import "Person.h"

@implementation Person

@synthesize name = _name;
@synthesize friend = _friend;
@synthesize action = _action;

- (void)sayHello {
 NSLog(@"Hello, says %@.", _name);
}

72

- (void)sayGoodbye {
 NSLog(@"Goodbye, says %@.", _name);
}

- (void)coerceFriend {
 NSLog(@"%@ is about to make %@ do something.", _name, [_friend name]);
 [_friend performSelector:_action];
}

@end

As you can see, calling the coerceFriend method will force a different object to perform some

arbitrary action. This lets you configure a friendship and a behavior early on in your program
and wait for a particular event to occur before triggering the action:

#import <Foundation/Foundation.h>
#import "Person.h"

NSString *askUserForAction() {
 // In the real world, this would be capture some
 // user input to determine which method to call.
 NSString *theMethod = @"sayGoodbye";
 return theMethod;
}

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 // Create a person and determine an action to perform.
 Person *joe = [[Person alloc] init];
 joe.name = @"Joe";
 Person *bill = [[Person alloc] init];
 bill.name = @"Bill";
 joe.friend = bill;
 joe.action = NSSelectorFromString(askUserForAction());

 // Wait for an event...

 // Perform the action.
 [joe coerceFriend];

 }
 return 0;
}

This is almost exactly how user-interface components in iOS are implemented. For example, if
you had a button, you would configure it with a target object (e.g., friend), and an action (e.g.,

action). Then, when the user eventually presses the button, it can use performSelector: to

execute the desired method on the appropriate object. Allowing both the object and the method
to vary independently affords significant flexibility—the button could literally perform any action

73

with any object without altering the button’s class in any way. This also forms the basis of the
Target-Action design pattern, which is heavily relied upon in the iOS Succinctly companion
book.

Summary

In this chapter, we covered instance and class methods, along with some of the most important
built-in methods. We worked closely with selectors, which are a way to refer to method names
as either source code or strings. We also briefly previewed the Target-Action design pattern,
which is an integral aspect of iOS and OS X programming.

The next chapter discusses an alternative way to create private and protected methods in
Objective-C.

74

Chapter 6 Categories and Extensions

Categories are an Objective-C language feature that let you add new methods to an existing
class, much like C# extensions. However, do not confuse C# extensions with Objective-C
extensions. Objective-C’s extensions are a special case of categories that let you define
methods that must be declared in the main implementation block.

These are powerful features that have many potential uses. First, categories make it possible to
split up a class’ interface and implementation into several files, which provides much-needed
modularity for larger projects. Second, categories let you fix bugs in an existing class (e.g.,
NSString) without the need to subclass it. Third, they provide an effective alternative to the

protected and private methods found in C# and other Simula-like languages.

Categories

A category is a group of related methods for a class, and all of the methods defined in a
category are available through the class as if they were defined in the main interface file. As an
example, take the Person class that we’ve been working with throughout this book. If this were

a large project, Person may have dozens of methods ranging from basic behaviors to

interactions with other people to identity checking. The API might call for all of these methods to
be available through a single class, but it’s much easier for developers to maintain if each group
is stored in a separate file. In addition, categories eliminate the need to recompile the entire
class every time you change a single method, which can be a time-saver for very large projects.

Let’s take a look at how categories can be used to achieve this. We start with a normal class
interface and a corresponding implementation:

// Person.h
@interface Person : NSObject

@interface Person : NSObject
@property (readonly) NSMutableArray* friends;
@property (copy) NSString* name;

- (void)sayHello;
- (void)sayGoodbye;

@end

// Person.m
#import "Person.h"

@implementation Person

@synthesize name = _name;
@synthesize friends = _friends;

75

-(id)init{
 self = [super init];
 if(self){

 _friends = [[NSMutableArray alloc] init];
 }

 return self;
}

- (void)sayHello {
 NSLog(@"Hello, says %@.", _name);
}

- (void)sayGoodbye {
 NSLog(@"Goodbye, says %@.", _name);
}
@end

Nothing new here—just a Person class with two properties (the friends property will be used

by our category) and two methods. Next, we’ll use a category to store some methods for
interacting with other Person instances. Create a new file, but instead of a class, use the

Objective-C Category template. Use Relations for the category name and Person for the
Category on field:

Figure 28: Creating the Person+Relations class

As expected, this will create two files: a header to hold the interface and an implementation.
However, these will both look slightly different than what we’ve been working with. First, let’s
take a look at the interface:

// Person+Relations.h
#import <Foundation/Foundation.h>
#import "Person.h"

@interface Person (Relations)

- (void)addFriend:(Person *)aFriend;
- (void)removeFriend:(Person *)aFriend;
- (void)sayHelloToFriends;

@end

Instead of the normal @interface declaration, we include the category name in parentheses

after the class name we’re extending. A category name can be anything, as long as it doesn’t

76

conflict with other categories for the same class. A category’s file name should be the class
name followed by a plus sign, followed by the name of the category (e.g.,
Person+Relations.h).

So, this defines our category’s interface. Any methods we add in here will be added to the
original Person class at run time. It will appear as though the addFriend:, removeFriend:,

and sayHelloToFriends methods are all defined in Person.h, but we can keep our

functionality encapsulated and maintainable. Also note that you must import the header for the
original class, Person.h. The category implementation follows a similar pattern:

// Person+Relations.m
#import "Person+Relations.h"

@implementation Person (Relations)

- (void)addFriend:(Person *)aFriend {
 [[self friends] addObject:aFriend];
}

- (void)removeFriend:(Person *)aFriend {
 [[self friends] removeObject:aFriend];
}

- (void)sayHelloToFriends {
 for (Person *friend in [self friends]) {
 NSLog(@"Hello there, %@!", [friend name]);
 }
}

@end

This implements all of the methods in Person+Relations.h. Just like the category’s interface,

the category name appears in parentheses after the class name. The category name in the
implementation should match the one in the interface.

Also, note that there is no way to define additional properties or instance variables in a category.
Categories have to refer back to data stored in the main class (friends in this instance).

It’s also possible to override the implementation contained in Person.m by simply redefining the

method in Person+Relations.m. This can be used to monkey patch an existing class; however,

it’s not recommended if you have an alternative solution to the problem, since there would be no
way to override the implementation defined by the category. That is to say, unlike the class
hierarchy, categories are a flat organizational structure—if you implement the same method in
two separate categories, it’s impossible for the runtime to figure out which one to use.

The only change you have to make to use a category is to import the category’s header file. As
you can see in the following example, the Person class has access to the methods defined in

Person.h along with those defined in the category Person+Relations.h:

77

// main.m
#import <Foundation/Foundation.h>
#import "Person.h"
#import "Person+Relations.h"

int main(int argc, const char * argv[]) {
 @autoreleasepool {
 Person *joe = [[Person alloc] init];
 joe.name = @"Joe";
 Person *bill = [[Person alloc] init];
 bill.name = @"Bill";
 Person *mary = [[Person alloc] init];
 mary.name = @"Mary";

 [joe sayHello];
 [joe addFriend:bill];
 [joe addFriend:mary];
 [joe sayHelloToFriends];
 }
 return 0;
}

And that’s all there is to creating categories in Objective-C.

Protected Methods

To reiterate, all Objective-C methods are public—there is no language construct to mark them
as either private or protected. Instead of using “true” protected methods, Objective-C programs
can combine categories with the interface/implementation paradigm to achieve the same result.

The idea is simple: declare "protected” methods as a category in a separate header file. This
gives subclasses the ability to “opt-in” to the protected methods while unrelated classes use the
“public” header file as usual. For example, take a standard Ship interface:

// Ship.h
#import <Foundation/Foundation.h>

@interface Ship : NSObject

- (void)shoot;

@end

As we’ve seen many times, this defines a public method called shoot. To declare a protected

method, we need to create a Ship category in a dedicated header file:

// Ship_Protected.h
#import <Foundation/Foundation.h>

78

@interface Ship(Protected)

- (void)prepareToShoot;

@end

Any classes that need access to the protected methods (namely, the superclass and any
subclasses) can simply import Ship_Protected.h. For example, the Ship implementation

should define a default behavior for the protected method:

// Ship.m
#import "Ship.h"
#import "Ship_Protected.h"

@implementation Ship {
 BOOL _gunIsReady;
}

- (void)shoot {
 if (!_gunIsReady) {
 [self prepareToShoot];
 _gunIsReady = YES;
 }
 NSLog(@"Firing!");
}

- (void)prepareToShoot {
 // Execute some private functionality.
 NSLog(@"Preparing the main weapon...");
}
@end

Note that if we hadn’t imported Ship_Protected.h, this prepareToShoot implementation

would be a private method, as discussed in the Methods chapter. Without a protected category,
there would be no way for subclasses to access this method. Let’s subclass the Ship to see

how this works. We’ll call it ResearchShip:

// ResearchShip.h
#import "Ship.h"

@interface ResearchShip : Ship

- (void)extendTelescope;

@end

This is a normal subclass interface—it should not import the protected header, as this would
make the protected methods available to anyone that imports ResearchShip.h, which is

79

precisely what we’re trying to avoid. Finally, the implementation for the subclass imports the
protected methods and (optionally) overrides them:

// ResearchShip.m
#import "ResearchShip.h"
#import "Ship_Protected.h"

@implementation ResearchShip

- (void)extendTelescope {
 NSLog(@"Extending the telescope");
}

// Override protected method
- (void)prepareToShoot {
 NSLog(@"Oh shoot! We need to find some weapons!");
}

@end

To enforce the protected status of the methods in Ship_Protected.h, other classes aren’t

allowed to import it. They’ll just import the normal “public” interfaces of the superclass and
subclass:

// main.m
#import <Foundation/Foundation.h>
#import "Ship.h"
#import "ResearchShip.h"

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 Ship *genericShip = [[Ship alloc] init];
 [genericShip shoot];

 Ship *discoveryOne = [[ResearchShip alloc] init];
 [discoveryOne shoot];

 }
 return 0;
}

Since neither main.m, Ship.h, nor ResearchShip.h import the protected methods, this code

won’t have access to them. Try adding a [discoveryOne prepareToShoot] method—it will

throw a compiler error, since the prepareToShoot declaration is nowhere to be found.

To summarize, protected methods can be emulated by placing them in a dedicated header file
and importing that header file into the implementation files that require access to the protected
methods. No other files should import the protected header.

80

While the workflow presented here is a completely valid organizational tool, keep in mind that
Objective-C was never meant to support protected methods. Think of this as an alternative way
to structure an Objective-C method, rather than a direct replacement for C#/Simula-style
protected methods. It’s often better to look for another way to structure your classes rather than
forcing your Objective-C code to act like a C# program.

Caveats

One of the biggest issues with categories is that you can’t reliably override methods defined in
categories for the same class. For example, if you defined an addFriend: class in

Person(Relations) and later decided to change the addFriend: implementation via a

Person(Security) category, there is no way for the runtime to know which method it should

use since categories are, by definition, a flat organizational structure. For these kinds of cases,
you need to revert to the traditional subclassing paradigm.

Also, it’s important to note that a category can’t add instance variables. This means you can’t
declare new properties in a category, as they could only be synthesized in the main
implementation. Additionally, while a category technically does have access to its classes'
instance variables, it’s better practice to access them through their public interface to shield the
category from potential changes in the main implementation file.

Extensions

Extensions (also called class extensions) are a special type of category that requires their
methods to be defined in the main implementation block for the associated class, as opposed to
an implementation defined in a category. This can be used to override publicly declared
property attributes. For example, it is sometimes convenient to change a read-only property to a
read-write property within a class’ implementation. Consider the normal interface for a Ship

class:

Included code sample: Extensions

// Ship.h
#import <Foundation/Foundation.h>
#import "Person.h"

@interface Ship : NSObject

@property (strong, readonly) Person *captain;

- (id)initWithCaptain:(Person *)captain;

@end

It’s possible to override the @property definition inside of a class extension. This gives you the

opportunity to re-declare the property as readwrite in the implementation file. Syntactically, an

extension looks like an empty category declaration:

81

// Ship.m
#import "Ship.h"

// The class extension.
@interface Ship()

@property (strong, readwrite) Person *captain;

@end

// The standard implementation.
@implementation Ship

@synthesize captain = _captain;

- (id)initWithCaptain:(Person *)captain {
 self = [super init];
 if (self) {
 // This WILL work because of the extension.
 [self setCaptain:captain];
 }
 return self;
}

@end

Note the () appended to the class name after the @interface directive. This is what marks it

as an extension rather than a normal interface or a category. Any properties or methods that
appear in the extension must be declared in the main implementation block for the class. In this
case, we aren’t adding any new fields—we’re overriding an existing one. But unlike categories,
extensions can add extra instance variables to a class, which is why we’re able to declare
properties in a class extension but not a category.

Because we re-declared the captain property with a readwrite attribute, the

initWithCaptain: method can use the setCaptain: accessor on itself. If you were to delete

the extension, the property would return to its read-only status and the compiler would complain.
Clients using the Ship class aren’t supposed to import the implementation file, so the captain

property will remain read-only.

#import <Foundation/Foundation.h>
#import "Person.h"
#import "Ship.h"

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 Person *heywood = [[Person alloc] init];
 heywood.name = @"Heywood";
 Ship *discoveryOne = [[Ship alloc] initWithCaptain:heywood];

82

 NSLog(@"%@", [discoveryOne captain].name);

 Person *dave = [[Person alloc] init];
 dave.name = @"Dave";
 // This will NOT work because the property is still read-only.
 [discoveryOne setCaptain:dave];

 }
 return 0;
}

Private Methods

Another common use case for extensions is for declaring private methods. In the previous
chapter, we saw how private methods can be declared by simply adding them anywhere in the
implementation file. But, prior to Xcode 4.3, this was not the case. The canonical way to create
a private method was to forward-declare it using a class extension. Let’s take a look at this by
slightly altering the Ship header from the previous example:

// Ship.h
#import <Foundation/Foundation.h>

@interface Ship : NSObject

- (void)shoot;

@end

Next, we’re going to recreate the example we used when we discussed private methods in the
Methods chapter. Instead of simply adding the private prepareToShoot method to the

implementation, we need to forward-declare it in a class extension.

// Ship.m
#import "Ship.h"

// The class extension.
@interface Ship()

- (void)prepareToShoot;

@end

// The rest of the implementation.
@implementation Ship {
 BOOL _gunIsReady;
}

- (void)shoot {
 if (!_gunIsReady) {
 [self prepareToShoot];

83

 _gunIsReady = YES;
 }
 NSLog(@"Firing!");
}

- (void)prepareToShoot {
 // Execute some private functionality.
 NSLog(@"Preparing the main weapon...");
}

@end

The compiler ensures the extension methods are implemented in the main implementation
block, which is why it functions as a forward-declaration. Yet because the extension is
encapsulated in the implementation file, other objects shouldn’t ever know about it, giving us
another way to emulate private methods. While newer compilers save you this trouble, it’s still
important to understand how class extensions work, as it has been a common way to leverage
private methods in Objective-C programs until very recently.

Summary

This chapter covered two of the more unique concepts in the Objective-C programming
language: categories and extensions. Categories are a a way to extend the API of existing
classes, and extensions are a way to add required methods to the API outside of the main
interface file. Both of these were initially designed to ease the burden of maintaining large code
bases.

The next chapter continues our journey through Objective-C’s organizational structures. We’ll
learn how to define a protocol, which is an interface that can be implemented by a variety of
classes.

84

Chapter 7 Protocols

In Objective-C, a protocol is a group of methods that can be implemented by any class.
Protocols are essentially the same as interfaces in C#, and they both have similar goals. They
can be used as a pseudo-data type, which is useful for making sure that a dynamically-typed
object can respond to a certain set of messages. And, because any class can “adopt” a
protocol, they can be used to represent a shared API between completely unrelated classes.

The official documentation discusses both an informal and a formal method for declaring
protocols, but informal protocols are really just a unique use of categories and don’t provide
nearly as many benefits as formal protocols. With this in mind, this chapter focuses solely on
formal protocols.

Creating a Protocol

First, let's take a look at how to declare a formal protocol. Create a new file in Xcode and select
the Objective-C protocol icon under Mac OS X > Cocoa:

Figure 29: Xcode icon for protocol files

As usual, this will prompt you for a name. Our protocol will contain methods for calculating the
coordinates of an object, so let’s call it CoordinateSupport:

Figure 30: Naming the protocol

Click Next and choose the default location for the file. This will create an empty protocol that
looks almost exactly like an interface:

// CoordinateSupport.h
#import <Foundation/Foundation.h>

@protocol CoordinateSupport <NSObject>

@end

Of course, instead of the @interface directive, it uses @protocol, followed by the protocol

name. The <NSObject> syntax lets us incorporate another protocol into CoordinateSupport. In

this case, we’re saying that CoordinateSupport also includes all of the methods declared in

the NSObject protocol (not to be confused with the NSObject class).

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Protocols/NSObject_Protocol/Reference/NSObject.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/nsobject_Class/Reference/Reference.html

85

Next, let’s add a few methods and properties to the protocol. This works the same way as
declaring methods and properties in an interface:

#import <Foundation/Foundation.h>

@protocol CoordinateSupport <NSObject>

@property double x;
@property double y;
@property double z;

- (NSArray *)arrayFromPosition;
- (double)magnitude;

@end

Adopting a Protocol

Any class that adopts this protocol is guaranteed to synthesize the x, y, and z properties and

implement the arrayFromPosition and magnitude methods. While this doesn’t say how they

will be implemented, it does give you the opportunity to define a shared API for an arbitrary set
of classes.

For example, if we want both Ship and Person to be able to respond to these properties and

methods, we can tell them to adopt the protocol by placing it in angled brackets after the
superclass declaration. Also note that, just like using another class, you need to import the
protocol file before using it:

#import <Foundation/Foundation.h>
#import "CoordinateSupport.h"

@interface Person : NSObject <CoordinateSupport>

@property (copy) NSString *name;
@property (strong) NSMutableSet *friends;

- (void)sayHello;
- (void)sayGoodbye;

@end

Now, in addition to the properties and methods defined in this interface, the Person class is

guaranteed to respond to the API defined by CoordinateSupport. Xcode will warn you that the

Person implementation is incomplete until you synthesize x, y, and z, and implement

arrayFromPosition and magnitude:

86

Figure 31: Incomplete implementation warning for Person <CoordinateSupport>

Likewise, a category can adopt a protocol by adding it after the category. For example, to tell the
Person class to adopt the CoordinateSupport protocol in the Relations category, you would

use the following line:

@interface Person(Relations) <CoordinateSupport>

And, if your class needs to adopt more than one protocol, you can separate them with commas:

@interface Person : NSObject <CoordinateSupport, SomeOtherProtocol>

Advantages of Protocols

Without protocols, we would have two options to ensure both Ship and Person implemented

this shared API:

1. Re-declare the exact same properties and methods in both interfaces.

2. Define the API in an abstract superclass and define Ship and Person as subclasses.

Neither of these options are particularly appealing: the first is redundant and prone to human
error, and the second is severely limiting, especially if they already inherit from different parent
classes. It should be clear that protocols are much more flexible and reusable, as they shield
the API from being dependent on any particular class.

The fact that any class can easily adopt a protocol makes it possible to define horizontal
relationships on top of an existing class hierarchy:

87

Figure 32: Linking unrelated classes using a protocol

Due to the flexible nature of protocols, the various iOS frameworks make good use of them. For
example, user interface controls are often configured using the delegation design pattern,
wherein a delegate object is responsible for reacting to user actions. Instead of encapsulating a
delegate’s responsibilities in an abstract class and forcing delegates to subclass it, iOS defines
the necessary API for the delegate in a protocol. This way, it’s incredibly easy for any object to
act as the delegate object. We’ll explore this in much more detail in the second half of this
series, iOS Succinctly.

Protocols as Pseudo-Types

Protocols can be used as psuedo-data types. Instead of making sure a variable is an instance of
a class, using a protocol as a type checking tool ensures that the variable always conforms to
an arbitrary API. For example, the following person variable is guaranteed to implement the

CoordinateSupport API.

Person <CoordinateSupport> *person = [[Person alloc] init];

Still, enforcing protocol adoption is often more useful when used with the id data type. This lets

you assume certain methods and properties while completely disregarding the object’s class.

And of course, the same syntax can be used with a method parameter. The following snippet
adds a new getDistanceFromObject: method to the API whose parameter is required to

conform to CoordinateSupport protocol:

// CoordinateSupport.h
#import <Foundation/Foundation.h>

@protocol CoordinateSupport <NSObject>

88

@property double x;
@property double y;
@property double z;

- (NSArray *)arrayFromPosition;
- (double)magnitude;
- (double)getDistanceFromObject:(id <CoordinateSupport>)theObject;

@end

Note that it’s entirely possible to use a protocol in the same file as it is defined.

Dynamic Conformance Checking

In addition to the static type checking discussed in the last section, you can also use the
conformsToProtocol: method defined by the NSObject protocol to dynamically check whether

an object conforms to a protocol or not. This is useful for preventing errors when working with
dynamic objects (objects typed as id).

The following example assumes the Person class adopts the CoordinateSupport protocol,

while the Ship class does not. It uses a dynamically typed object called mysteryObject to store

an instance of Person, and then uses conformsToProtocol: to check if it has coordinate

support. If it does, it’s safe to use the x, y, and z properties, as well as the other methods

declared in the CoordinateSupport protocol:

// main.m
#import <Foundation/Foundation.h>
#import "Person.h"
#import "Ship.h"

int main(int argc, const char * argv[]) {
 @autoreleasepool {
 id mysteryObject = [[Person alloc] init];
 [mysteryObject setX:10.0];
 [mysteryObject setY:0.0];
 [mysteryObject setZ:7.5];

 // Uncomment next line to see the "else" portion of conditional.
 //mysteryObject = [[Ship alloc] init];

 if ([mysteryObject
 conformsToProtocol:@protocol(CoordinateSupport)]) {
 NSLog(@"Ok to assume coordinate support.");
 NSLog(@"The object is located at (%0.2f, %0.2f, %0.2f)",
 [mysteryObject x],
 [mysteryObject y],
 [mysteryObject z]);
 } else {
 NSLog(@"Error: Not safe to assume coordinate support.");
 NSLog(@"I have no idea where that object is...");
 }

89

 }
 return 0;
}

If you uncomment the line that reassigns the mysteryObject to a Ship instance, the

conformsToProtocol: method will return NO, and you won’t be able to safely use the API

defined by CoordinateSupport. If you’re not sure what kind of object a variable will hold, this

kind of dynamic protocol checking is important to prevent your program from crashing when you
try to call a method that doesn’t exist.

Also notice the new @protocol() directive. This works much like @selector(), except instead

of a method name, it takes a protocol name. It returns a Protocol object, which can be passed

to conformsToProtocol:, among other built-in methods. The protocol header file does not

need to be imported for @protocol() to work.

Forward-Declaring Protocols

If you end up working with a lot of protocols, you’ll eventually run into a situation where two
protocols rely on one another. This circular relationship poses a problem for the compiler, since
it cannot successfully import either of them without the other. For example, let’s say we were
trying to abstract out some GPS functionality into a GPSSupport protocol, but want to be able to

convert between the “normal” coordinates of our existing CoordinateSupport and the

coordinates used by GPSSupport. The GPSSupport protocol is pretty simple:

#import <Foundation/Foundation.h>
#import "CoordinateSupport.h"

@protocol GPSSupport <NSObject>

- (void)copyCoordinatesFromObject:(id <CoordinateSupport>)theObject;

@end

This doesn’t pose any problems, that is, until we need to reference the GPSSupport protocol

from CoordinateSupport.h:

#import <Foundation/Foundation.h>
#import "GPSSupport.h"

@protocol CoordinateSupport <NSObject>

@property double x;
@property double y;
@property double z;

90

- (NSArray *)arrayFromPosition;
- (double)magnitude;
- (double)getDistanceFromObject:(id <CoordinateSupport>)theObject;

- (void)copyGPSCoordinatesFromObject:(id <GPSSupport>)theObject;

@end

Now, the CoordinateSupport.h file requires the GPSSupport.h file to compile correctly, and

vice versa. It’s a chicken-or-the-egg kind of problem, and the compiler will not like it very much:

Figure 33: Compiler error caused by circular protocol references

Resolving the recursive relationship is simple. All you need to do is forward-declare one of the
protocols instead of trying to import it directly:

#import <Foundation/Foundation.h>

@protocol CoordinateSupport;

@protocol GPSSupport <NSObject>

- (void)copyCoordinatesFromObject:(id <CoordinateSupport>)theObject;

@end

All @protocol CoordinateSupport; says is that CoordinateSupport is indeed a protocol

and the compiler can assume it exists without importing it. Note the semicolon at the end of the
statement. This could be done in either of the two protocols; the point is to remove the circular
reference. The compiler doesn’t care how you do it.

Summary

Protocols are an incredibly powerful feature of Objective-C. They let you capture relationships
between arbitrary classes when it’s not feasible to connect them with a common parent class.
We’ll utilize several built-in protocols in iOS Succinctly, as many of the core functions of an

iPhone or iPad app are defined as protocols.

The next chapter introduces exceptions and errors, two very important tools for managing the
problems that inevitably arise while writing Objective-C programs.

91

Chapter 8 Exceptions and Errors

In Objective-C, there are two types of errors that can occur while a program is running.
Unexpected errors are “serious” programming errors that typically cause your program to exit
prematurely. These are called exceptions, since they represent an exceptional condition in your
program. On the other hand, expected errors occur naturally in the course of a program’s
execution and can be used to determine the success of an operation. These are referred to as
errors.

You can also approach the distinction between exceptions and errors as a difference in their
target audiences. In general, exceptions are used to inform the programmer about something
that went wrong, while errors are used to inform the user that a requested action could not be
completed.

Figure 34: Control flow for exceptions and errors

For example, trying to access an array index that doesn’t exist is an exception (a programmer
error), while failing to open a file is an error (a user error). In the former case, something likely
went very wrong in the flow of your program and it should probably shut down soon after the
exception. In the latter, you would want to tell the user that the file couldn’t be opened and
possibly ask to retry the action, but there is no reason your program wouldn’t be able to keep
running after the error.

Exception Handling

The main benefit to Objective-C’s exception handling capabilities is the ability to separate the
handling of errors from the detection of errors. When a portion of code encounters an exception,
it can “throw” it to the nearest error handling block, which can “catch” specific exceptions and
handle them appropriately. The fact that exceptions can be thrown from arbitrary locations

92

eliminates the need to constantly check for success or failure messages from each function
involved in a particular task.

The @try, @catch(), and @finally compiler directives are used to catch and handle

exceptions, and the @throw directive is used to detect them. If you’ve worked with exceptions in

C#, these exception handling constructs should be familiar to you.

It’s important to note that in Objective-C, exceptions are relatively slow. As a result, their use
should be limited to catching serious programming errors—not for basic control flow. If you’re
trying to determine what to do based on an expected error (e.g., failing to load a file), please
refer to the Error Handling section.

The NSException Class

Exceptions are represented as instances of the NSException class or a subclass thereof. This

is a convenient way to encapsulate all the necessary information associated with an exception.
The three properties that constitute an exception are described as follows:

 name – An instance of NSString that uniquely identifies the exception.

 reason – An instance of NSString containing a human-readable description of the

exception.

 userInfo – An instance of NSDictionary that contains application-specific information

related to the exception.

The Foundation framework defines several constants that define the “standard” exception
names. These strings can be used to check what type of exception was caught.

You can also use the initWithName:reason:userInfo: initialization method to create new

exception objects with your own values. Custom exception objects can be caught and thrown
using the same methods covered in the upcoming sections.

Generating Exceptions

Let’s start by taking a look at the default exception-handling behavior of a program. The
objectAtIndex: method of NSArray is defined to throw an NSRangeException (a subclass of

NSException) when you try to access an index that doesn’t exist. So, if you request the 10th

item of an array that has only three elements, you’ll have yourself an exception to experiment
with:

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 NSArray *crew = [NSArray arrayWithObjects:
 @"Dave",
 @"Heywood",
 @"Frank", nil];

 // This will throw an exception.

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_Constants/Reference/reference.html%23//apple_ref/c/data/NSRangeException
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_Constants/Reference/reference.html%23//apple_ref/c/data/NSRangeException

93

 NSLog(@"%@", [crew objectAtIndex:10]);

 }
 return 0;
}

When it encounters an uncaught exception, Xcode halts the program and points you to the line
that caused the problem.

Figure 35: Aborting a program due to an uncaught exception

Next, we’ll learn how to catch exceptions and prevent the program from terminating.

Catching Exceptions

To handle an exception, any code that may result in an exception should be placed in a @try

block. Then, you can catch specific exceptions using the @catch() directive. If you need to

execute any housekeeping code, you can optionally place it in a @finally block. The following

example shows all three of these exception-handling directives:

@try {
 NSLog(@"%@", [crew objectAtIndex:10]);
}
@catch (NSException *exception) {
 NSLog(@"Caught an exception");
 // We'll just silently ignore the exception.
}
@finally {
 NSLog(@"Cleaning up");
}

This should output the following in your Xcode console:

Caught an exception!
Name: NSRangeException
Reason: *** -[__NSArrayI objectAtIndex:]: index 10 beyond bounds [0 .. 2]
Cleaning up

When the program encounters the [crew objectAtIndex:10] message, it throws an

NSRangeException, which is caught in the @catch() directive. Inside of the @catch() block is

where the exception is actually handled. In this case, we just display a descriptive error
message, but in most cases, you’ll probably want to write some code to take care of the
problem.

When an exception is encountered in the @try block, the program jumps to the corresponding

@catch() block, which means any code after the exception occurred won’t be executed. This

94

poses a problem if the @try block needs some cleaning up (e.g., if it opened a file, that file

needs to be closed). The @finally block solves this problem, since it is guaranteed to be

executed regardless of whether an exception occurred. This makes it the perfect place to tie up
any loose ends from the @try block.

Catching Custom Objects

The parentheses after the @catch() directive lets you define what type of exception you’re

trying to catch. In this case, it’s an NSException, which is the standard exception class. But, an

exception can actually be any class—not just an NSException. For example, the following

@catch() directive will handle a generic object:

@catch (id genericException)

We’ll learn how to throw instances of NSException as well as generic objects in the next

section.

Throwing Exceptions

When you detect an exceptional condition in your code, you create an instance of NSException

and populate it with the relevant information. Then, you throw it using the aptly named @throw

directive, prompting the nearest @try/@catch block to handle it.

For example, the following example defines a function for generating random numbers between
a specified interval. If the caller passes an invalid interval, the function throws a custom error.

#import <Foundation/Foundation.h>

int generateRandomInteger(int minimum, int maximum) {
 if (minimum >= maximum) {
 // Create the exception.
 NSException *exception = [NSException
 exceptionWithName:@"RandomNumberIntervalException"
 reason:@"*** generateRandomInteger(): "
 "maximum parameter not greater than minimum parameter"
 userInfo:nil];

 // Throw the exception.
 @throw exception;
 }
 // Return a random integer.
 return arc4random_uniform((maximum - minimum) + 1) + minimum;
}

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 int result = 0;
 @try {
 result = generateRandomInteger(0, 10);

95

 }
 @catch (NSException *exception) {
 NSLog(@"Problem!!! Caught exception: %@", [exception name]);
 }

 NSLog(@"Random Number: %i", result);

 }
 return 0;
}

Since this code passes a valid interval (0, 10) to generateRandomInteger(), it won’t have an

exception to catch. However, if you change the interval to something like (0, -10), you’ll get to

see the @catch() block in action. This is essentially what’s going on under the hood when the

framework classes encounter exceptions (e.g., the NSRangeException raised by NSArray).

Re-Throwing Exceptions

It’s also possible to re-throw exceptions that you’ve already caught. This is useful if you want to
be informed that a particular exception occurred but don’t necessarily want to handle it yourself.
As a convenience, you can even omit the argument to the @throw directive:

@try {
 result = generateRandomInteger(0, -10);
}
@catch (NSException *exception) {
 NSLog(@"Problem!!! Caught exception: %@", [exception name]);

 // Re-throw the current exception.
 @throw
}

This passes the caught exception up to the next-highest handler, which in this case is the top-
level exception handler. This should display the output from our @catch() block, as well as the

default Terminating app due to uncaught exception... message, followed by an abrupt

exit.

Throwing Custom Objects

The @throw directive isn’t limited to NSException objects—it can throw literally any object. The

following example throws an NSNumber object instead of a normal exception. Also notice how

you can target different objects by adding multiple @catch() statements after the @try block:

#import <Foundation/Foundation.h>

int generateRandomInteger(int minimum, int maximum) {
 if (minimum >= maximum) {
 // Generate a number using "default" interval.
 NSNumber *guess = [NSNumber

96

 numberWithInt:generateRandomInteger(0, 10)];

 // Throw the number.
 @throw guess;
 }
 // Return a random integer.
 return arc4random_uniform((maximum - minimum) + 1) + minimum;
}

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 int result = 0;
 @try {
 result = generateRandomInteger(30, 10);
 }
 @catch (NSNumber *guess) {
 NSLog(@"Warning: Used default interval");
 result = [guess intValue];
 }
 @catch (NSException *exception) {
 NSLog(@"Problem!!! Caught exception: %@", [exception name]);
 }

 NSLog(@"Random Number: %i", result);

 }
 return 0;
}

Instead of throwing an NSException object, generateRandomInteger() tries to generate a

new number between some “default” bounds. The example shows you how @throw can work

with different types of objects, but strictly speaking, this isn’t the best application design, nor is it
the most efficient use of Objective-C’s exception-handling tools. If you really were just planning
on using the thrown value like the previous code does, you would be better off with a plain old
conditional check using NSError, as discussed in the next section.

In addition, some of Apple’s core frameworks expect an NSException object to be thrown, so

be careful with custom objects when integrating with the standard libraries.

Error Handling

Whereas exceptions are designed to let programmers know when things have gone fatally
wrong, errors are designed to be an efficient, straightforward way to check if an action
succeeded or not. Unlike exceptions, errors are designed to be used in your everyday control
flow statements.

97

The NSError Class

The one thing that errors and exceptions have in common is that they are both implemented as
objects. The NSError class encapsulates all of the necessary information for representing

errors:

 code – An NSInteger that represents the error’s unique identifier.

 domain – An instance of NSString defining the domain for the error (described in more

detail in the next section).

 userInfo – An instance of NSDictionary that contains application-specific information

related to the error. This is typically used much more than the userInfo dictionary of

NSException.

In addition to these core attributes, NSError also stores several values designed to aid in the

rendering and processing of errors. All of these are actually shortcuts into the userInfo

dictionary described in the previous list.

 localizedDescription – An NSString containing the full description of the error,

which typically includes the reason for the failure. This value is typically displayed to the
user in an alert panel.

 localizedFailureReason – An NSString containing a stand-alone description of the

reason for the error. This is only used by clients that want to isolate the reason for the
error from its full description.

 recoverySuggestion – An NSString instructing the user how to recover from the error.

 localizedRecoveryOptions – An NSArray of titles used for the buttons of the error
dialog. If this array is empty, a single OK button is displayed to dismiss the alert.

 helpAnchor – An NSString to display when the user presses the Help anchor button in

an alert panel.

As with NSException, the initWithDomain:code:userInfo method can be used to initialize

custom NSError instances.

Error Domains

An error domain is like a namespace for error codes. Codes should be unique within a single
domain, but they can overlap with codes from other domains. In addition to preventing code
collisions, domains also provide information about where the error is coming from. The four
main built-in error domains are: NSMachErrorDomain, NSPOSIXErrorDomain,

NSOSStatusErrorDomain, and NSCocoaErrorDomain. The NSCocoaErrorDomain contains the

error codes for many of Apple’s standard Objective-C frameworks; however, there are some
frameworks that define their own domains (e.g., NSXMLParserErrorDomain).

If you need to create custom error codes for your libraries and applications, you should always
add them to your own error domain—never extend any of the built-in domains. Creating your
own domain is a relatively trivial job. Because domains are just strings, all you have to do is
define a string constant that doesn’t conflict with any of the other error domains in your

98

application. Apple suggests that domains take the form of
com.<company>.<project>.ErrorDomain.

Capturing Errors

There are no dedicated language constructs for handling NSError instances (though several

built-in classes are designed to handle them). They are designed to be used in conjunction with
specially designed functions that return an object when they succeed and nil when they fail.

The general procedure for capturing errors is as follows:

1. Declare an NSError variable. You don’t need to allocate or initialize it.

2. Pass that variable as a double pointer to a function that may result in an error. If anything
goes wrong, the function will use this reference to record information about the error.

3. Check the return value of that function for success or failure. If the operation failed, you
can use NSError to handle the error yourself or display it to the user.

As you can see, a function doesn’t typically return an NSError object—it returns whatever value

it’s supposed to if it succeeds, otherwise it returns nil. You should always use the return value

of a function to detect errors—never use the presence or absence of an NSError object to

check if an action succeeded. Error objects are only supposed to describe a potential error, not
tell you if one occurred.

The following example demonstrates a realistic use case for NSError. It uses a file-loading

method of NSString, which is actually outside the scope of the book. The iOS Succinctly book

covers file management in depth, but for now, let’s just focus on the error-handling capabilities
of Objective-C.

First, we generate a file path pointing to ~/Desktop/SomeContent.txt. Then, we create an

NSError reference and pass it to the stringWithContentsOfFile:encoding:error: method

to capture information about any errors that occur while loading the file. Note that we’re passing
a reference to the *error pointer, which means the method is requesting a pointer to a pointer

(i.e. a double pointer). This makes it possible for the method to populate the variable with its
own content. Finally, we check the return value (not the existence of the error variable) to see

if stringWithContentsOfFile:encoding:error: succeeded or not. If it did, it’s safe to work

with the value stored in the content variable; otherwise, we use the error variable to display

information about what went wrong.

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 // Generate the desired file path.
 NSString *filename = @"SomeContent.txt";
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDesktopDirectory, NSUserDomainMask, YES
);
 NSString *desktopDir = [paths objectAtIndex:0];
 NSString *path = [desktopDir
 stringByAppendingPathComponent:filename];

99

 // Try to load the file.
 NSError *error;
 NSString *content = [NSString stringWithContentsOfFile:path
 encoding:NSUTF8StringEncoding
 error:&error];

 // Check if it worked.
 if (content == nil) {
 // Some kind of error occurred.
 NSLog(@"Error loading file %@!", path);
 NSLog(@"Description: %@", [error localizedDescription]);
 NSLog(@"Reason: %@", [error localizedFailureReason]);
 } else {
 // Content loaded successfully.
 NSLog(@"Content loaded!");
 NSLog(@"%@", content);
 }
 }
 return 0;
}

Since the ~/Desktop/SomeContent.txt file probably doesn’t exist on your machine, this code

will most likely result in an error. All you have to do to make the load succeed is create
SomeContent.txt on your desktop.

Custom Errors

Custom errors can be configured by accepting a double pointer to an NSError object and

populating it on your own. Remember that your function or method should return either an
object or nil, depending on whether it succeeds or fails (do not return the NSError reference).

The next example uses an error instead of an exception to mitigate invalid parameters in the
generateRandomInteger() function. Notice that **error is a double pointer, which lets us

populate the underlying variable from within the function. It’s very important to check that the
user actually passed a valid **error parameter with if (error != NULL). You should always

do this in your own error-generating functions. Since the **error parameter is a double

pointer, we can assign a value to the underlying variable via *error. And again, we check for

errors using the return value (if (result == nil)), not the error variable.

#import <Foundation/Foundation.h>

NSNumber *generateRandomInteger(int minimum, int maximum, NSError **error) {
 if (minimum >= maximum) {
 if (error != NULL) {

 // Create the error.
 NSString *domain = @"com.MyCompany.RandomProject.ErrorDomain";
 int errorCode = 4;
 NSMutableDictionary *userInfo = [NSMutableDictionary dictionary];

100

 [userInfo setObject:@"Maximum parameter is not greater than minimum
parameter"
 forKey:NSLocalizedDescriptionKey];

 // Populate the error reference.
 *error = [[NSError alloc] initWithDomain:domain
 code:errorCode
 userInfo:userInfo];
 }
 return nil;
 }
 // Return a random integer.
 return [NSNumber
 numberWithInt:arc4random_uniform((maximum - minimum) + 1) + minimum];
}

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 NSError *error;
 NSNumber *result = generateRandomInteger(0, -10, &error);

 if (result == nil) {
 // Check to see what went wrong.
 NSLog(@"An error occurred!");
 NSLog(@"Domain: %@ Code: %li", [error domain], [error code]);
 NSLog(@"Description: %@", [error localizedDescription]);
 } else {
 // Safe to use the returned value.
 NSLog(@"Random Number: %i", [result intValue]);
 }

 }
 return 0;
}

All of the localizedDescription, localizedFailureReason, and related properties of

NSError are actually stored in its userInfo dictionary using special keys defined by

NSLocalizedDescriptionKey, NSLocalizedFailureReasonErrorKey, etc. So, all we have to

do to describe the error is add some strings to the appropriate keys, as shown in the last
sample.

Typically, you’ll want to define constants for custom error domains and codes so that they are
consistent across classes.

Summary

This chapter provided a detailed discussion of the differences between exceptions and errors.
Exceptions are designed to inform programmers of fatal problems in their program, whereas
errors represent a failed user action. Generally, a production-ready application should not throw

101

exceptions, except in the case of truly exceptional circumstances (e.g., running out of memory
in a device).

We covered the basic usage of NSError, but keep in mind that there are several built-in classes

dedicated to processing and displaying errors. Unfortunately, these are all graphical
components, and thus outside the scope of this book. The iOS Succinctly sequel has a
dedicated section on displaying and recovering from errors.

In the final chapter of Objective-C Succinctly, we’ll discuss one of the more confusing topics in
Objective-C. We’ll discover how blocks let us treat functionality the same way we treat data.
This will have a far-reaching impact on what’s possible in an Objective-C application.

102

Chapter 9 Blocks

Blocks are actually an extension to the C programming language, but they are heavily utilized
by Apple’s Objective-C frameworks. They are similar to C#’s lambdas in that they let you define
a block of statements inline and pass it around to other functions as if it were an object.

Figure 36: Processing data with functions vs. performing arbitrary actions with blocks

Blocks are incredibly convenient for defining callback methods since they let you define the
desired functionality at the point of invocation rather than somewhere else in your program. In
addition, blocks are implemented as closures (just like lambdas in C#), which makes it possible
to capture the local state surrounding the block without any extra work.

Creating Blocks

Block syntax can be a little unsettling compared to the Objective-C syntax we’ve been using
throughout this book, so don’t worry if it takes a while to be comfortable with them. We’ll start by
looking at a simple example:

^(int x) {
 return x * 2;
};

103

This defines a block that takes an integer parameter, x, and returns that value multiplied by two.

Aside from the caret (^), this resembles a normal function: it has a parameter list in

parentheses, an instruction block enclosed in curly braces, and an (optional) return value. In C#,
this is would be written as:

x => x * 2;

But, blocks aren’t limited to simple expressions—they can contain an arbitrary number of
statements, just like a function. For example, you can add an NSLog() call before returning a

value:

^(int x) {
 NSLog(@"About to multiply %i by 2.", x);
 return x * 2;
};

Parameter-less Blocks

If your block doesn’t take any parameters, you can omit the parameter list altogether:

^ {
 NSLog(@"This is a pretty contrived block.");
 NSLog(@"It just outputs these two messages.");
};

Using Blocks as Callbacks

On its own, a block isn’t all that useful. Typically, you’ll pass them to another method as a
callback function. This is a very powerful language feature, as it lets you treat functionality as a
parameter, rather than being limited to data. You can pass a block to a method as you would
any other literal value:

[anObject doSomethingWithBlock:^(int x) {
 NSLog(@"Multiplying %i by two");
 return x * 2;
}];

The doSomethingWithBlock: implementation can run the block just like it would run a function,

which opens the door to a lot of new organizational paradigms.

As a more practical example, let’s take a look at the sortUsingComparator: method defined

by NSMutableArray. This provides the exact same functionality as the

sortedArrayUsingFunction: method we used in the Data Types chapter, except you define

the sort algorithm in a block instead of a full-fledged function:

104

Included code sample: SortUsingBlock

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 NSMutableArray *numbers = [NSMutableArray arrayWithObjects:
 [NSNumber numberWithFloat:3.0f],
 [NSNumber numberWithFloat:5.5f],
 [NSNumber numberWithFloat:1.0f],
 [NSNumber numberWithFloat:12.2f], nil];

 [numbers
 sortUsingComparator:^NSComparisonResult(id obj1, id obj2) {
 float number1 = [obj1 floatValue];
 float number2 = [obj2 floatValue];
 if (number1 < number2) {
 return NSOrderedAscending;
 } else if (number1 > number2) {
 return NSOrderedDescending;
 } else {
 return NSOrderedSame;
 }
 }];

 for (int i=0; i<[numbers count]; i++) {
 NSLog(@"%i: %0.1f", i, [[numbers objectAtIndex:i] floatValue]);
 }

 }
 return 0;
}

Again, this is a straightforward ascending sort, but being able to define the sort algorithm in the
same place as the function invocation is more intuitive than having to define an independent
function elsewhere in the program. Also notice that you can declare local variables in a block
just as you would in a function.

The standard Objective-C frameworks use this design pattern for everything from sorting, to
enumeration, to animation. In fact, you could even replace the for-loop in the last example with
NSArray’s enumerateObjectsUsingBlock: method, as shown here:

[sortedNumbers
 enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"%lu: %0.1f", idx, [obj floatValue]);
 if (idx == 2) {
 // Stop enumerating at the end of this iteration.
 *stop = YES;
 }
}];

105

The obj parameter is the current object, idx is the current index, and *stop is a way to exit the

enumeration prematurely. Setting the *stop pointer to YES tells the method to stop enumerating

after the current iteration. All of this behavior is specified by the
enumerateObjectsUsingBlock: method.

While animation is a bit off-topic for this book, it’s still worth a brief explanation to help
understand the utility of blocks. UIView is one of the most used classes in iOS programming. It’s

a generic graphical container that lets you animate its contents via the
animateWithDuration:animations: method. The second parameter is a block that defines

the final state of the animation, and the method automatically figures out how to animate the
properties using the first parameter. This is an elegant, user-friendly way to define transitions
and other timer-based behavior. We’ll discuss animations in much more detail in the upcoming
iOS Succinctly book.

Storing and Executing Blocks

Aside from passing them to methods, blocks can also be stored in variables for later use. This
use case essentially serves as an alternative way to define functions:

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 int (^addIntegers)(int, int);

 addIntegers = ^(int x, int y) {
 return x + y;
 };

 int result = addIntegers(24, 18);
 NSLog(@"%i", result);

 }
 return 0;
}

First, let’s inspect the syntax for declaring block variables: int (^addIntegers)(int, int).

The name of this variable is simply addIntegers (without the caret). This can be confusing if

you haven’t been using blocks very long. It helps to think of the caret as the block’s version of
the dereference operator (*). For example, a pointer called addIntegers would be declared as

*addIntegers—likewise, a block of the same name is declared as ^addIntegers. However,

keep in mind that this is merely a superficial similarity.

In addition to the variable name, you also need to declare all of the metadata associated with
the block: the number of parameters, their types, and the return type. This enables the compiler
to enforce type safety with block variables. Note that the caret is not part of the variable name—
it’s only required in the declaration.

106

Next, we use the standard assignment operator (=) to store a block in the variable. Of course,

the block’s parameters ((int x, int y)) must match parameter types declared by the variable

((int, int)). A semicolon is also required after the block definition, just like a normal variable

assignment. Once it has been populated with a value, the variable can be called just like a
function: addIntegers(24, 18).

Parameter-less Block Variables

If your block doesn’t take any parameters, you must explicitly declare this in the variable by
placing void in the parameter list:

void (^contrived)(void) = ^ {
 NSLog(@"This is a pretty contrived block.");
 NSLog(@"It just outputs these two messages.");
};

contrived();

Working with Variables

Variables inside of blocks behave in much the same way as they do in normal functions. You
can create local variables within the block, access parameters passed to the block, and use
global variables and functions (e.g., NSLog()). But, blocks also have access to non-local

variables, which are variables from the enclosing lexical scope.

int initialValue = 32;
int (^addToInitialValue)(int) = ^(int x) {
 return initialValue + x;
};

NSLog(@"%i", addToInitialValue(10)); // 42

In this case, initialValue is considered a non-local variable within the block because it is

defined outside of the block (not locally, relative to the block). Of course, the fact that non-local
variables are read-only implies that you cannot assign to them:

int initialValue = 32;
int (^addToInitialValue)(int) = ^(int x) {
 initialValue = 5; // This will throw a compiler error.
 return initialValue + x;
};

Having access to the surrounding (non-local) variables is a big deal when using inline blocks as
method parameters. It provides a convenient way to represent any state required within the
block.

107

For example, if you were animating the color of a UI component and the target color was
calculated and stored in a local variable before the block definition, you could simply use the
local variable within the block—no extra work required. If you didn’t have access to non-local
variables, you would have passed the color value as an additional block parameter. When your
callback functionality relies on a large portion of the surrounding state, this can be very
cumbersome.

Blocks Are Closures

However, blocks don’t just have access to non-local variables—they also ensure that those
variables will never change, no matter when or where the block is executed. In most
programming languages, this is called a closure.

Closures work by making a constant, read-only copy of any non-local variables and storing them
in a reference table with the statements that make up the block itself. These read-only values
are used every time the block is executed, which means that even if the original non-local
variable changes, the value used by the block is guaranteed to be the same as it was when the
block was defined.

Figure 37: Storing non-local variables in a reference table

We can see this in action by assigning a new value to the initialValue variable from the

previous example:

int initialValue = 32;
int (^addToInitialValue)(int) = ^(int x) {
 return initialValue + x;
};

NSLog(@"%i", addToInitialValue(10)); // 42

initialValue = 100;

108

NSLog(@"%i", addToInitialValue(10)); // Still 42.

No matter where you call addToInitialValue(), the initialValue used by the block will

always be 32, because that’s what it was when it was created. For all intents and purposes, it’s

as though the initialValue variable was transformed into a literal value inside of the block.

So, the utility of blocks is two-fold:

1. They allow you to represent functionality as an object.

2. They let you represent state information alongside that functionality.

The whole idea behind encapsulating functionality in a block is to be able to use it later in the
program. Closures make it possible to ensure predictable behavior whenever a block is
executed by freezing the surrounding state. This makes them an integral aspect of block
programming.

Mutable Block Variables

For most cases, capturing state with closures is intuitively what you would expect from a block.
There are, however, times that call for the opposite behavior. Mutable block variables are non-
local variables that are designated read-write instead of the default read-only. To make a non-
local variable mutable, you have to declare it with the __block modifier, which creates a direct

link between the variable used outside the block and the one used inside of the block. This
opens the door to using blocks as iterators, generators, and any other kind of object that
processes state.

Figure 38: Creating a direct link with a mutable block variable

The following example shows you how to make a non-local variable mutable:

#import <Foundation/Foundation.h>
#import "Person.h"

int main(int argc, const char * argv[]) {
 @autoreleasepool {

 __block NSString *name = @"Dave";

109

 void (^generateRandomName)(void) = ^ {
 NSLog(@"Changing %@ to Frank", name);
 name = @"Frank";
 };

 NSLog(@"%@", name); // Dave

 // Change it from inside the block.
 generateRandomName(); // Changing Dave to Frank.
 NSLog(@"%@", name); // Frank

 // Change it from outside the block.
 name = @"Heywood";
 generateRandomName(); // Changing Heywood to Frank.

 }
 return 0;
}

This looks almost exactly the same as the previous example, with two very significant
differences. First, the non-local name variable can be assigned from within the block. Second,

changing the variable outside of the block does update the value used within the block. It’s even
possible to create multiple blocks that all manipulate the same non-local variable.

The only caveat to using the __block modifier is that it cannot be used on variable-length

arrays.

Defining Methods that Accept Blocks

Arguably, creating methods that accept blocks is more useful than storing them in local
variables. It gives you the opportunity to add your own enumerateObjectsUsingBlock:-style

methods to custom classes.

Consider the following interface for the Person class:

// Person.h
@interface Person : NSObject

@property int age;

- (void)celebrateBirthdayWithBlock:(void (^)(int))activity;

@end

The void (^)(int) code is the data type for the block that you want to accept. In this case,

we’ll be accepting a block with no return value and a single integer parameter. Notice that,
unlike block variables, this doesn’t require a name for the block—just an unadorned ^ character.

110

You now have all the skills necessary to create methods that accept blocks as parameters. A
simple implementation for the Person interface shown in the previous example might look

something like:

// Person.m
#import "Person.h"

@implementation Person

@synthesize age = _age;

- (void)celebrateBirthdayWithBlock:(void (^)(int))activity {
 NSLog(@"It's a party!!!");
 activity(self.age);
}

@end

Then, you can pass a customizable activity to perform on a Person’s birthday like so:

// main.m
int main(int argc, const char * argv[]) {
 @autoreleasepool {

 Person *dave = [[Person alloc] init];
 dave.age = 37;

 [dave celebrateBirthdayWithBlock:^(int age) {
 NSLog(@"Woot! I'm turning %i", age + 1);
 }];

 }
 return 0;
}

It should be readily apparent that using blocks as parameters is infinitely more flexible than the
standard data types we’ve been using up until this chapter. You can actually tell an instance to
do something, rather than merely process data.

Summary

Blocks let you represent statements as Objective-C objects, which enables you to pass arbitrary
actions to a function instead of being limited to data. This is useful for everything from iterating
over a sequence of objects to animating UI components. Blocks are a versatile extension to the
C programming language, and they are a necessary tool if you’re planning to do a lot of work
with the standard iOS frameworks. In this chapter, we learned how to create, store, and execute
blocks, and we learned about the intricacies of closures and the __block storage modifier. We

also discussed some common usage paradigms for blocks.

111

Conclusion

Thus concludes our journey through Objective-C. We’ve covered everything from basic syntax
to core data types, classes, protocols, properties, methods, memory management, error
handling, and even the advanced use of blocks. We focused more on language features than
creating graphical applications, but this provided a solid foundation for iOS app development. By
now, I hope you’re feeling very comfortable with the Objective-C language.

Remember that Objective-C relies on many of the same object-oriented concepts as other OOP
languages. While we only touched on a few object-oriented design patterns in this book, virtually
all of the organizational paradigms available to other languages are also possible in Objective-
C. This means that you can easily leverage your existing object-oriented knowledge base with
the tools presented in the preceding chapters.

iOS Succinctly

If you’re ready to start building functional iPhone and iPad applications, be sure to check out the
second part of this series, iOS Succinctly. This hands-on guide to app development applies all
of the Objective-C skills acquired from this book to real-world development situations. We’ll walk
through all of the major Objective-C frameworks and learn how to perform tasks along the way,
including: configuring user interfaces, capturing input, drawing graphics, saving and loading
files, and much, much more.

	The Story behind the Succinctly Series of Books
	Introduction
	The Objective-C Language
	Sample Code
	Setting Up
	Installation
	Creating an Application
	Getting to Know the Xcode IDE
	Editing Files
	Compiling Code

	Summary

	Chapter 1 Hello, Objective-C
	Creating a Class
	Components of a Class
	Defining Methods
	Instantiating Objects
	Calling Methods
	Adding Method Parameters
	Defining Properties
	Summary

	Chapter 2 Data Types
	Displaying Values
	Primitive Data Types
	Booleans
	Chars
	Short Integers
	 Normal Integers
	Long Integers
	Floats
	Doubles
	Structs
	Arrays
	Pointers

	Void
	nil and NULL

	Primitive Data Type Summary
	Foundation Data Structures
	NSNumber
	NSDecimalNumber
	NSString
	NSMutableString
	NSArray
	NSMutableArray
	NSSet and NSMutableSet
	NSDictionary and NSMutableDictionary
	The id Data Type
	The Class Data Type
	Foundation Data Structures Summary

	Chapter 3 Properties
	Declaring Properties
	Implementing Properties
	Instance Variables
	Customizing Accessors
	Dot Syntax

	Summary

	Chapter 4 Memory Management
	Manual Memory Management
	Auto-Releasing Objects
	Manual Retain-Release Attributes

	Automatic Reference Counting
	ARC Attributes

	Summary

	Chapter 5 Methods
	Instance vs. Class Methods
	The super Keyword
	Initialization Methods
	A Brief Aside on Method Names
	Class Initialization

	Deallocation Methods
	Deallocation in MMR
	Deallocation in ARC

	Private Methods
	Selectors
	Method Names and Selectors
	Performing Selectors
	Checking for the Existence of Selectors
	Using Selectors

	Summary

	Chapter 6 Categories and Extensions
	Categories
	Protected Methods
	Caveats

	Extensions
	Private Methods

	Summary

	Chapter 7 Protocols
	Creating a Protocol
	Adopting a Protocol
	Advantages of Protocols
	Protocols as Pseudo-Types
	Dynamic Conformance Checking

	Forward-Declaring Protocols
	Summary

	Chapter 8 Exceptions and Errors
	Exception Handling
	The NSException Class
	Generating Exceptions
	Catching Exceptions
	Catching Custom Objects

	Throwing Exceptions
	Re-Throwing Exceptions
	Throwing Custom Objects

	Error Handling
	The NSError Class
	Error Domains
	Capturing Errors
	Custom Errors

	Summary

	Chapter 9 Blocks
	Creating Blocks
	Parameter-less Blocks

	Using Blocks as Callbacks
	Storing and Executing Blocks
	Parameter-less Block Variables

	Working with Variables
	Blocks Are Closures
	Mutable Block Variables
	Defining Methods that Accept Blocks

	Summary

	Conclusion
	iOS Succinctly

