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Preface
This book explains each feature of NHibernate 3.0 in detail through example recipes that you 
can quickly apply to your applications. These recipes will take you from the absolute basics 
of NHibernate through its most advanced features and beyond, showing you how to take full 
advantage of each concept to quickly create amazing database applications.

What this book covers
Chapter 1, Models and Mappings, introduces mappings in XML, Fluent NHibernate,  
and ConfORM, and includes more advanced topics such as versioning and concurrency.

Chapter 2, Configuration and Schema, explains various methods for configuring  
NHibernate and generating your database.

Chapter 3, Sessions and Transactions, covers several techniques for proper session  
and transaction management in your application, including distributed transactions.

Chapter 4, Queries, demonstrates a number of rich query APIs, including the new  
NHibernate 3.0 LINQ provider and QueryOver API.

Chapter 5, Testing, introduces some techniques you can apply to quickly test your  
NHibernate applications and includes an introduction to NHibernate Profiler.

Chapter 6, Data Access Layer, shows how to build a flexible, extensible data access  
layer based on NHibernate and its many query APIs.

Chapter 7, Extending NHibernate, shows a number of ways to customize and extend 
NHibernate to provide additional services such as audit logging and data encryption.

Chapter 8, NHibernate Contribution Projects, introduces several NHibernate Contribution 
projects, adding features such as caching, data validation, full text search, geospatial data, 
and horizontal partitioning of databases.

Appendix, Menu, is designed to guide you to recipes relevant to building different types  
of applications, such as ASP.NET MVC or WPF applications.
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What you need for this book
To complete the recipes in this book, you'll need the following tools:

 f Windows XP or later versions.

 f Visual Studio 2008 or later versions.

 f Microsoft SQL Server 2008 Express edition or later versions.

 f Chapter 5 requires NHibernate Profiler. A free, 30 day trial version is available  
on the web at http://nhprof.com.

Who this book is for
This book is written for NHibernate users at all levels of experience. Examples are written  
in C# and XML. Some basic knowledge of SQL is needed.

Beginners will learn several techniques for each of the four core NHibernate tasks – mapping, 
configuration, session & transaction management, and querying – and which techniques  
fit best with various types of applications. In short, you will be able to build an application 
using NHibernate.

Intermediate level readers will learn how to best implement enterprise application  
architecture patterns using NHibernate, leading to clean, easy-to-understand code,  
and increased productivity.

In addition to new v3.0 features, advanced readers will learn creative ways to extend 
NHibernate core, as well as techniques using the NHibernate search, shards, spatial,  
and validation projects.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds  
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " Create a new class library project called 
EncryptedStringExample" where EncryptedStringExample is the code word in text.

A block of code is set as follows:

public interface IEncryptor
{
  string Encrypt(string plainText);
  string Decrypt(string encryptedText);
  string EncryptionKey { get; set; }
}

http://nhprof.com
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When we wish to draw your attention to a particular part of a code block, the relevant lines  
or items are set in bold:

using System.Collections.Generic;

namespace Eg.Core
{
  public class Movie : Product 
  {

    public virtual string Director { get; set; }
    public virtual IList<ActorRole> Actors { get; set; }

  }
}

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "clicking on the Next button 
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,  
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in  
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing  
or contributing to a book, see our author guide on www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you  
to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books 
you have purchased from your account at http://www.
PacktPub.com. If you purchased this book elsewhere, you 
can visit http://www.PacktPub.com/support and 
register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration, 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/support, selecting your book, clicking on the let us 
know link, and entering the details of your errata. Once your errata are verified, your submission 
will be accepted, and the errata will be uploaded on our website, or added to any list of existing 
errata, under the Errata section of that title. Any existing errata can be viewed by selecting your 
title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com
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Models and Mappings

In this chapter, we will cover the following topics:

 f Mapping a class with XML

 f Creating class hierarchy mappings

 f Mapping a one-to-many relationship

 f Setting up a base entity class

 f Bidirectional one-to-many class relationships

 f Handling versioning and concurrency

 f Creating mappings fluently

 f Mapping with ConfORM

Introduction
NHibernate is a popular, mature, open source object / relational mapper (ORM) based on 
Java's Hibernate project. ORMs, such as LINQ to SQL, Entity Framework, and NHibernate, 
translate between the database's relational model of tables, columns, and keys to the 
application's object model of classes and properties.

The NHibernate homepage, http://NHForge.org, contains blog posts, a wiki, the 
complete reference documentation, and a bug tracker. Support is available through the 
very active nhusers Google group at http://groups.google.com/group/nhusers. 
The NHibernate source code is hosted on SourceForge at http://sourceforge.net/
projects/nhibernate/. Precompiled binaries of NHibernate releases are also available 
on SourceForge.

http://NHForge.org
http://groups.google.com/group/nhusers
http://sourceforge.net/projects/nhibernate/
http://sourceforge.net/projects/nhibernate/
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Mapping a class with XML
The suggested first step in any new NHibernate application is mapping the model. In this first 
example, I'll show you how to map a simple product class.

Getting ready
Before we begin mapping, let's get our Visual Studio solution set up. Follow these steps  
to set up your solution with NHibernate binaries and schemas.

1. Download the NHibernate 3.0 binaries from SourceForge at http://sourceforge.
net/projects/nhibernate/files/. The filename should be NHibernate-
3.0.0.GA-bin.zip, perhaps with a slightly different version number.

2. In Visual Studio, create a new C# class library project named Eg.Core with  
a directory for the solution named Cookbook.

3. Delete the Class1.cs file.

4. In the Solution Explorer, right-click on the Cookbook solution and select Open Folder 
in Windows Explorer. This will open an Explorer window to the Cookbook directory. 

5. Inside the Cookbook folder, create a new folder named Lib.

6. Extract the following files from the NHibernate 3 binaries ZIP to the Lib folder:

 � All files in the Required_Bin folder

 � All files in the Required_For_LazyLoading\Castle folder

7. Back in Visual Studio, right-click on the Solution, and select Add | New  
Solution Folder.

8. Name the folder Schema.

9. Right-click on the Schema folder, and select Add | Existing Item.

10. Browse to the Lib folder, and add two files: nhibernate-configuration.xsd 
and nhibernate-mapping.xsd. When the files open in the editor, just close them.

11. Your solution appears as shown in the next screenshot:

http://sourceforge.net/projects/nhibernate/files/
http://sourceforge.net/projects/nhibernate/files/


Chapter 1

7

How to do it...
Now, let's start by creating our Product class with the following steps:

1. In Eg.Core, create a new C# class named Entity with the following code:
using System;

namespace Eg.Core

{

  public abstract class Entity

  {

    public virtual Guid Id { get; protected set; }

  }

}

2. Create a new class named Product with the following code:
using System;

namespace Eg.Core

{

  public class Product : Entity 

  {

    public virtual string Name { get; set; }

    public virtual string Description { get; set; }

    public virtual decimal UnitPrice { get; set; }

  }

}

3. Build your application and correct any compilation errors.

Next, let's create an NHibernate mapping for our product class. Follow these steps:

1. In the Solution Explorer window, right-click on your project, and choose  
Add | New Item.

2. Choose the Data category on the left pane.

3. Choose XML file on the right pane.

4. Name the file Product.hbm.xml.

5. In the Solution Explorer, right-click on Product.hbm.xml, and choose Properties.

6. Change Build Action from Content to Embedded Resource.
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7. In the editor, enter the following XML in Product.hbm.xml. Let the IntelliSense 
guide you.

<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="Eg.Core"

    namespace="Eg.Core">

  <class name="Product">

    <id name="Id">

      <generator class="guid.comb" />

    </id>

    <property name="Name" not-null="true" />

    <property name="Description" />

    <property name="UnitPrice" not-null="true" 

      type="Currency" />

  </class>

</hibernate-mapping>

How it works...
In this recipe, we begin by creating our model. The model is the collection of classes that will 
be persisted or stored in the database.  A persistent class is any class that will be persisted. 
An entity class is a persistent class with an ID. An instance of an entity class is called an 
entity. So far, our model only contains the Product entity class. We will expand on this model 
over the next few recipes.

Notice that our Product class looks just like any other Plain Old CLR Object (POCO) class. 
One of the strongly held design decisions in NHibernate is that all entity classes should be 
persistence ignorant, that is, they should not know about, or be dependent on NHibernate.

Let's examine the Id property a little closer. The Id property of each Product instance will 
contain the primary key value from the database. In NHibernate, this is named the persistent 
object identifier (POID). Just as the primary key value uniquely identifies a row in a database 
table, the POID will uniquely identify an entity in memory.

If you are new to NHibernate, this protected setter may look strange to you.

    public virtual Guid Id { get; protected set; }

This is a shorthand way to limit access to the Id property. Code outside of the Product class 
is unable to change the value of the Id property. However, NHibernate sets properties using 
highly optimized reflection, ignoring the protected restriction. This keeps your application 
from inadvertently altering this value.
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Next, we create our mapping for the Product entity class. Visual Studio uses the 
nhibernate-mapping.xsd schema to provide IntelliSense while completing this mapping. 
As a general rule, all NHibernate mapping files end with a.hbm.xml extension, and have a 
build action of Embedded Resource. NHibernate searches through the embedded resources 
in your assembly, loading each one with this extension. 

One of the most common mistakes in mapping is forgetting to set the build 
action to Embedded Resource. This leads to the "No Persister for class" 
MappingException.

Let's break down this XML mapping. Every XML mapping document contains a single 
hibernate-mapping element. The xmlns attribute sets the XML namespace. Along  
with the schema in our Schema folder, Visual Studio uses this to enable IntelliSense  
inside NHibernate mappings.

The assembly attribute tells NHibernate which assembly, by default, contains our types. 
Similarly, the namespace attribute sets the default .NET namespace types in this mapping file. 
Together, they allow us to use the simple name Product instead of the full assembly qualified 
name of Eg.Core.Product, Eg.Core. Inside the hibernate-mapping element, we have 
a class element. The name attribute tells NHibernate that this class element defines the 
mapping for our entity class Product.

The Id element defines the POID. The name attribute refers to the Id property of our 
Product class. It is case-sensitive, just as in the C# language.

The generator element defines how NHibernate will generate POIDs. In this case, we've told 
NHibernate to use the guid.comb algorithm. Several other options exist.

The property elements define properties on our Product class. Each name attribute 
matches the name of a property on our Product class. By default, NHibernate allows null 
values. Adding not-null="true" tells NHibernate to disallow null values.

Avoid redundant mappings
In general, it's best to keep your mappings as short and concise as possible. 
NHibernate intelligently scans your model and combines this knowledge 
with the information provided in the mapping. In most cases, specifying 
the types of properties in your mappings only creates redundancies that 
must be maintained. The default table name matches the class name, 
and each column name matches the corresponding property by default. 
It's not necessary to specify this information again. Similarly, you should 
avoid setting an attribute in your mapping when it matches an NHibernate 
default. For example, adding not-null="false" to each of your 
properties is redundant, and makes your mapping difficult to read.
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With this mapping, the Microsoft SQL Server database table used to store our Product entities 
appears as shown in the next screenshot. It may differ slightly for other databases.

There's more...
There are three main approaches to begin developing an NHibernate application.

 f With the model-first approach, the path taken in this book, we create our model, map 
the model, configure NHibernate, and finally generate our database tables from the 
model and mappings.

 f The configuration-first approach differs slightly. We build our configuration first,  
then add each entity class and mapping one at a time. This is a more iterative 
approach to the model-first approach. Again, the database is generated from  
the model and mappings.

 f The database-first approach is only suggested when sharing an existing database 
with another application. Depending on the database design, this usually requires 
some advanced mapping techniques. Many NHibernate beginners travel down 
this path for fresh database applications and end up with mapping and modelling 
problems well beyond their experience level.

What happens to these mappings?
When it loads, NHibernate will deserialize each of our XML mappings into a graph of hibernate 
mapping objects. NHibernate combines this data with metadata from the entity classes to 
create mapping metadata. This mapping metadata contains everything NHibernate must 
know about our model.

Surrogate keys and natural IDs
A natural key is an ID that has semantic meaning or business value. It "means something" 
to people in the real world. A surrogate key is a system generated ID that has no semantic 
meaning. It is just a value that uniquely identifies data in a database table. NHibernate 
strongly encourages the use of surrogate keys. There are two reasons for this. 
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First, the use of natural keys inevitably leads to the use of composite keys. Composite keys 
are multi-field keys composed of the natural keys of other objects. Let's examine the model 
of a university's course schedule. The natural key for your term or semester entity may be 
Fall 2010. The natural key for the Biology department may be BIOL. The natural key for an 
introductory Biology course would be BIOL 101, a composite of the department's natural key 
and a course number, each stored in a separate field, with proper foreign keys. The natural 
key for a section or course offering would be the combination of the natural ids from the term, 
the course, and a section number. You would have a key composed of four distinct pieces of 
information. The size of the key grows exponentially with each layer. This quickly leads to an 
incredible amount of complexity.

Second, because natural keys have real-world meaning, they must be allowed to change  
with the real world. Let's assume you have an Account class with a UserName property. 
While this may be unique, it's not a good candidate for use as a key. Suppose usernames  
are composed of the first initial followed by the last name. When someone changes their 
name, you'll have to update several foreign keys in your database. If, instead, you use an 
integer with no meaning for the POID, you only have to update a single UserName field.

However, UserName would be a great candidate for a natural id. A natural id is a property 
or set of properties that is unique and not null. Essentially, it is the natural key of an entity, 
though it is not used as the primary key. The mapping for a natural id appears as shown in  
the following code:

<natural-id mutable="true">
  <property name="UserName" not-null="true" />
</natural-id>

The natural-id element has one attribute: mutable. The default value is false, meaning 
that the property or properties contained in this natural id are immutable, or constant. In  
our case, we want to allow our application to change the UserName of an account from  
time-to-time, so we set mutable to true. In addition to some subtle improvements in 
caching, this natural id will create a unique database index on UserName.

ID generator selection
NHibernate offers many options for generating POIDs. Some are better than others,  
and generally fall under these four categories:

The assigned generator requires an application to assign an identifier before an object  
is persisted. This is typical when natural keys are used.

Non-insert POID generators are the best option for new applications. These generators allow 
NHibernate to assign an identity to a persistent object without writing the object's data to the 
database, allowing NHibernate to delay writing until the business transaction is complete, 
reducing round trips to the database. The following POID generators fit in this category:
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 f hilo generates an integer using the Hi/Lo algorithm, where an entire range of 
integers is reserved and used as needed. Once they've all been used, another 
range is reserved. Because the identity reservation is managed using a database 
table, this POID generator is safe for use in a database cluster, web farm, client, or 
server application, or other scenarios where a single database is shared by multiple 
applications or multiple instances of an application.

 f guid generates a GUID by calling System.Guid.NewGuid(). All of the GUID-based 
generators are safe for use in a shared-database environment.

 f guid.comb combines 10 bytes of a seemingly-random GUID, with six bytes 
representing the current date and time to form a new GUID. This algorithm reduces 
index fragmentation while maintaining high performance. 

 f guid.native gets a GUID from the database. Each generation requires a round-trip  
to the database.

 f uuid.hex generates a GUID and stores it as a human-readable string of 32 hex 
digits with or without dashes.

 f uuid.string generates a GUID, converts each of the GUID's 16 bytes to the binary 
equivalent character, and stores the resulting 16 characters as a string. This is not 
human readable.

 f counter  (also known as vm) is a simple incrementing integer. It's initialized from  
the system clock and counts up. It's not appropriate for shared-database scenarios.

 f increment is also a simple incrementing integer. It's initialized by fetching the 
maximum primary key value from the database at start-up. It's not appropriate for 
shared-database scenarios.

 f sequence fetches a single new ID from a database that supports named sequences, 
such as Oracle, DB2, and PostgreSQL. Each generation requires a round trip to the 
database. seqhilo provides better performance.

 f seqhilo combines the Hi/Lo algorithm and sequences to provide better 
performance over the sequence generator.

 f foreign simply copies keys across a one-to-one relationship. For example, if 
you have contact and customer associated by a one-to-one relationship, a foreign 
generator on customer would copy the ID from the matching contact.

Post-insert POID generators require data to be persisted to the database for an ID to be 
generated. This alters the behavior of NHibernate in very subtle ways and disables some 
performance features. As such, use of these POID generators is strongly discouraged! They 
should only be used with existing databases where other applications rely on this behavior.

 f identity returns a database-generated ID.

 f select performs a SELECT to fetch the ID from the row after the insert. It uses  
the natural id to find the correct row. 
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 f sequence-identity returns a database-generated ID for databases that support 
named sequences.

 f trigger-identity returns an ID generated by a database trigger.

Finally, the native generator maps to a different POID generator, depending on the database 
product. For Microsoft SQL Server, DB2, Informix, MySQL, PostgreSQL, SQLite, and Sybase,  
it is equivalent to identity. For Oracle and Firebird, it's the same as sequence. On Ingres, 
it's hilo.

See also
 f Creating class hierarchy mappings

 f Mapping a one-to-many relationship

 f Setting up a base entity class

 f Handling versioning and concurrency

 f Creating mappings fluently

 f Mapping with ConfORM

Creating class hierarchy mappings
It's common to have an inheritance hierarchy of subclasses. In this example, I will show you 
one method for mapping inheritance with NHibernate, called table-per-class hierarchy.

Getting ready
Complete the previous Mapping a class with XML example.

How to do it...
1. Create a new class named Book with the following code:

namespace Eg.Core

{

  public class Book : Product

  {

    public virtual string ISBN { get; set; }

    public virtual string Author { get; set; }

  }

}
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2. Create a new class named Movie with the following code:
namespace Eg.Core

{

  public class Movie : Product 

  {

    public virtual string Director { get; set; }

  }

}

3. Change the Product mapping to match the XML shown in the following code:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="Eg.Core"

    namespace="Eg.Core">

  <class name="Product">

    <id name="Id">

      <generator class="guid.comb" />

    </id>

    <discriminator column="ProductType" />

    <natural-id mutable="true">

      <property name="Name" not-null="true" />

    </natural-id>

    <property name="Description" />

    <property name="UnitPrice" not-null="true" />

  </class>

</hibernate-mapping>

4. Create a new embedded resource named Book.hbm.xml with the following XML:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="Eg.Core"

    namespace="Eg.Core">

  <subclass name="Book" extends="Product">

    <property name="Author"/>

    <property name="ISBN"/>

  </subclass>

</hibernate-mapping>

5. Create another embedded resource named Movie.hbm.xml with the next XML:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="Eg.Core"
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    namespace="Eg.Core">

  <subclass name="Movie" extends="Product">

    <property name="Director" />

  </subclass>

</hibernate-mapping>

How it works...
In this example, we've mapped a table-per-class hierarchy, meaning data for our  
entire hierarchy is stored in a single table, as shown in the next screenshot:

NHibernate uses a discriminator column, ProductType in this case, to distinguish among 
products, books, and movies. By default, the discriminator contains the class name. In this 
example, that would be Eg.Core.Product, Eg.Core.Book, or Eg.Core.Movie. These 
defaults can be overridden in the mappings by using a discriminator-value attribute  
on our class and subclass elements.

In our Book.hbm.xml mapping, we've defined Book as a subclass of Product with Author 
and ISBN properties. In our Movie.hbm.xml mapping, we've defined Movie as a subclass  
of Product with a Director property.

With table-per-class-hierarchy, we cannot define any of our subclass properties as  
not-null="true", because this would create a not-null constraint on those fields.  
For instance, if we set up the Director property as not null, we wouldn't be able to  
insert Product or Book instances, because they don't define a Director property.  
If this is required, use one of the hierarchy mapping strategies listed next.
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There's more...
Java refugees may recognize the extends attribute, as extends is the Java keyword used to 
declare class inheritance. NHibernate first came to life as a port of Java's Hibernate ORM.

Table-per-class hierarchy is the suggested method for mapping class hierarchies, but 
NHibernate always gives us other options. However, mixing these options within the  
same class hierarchy is discouraged, and only works in very limited circumstances.

Table per class 
In table-per-class mappings, properties of the base class (Product) are stored  
in a shared table, while each subclass gets its own table for the subclass properties.

Table per subclass uses the joined-subclass element, which requires a key element to 
name the primary key column. As the name implies, NHibernate will use a join to query for  
this data. Also, notice that our Product table doesn't contain a ProductType column. Only 
table-per-class hierarchy uses discriminators. Using table-per-class, our Movie mapping will 
appear as the following code:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
    assembly="Eg.Core"
    namespace="Eg.Core">
  <joined-subclass name="Movie" extends="Product">
    <key column="Id" />
    <property name="Director" />
  </joined-subclass>
</hibernate-mapping>
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Table per concrete class
In table-per-concrete-class mappings, each class gets its own table containing columns  
for all properties of the class and the base class, as shown in the next screenshot:

There is no duplication of data. That is, data from a Book instance is only written to the Book 
table, not the Product table. To fetch Product data, NHibernate will use unions to query all 
three tables. Using table-per-concrete-class, our Movie mapping will appear as shown in the 
following code:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
    assembly="Eg.Core"
    namespace="Eg.Core">
  <union-subclass name="Movie" extends="Product">
    <property name="Director" />
  </union-subclass>
</hibernate-mapping>

See also
 f Mapping a class with XML

 f Mapping a one-to-many relationship

 f Setting up a base entity class

 f Handling versioning and concurrency

 f Creating mappings fluently

 f Mapping with ConfORM

Mapping a one-to-many relationship
It's usually necessary to relate one entity to another. In this example, I'll show you how to map 
a one-to-many relationship between Movies and a new entity class, ActorRoles.



Models and Mappings

18

Getting ready
Complete the previous Creating class hierarchy mappings example.

How to do it...
1. Create a new class named ActorRole with the following code:

namespace Eg.Core

{

  public class ActorRole : Entity 

  {

    public virtual string Actor { get; set; }

    public virtual string Role { get; set; }

  }

}

2. Create an embedded resource mapping for ActorRole with the following XML:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="Eg.Core"

    namespace="Eg.Core">

  <class name="ActorRole">

    <id name="Id">

      <generator class="guid.comb" />

    </id>

    <property name="Actor" not-null="true" />

    <property name="Role" not-null="true" />

  </class>

</hibernate-mapping>

3. Add this Actors property to the Movie class:
using System.Collections.Generic;

namespace Eg.Core

{

  public class Movie : Product 

  {

    public virtual string Director { get; set; }

    public virtual IList<ActorRole> Actors { get; set; }

  }

}
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4. Add the following list element to our Movie mapping:
<subclass name="Movie" extends="Product">

  <property name="Director" />

  <list name="Actors" cascade="all-delete-orphan">

    <key column="MovieId" />

    <index column="ActorIndex" />

    <one-to-many class="ActorRole"/>

  </list>

</subclass>

How it works...
Our ActorRole mapping is simple. Check out Mapping a class with XML for more 
information. ActorRole isn't part of our Product hierarchy. In the database, it gets  
a table of its own, as shown in the next screenshot:

As expected, the ActorRole table has fields for the Id, Actor, and Role properties. The 
MovieId and ActorIndex columns come from the mapping of our Actors list on Movie,  
not the ActorRole mapping. 

The Actors property uses an IList collection. Another strong design choice with 
NHibernate, and a good programming practice in general, is the liberal use of interfaces.  
This allows NHibernate to use its own list implementation to support lazy loading,  
discussed later in this recipe.

In our Movie mapping, the Actors property is mapped with the list element. To associate 
an ActorRole with a Movie in the database, we store the Movie's Id with each 
ActorRole. The key element tells NHibernate to store this in a column named MovieId.

We've defined Actors as a list, which implies that order is significant. Actors in leading  
roles get top billing. Our index element defines the ActorIndex column to store the  
position of each element in the list. Finally, we tell NHibernate that Actors is a collection  
of ActorRoles with <one-to-many class="ActorRole" />.
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The all-delete-orphan value of the cascade attribute tells NHibernate to save the 
associated ActorRole objects automatically when it saves a Movie, and delete them when 
it deletes a Movie.

There's more...
There are a few items to discuss with this recipe.

Lazy loading collections
To improve application performance, NHibernate supports lazy loading. In short, data isn't 
loaded from the database until it is required by the application. Let's look at the steps 
NHibernate will use when our application fetches a movie from the database:

1. NHibernate fetches Id, Name, Description, UnitPrice, and Director data from 
the database for a Movie with a given Id. Notice that we do not load the Actors 
data. NHibernate uses the following SQL query:
select 

  movie0_.Id as Id1_, 

  movie0_.Name as Name1_, 

  movie0_.Description as Descript4_1_, 

  movie0_.UnitPrice as UnitPrice1_, 

  movie0_.Director as Director1_ 

from Product movie0_ 

where 

  movie0_.ProductType='Eg.Core.Movie' and 

  movie0_.Id = 'a2c42861-9ff0-4546-85c1-9db700d6175e'

2. NHibernate creates an instance of the Movie object.

3. NHibernate sets the Id, Name, Description, UnitPrice, and Director 
properties of the Movie object with the data from the database.

4. NHibernate creates a special lazy loading object that implements 
IList<ActorRole>, and sets the Actors property of the Movie object. It is not a 
List<ActorRoles>, but rather a separate, NHibernate-specific implementation of 
the IList<ActorRole> interface.

5. NHibernate returns the Movie object to our application.

Then, suppose our application contains the following code. Remember, we haven't loaded any 
ActorRole data.

foreach (var actor in movie.Actors)
  Console.WriteLine(actor.Actor);
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The first time we enumerate the collection, the lazy loading object is initialized. It loads  
the associated ActorRole data from the database with a query as shown:

SELECT 
  actors0_.MovieId as MovieId1_, 
  actors0_.Id as Id1_, 
  actors0_.ActorIndex as ActorIndex1_, 
  actors0_.Id as Id0_0_, 
  actors0_.Actor as Actor0_0_, 
  actors0_.Role as Role0_0_ 
FROM ActorRole actors0_ 
WHERE 
  actors0_.MovieId= 'a2c42861-9ff0-4546-85c1-9db700d6175e'

We can disable lazy loading of a collection by adding the attribute lazy="false"  
to the list element of our mapping.

Lazy loading proxies
In other circumstances, NHibernate also supports lazy loading through the use of proxy objects. 
Suppose our ActorRole class had a reference back to Movie, like the following code:

public class ActorRole : Entity
{

  public virtual string Actor { get; set; }
  public virtual string Role { get; set; }
  public virtual Movie Movie { get; set; }

}

If we fetch an ActorRole from the database, NHibernate builds the ActorRole object 
as we would expect, but it only knows the Id of the associated Movie. It won't have all the 
data necessary to construct the entire Movie object. Instead, it will create a proxy object to 
represent the Movie and enable lazy loading.

We can, of course, access the Id of this Movie proxy without loading the movie's data. If we 
access any other property or method on the proxy, NHibernate will immediately fetch all the 
data for this movie. Loading this data is completely transparent to the application.  The proxy 
object behaves exactly like a real Movie entity. 

This proxy object is a subclass of Movie. In order to subclass Movie and intercept these  
calls to trigger lazy loading, NHibernate requires a few things from our Movie class.

 f Movie cannot be a sealed class.

 f Movie must have a protected or public constructor without parameters.

 f All public members of Movie must be virtual. This includes methods.
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NHibernate gives us several choices for the creation of these proxy objects. The traditional 
choice of NHibernate proxy framework is DynamicProxy, part of the Castle stack of projects. 
Additionally, NHibernate includes support for LinFu and Spring.NET, and allows you to build 
your own.

If we specify lazy="false" on the class element of our Movie mapping, we can disable 
this behavior. NHibernate will never create a proxy of Movie. This will force NHibernate to 
immediately load the associated movie's data any time it loads an ActorRole. Loading data 
unnecessarily like this can quickly kill the performance of your application, and should only be 
used in very specific, well-considered circumstances.

Collections
NHibernate supports several collection types. The most common types are as follows:

Bag Set List Map
Allows Duplicates Yes No Yes Keys must be 

unique. Values 
may be duplicated.

Order is significant No No Yes No
Type IList Iesi.Collections.ISet IList IDictionary

All collections may also use the ICollection type, or a custom collection type implementing 
NHibernate.UserType.IUserCollectionType. Only bag and set may be used in  
bidirectional relationships.

Bags
A bag collection allows duplicates, and implies that order is not important. Let's talk about a bag 
of ActorRole entities. The bag may contain actor role 1, actor role 2, actor role 3, actor role 1, 
actor role 4, and actor role 1. A typical bag mapping appears as shown in the following code:

<bag name="Actors">
  <key column="MovieId"/>
  <one-to-many class="ActorRole"/>
</bag>

The corresponding Actors property may be an IList or ICollection, or even  
an IEnumerable.

There is no way to identify an individual entry in the bag distinctly with a SQL statement. For 
example, there is no way to construct a SQL statement to delete just the second entry of actor 
role 1 from the bag. The SQL statement delete from Actors where ActorRoleId='1' 
will delete all three entries. When an entry is removed, and the updated bag is persisted,  
the rows representing the old bag contents are deleted, and then entire bag contents  
are reinserted. For especially large bags, this can create performance issues.
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To counter this issue, NHibernate also provides an idBag where each entry in the bag is 
assigned an ID by one of the POID generators. This allows NHibernate to uniquely address 
each bag entry with queries like delete from Actors where ActorRoleBagId='2'.

The mapping for an idBag looks like the following code:

<idBag name="Actors">
  <collection-id column="ActorRoleBagId" type="Int64">
    <generator class="hilo" />
  </collection-id>
  <key column="MovieId"/>
  <one-to-many class="ActorRole"/>
</idBag>

Lists
A list collection also allows duplicates, but unlike a bag, the order is significant. Our list may 
contain actor role 1 at index 0, actor role 2 at index 1, actor role 3 at index 2, actor role 1 at 
index 3, actor role 4 at index 4, and actor role 1 at index 5. A typical list mapping looks like  
the following code:

<list name="Actors">
  <key column="MovieId" />
  <list-index column="ActorRoleIndex" />
  <one-to-many class="ActorRole"/>
</list>

The corresponding Actors property should be an IList. Because NHibernate maintains 
order with the ActorRoleIndex column, it can also uniquely identify individual list entries. 
However, because it maintains order, it also means that these indexes must be reset 
whenever the list contents change. For example, suppose we have a list of six actor roles and 
we remove the third actor role. NHibernate updates the ActorRoleIndex of each list entry.

Sets
A set collection does not allow duplicates, and the order of a set is not important. In my 
applications, this is the most common collection type. A set may contain actor role 1, actor 
role 3, actor role 2, and actor role 4. An attempt to add actor role 1 to the set again will fail.  
A typical set mapping appears as shown in the following code:

<set name="Actors">
  <key column="MovieId" />
  <one-to-many class="ActorRole"/>
</set>

The corresponding Actors property should be an ISet from Iesi.Collections. 
dll. Currently, NHibernate does not directly support the ISet interface included in  
the .NET Framework 4.
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An attempt to add an item to an uninitialized lazy-loaded set collection will cause the set to be 
loaded from the database. This is necessary to ensure uniqueness in the collection. To ensure 
proper uniqueness in a set, you should override the Equals and GetHashCode methods, as 
shown in the next recipe.

Map
Map is another term that crossed over when NHibernate was ported from Java. In .NET,  
it's known as a dictionary. Each collection entry is a key or value pair. Keys must be  
unique. Values may not be unique.

<map name="Actors" >
  <key column="MovieId" />
  <map-key column="Role" type="string" />
  <element column="Actor" type="string"/>
</map>

As you may have guessed, the corresponding Actors property must be an 
IDictionary<string, string>, where the key is the name of the movie role,  
and the value is the actor's name. You are not limited to basic data types as shown here. 
NHibernate also allows entities for keys and values as shown in the following code:

<map name="SomeProperty">
  <key column="Id" />
  <index-many-to-many class="KeyEntity"/>
  <many-to-many class="ValueEntity" />
</map>

See also
 f Mapping a class with XML

 f Creating class hierarchy Mappings

 f Setting up a base entity class

 f Bidirectional one-to-many class relationships

 f Handling versioning and concurrency

 f Creating mappings fluently

 f Mapping with ConfORM

Setting up a base entity class
In this recipe, I'll show you how to set up a base class to use for your entities.

Getting ready
Complete the previous three recipes.
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How to do it...
1. In Entity.cs, use the following code for the Entity class:

public abstract class Entity<TId>

{

  public virtual TId Id { get; protected set; }

  public override bool Equals(object obj)

  {

    return Equals(obj as Entity<TId>);

  }

  private static bool IsTransient(Entity<TId> obj)

  {

    return obj != null &&

           Equals(obj.Id, default(TId));

  }

  private Type GetUnproxiedType()

  {

    return GetType();

  }

  public virtual bool Equals(Entity<TId> other)

  {

    if (other == null)

      return false;

    if (ReferenceEquals(this, other))

      return true;

    if (!IsTransient(this) &&

        !IsTransient(other) &&

        Equals(Id, other.Id))

    {

      var otherType = other.GetUnproxiedType();

      var thisType = GetUnproxiedType();

      return thisType.IsAssignableFrom(otherType) ||

             otherType.IsAssignableFrom(thisType);

    }

    return false;

  }

  public override int GetHashCode()
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  {

    if (Equals(Id, default(TId)))

      return base.GetHashCode();

    return Id.GetHashCode();

  }

}

2. To the same file, add an additional Entity class as shown in the following code:
public abstract class Entity : Entity<Guid>

{

}

How it works...
NHibernate relies on the Equals method to determine equality. The default behavior defined 
in System.Object uses reference equality for reference types, including classes. That is, 
x.Equals(y) is only true when x and y point to the same object instance. This default works 
well in most cases.

To support lazy loading, NHibernate uses proxy objects. As we learned in the previous recipe, 
these proxy objects are subclasses of the real entity class, with every member overridden to 
enable lazy loading.

This combination of proxy objects and the default Equals behavior can lead to subtle and 
unexpected bugs in your application. An application should not be aware of proxy objects, and 
therefore would expect that a proxy and a real instance representing the same entity would be 
equal. A Product instance with an ID of 8 should be equal to a different Product instance or 
Product proxy with an ID of 8. To handle this, we must override the default Equals behavior.

On our Entity base class, we override the Equals method to determine equality based 
on POID. In Equals(Object obj), we simply call Equals(Entity<TId> other), 
attempting to cast the object to Entity. If it can't be cast, null is passed instead.

If other is null, the objects are not equal. This serves two purposes. First, 
x.Equals(null) should always return false. Second, someEntity.
Equals(notAnEntity) should also return false. Next, we compare references. Obviously, 
if two variables reference the same instance, they are equal. If ReferenceEquals(this, 
other) returns true, we return true.

Next, we compare the Ids to the default value to determine if the entities are transient. A 
transient object is an object that has not been persisted to the database. default(TId) 
returns whatever the default may be for TId. For Guids, the default is Guid.Empty. For 
strings and all other reference types, it's null. For numeric types, it's zero. If the Id property 
equals the default value, the entity is transient. If one or both entities are transient, we give 
up and return false.
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If both entities are persisted, they both have POIDs. We can compare these POIDs to 
determine equality. If the POIDs don't match, we know for certain that the two entities are not 
equal. We return false.

Finally, we have one last check. We know that both entities are persistent, and they have the 
same Id. This doesn't quite prove that they're equal. It's perfectly legal for an ActorRole 
entity to have the same POID as a Product entity. Our last check is to compare the types. If 
one type is assignable to the other type, then we know for certain that the two are equal.

Suppose other is a proxy of Product representing a book entity, and this is an actual 
Book instance representing the same entity. this.Equals(other) should return 
true because they both represent the same entity. Unfortunately, other.GetType() 
will return the type ProductProxy12398712938 instead of the type Product. As 
typeof(ProductProxy12398712938).IsAssignableFrom(typeof(Book)) 
returns false, our Equals would fail on this case. However, we can use  other.
GetUnproxiedType() to reach down through the proxy layer and return the entity type. 
Because typeof(Product).IsAssignableFrom(typeof(Book)) returns true, our 
Equals implementation works.

Because we've overridden Equals, we also need to override GetHashCode to satisfy the 
requirements of the .NET Framework. Specifically, if x.Equals(y), then x.GetHashCode() 
and y.GetHashCode() should return the same value. The inverse is not necessarily true, 
however; x and y may share a hash code even when they're not equal. In our Entity base 
class, we simply use the hash code of Id, as this is the basis of our equality check.

There's more...
For more information on Equals and GetHashCode, refer to the MSDN documentation  
for these methods at http://msdn.microsoft.com/en-us/library/system.
object.aspx.

See also
 f Mapping a class with XML

 f Creating class hierarchy mappings

 f Mapping a one-to-many relationship

 f Bidirectional one-to-many class relationships

 f Handling versioning and concurrency

 f Creating mappings fluently

 f Mapping with ConfORM
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Handling versioning and concurrency
For any multiuser transactional system, you must decide between optimistic and pessimistic 
concurrency to handle concurrent updates and versioning issues. In this recipe, I'll show you 
how to properly set up versioning and optimistic concurrency with NHibernate.

Getting ready
Complete all the previous recipes including Setting up a base entity class.

How to do it...
1. In the Entity base class, add a Version property, as shown in the following code:

public abstract class Entity<TId>

{

  public virtual TId Id { get; protected set; }

  protected virtual int Version { get; set; }

  public override bool Equals(object obj)

  {

    return Equals(obj as Entity<TId>);

  }

2. In the Product mapping, add the version element as shown in the following code:
<natural-id mutable="true">

  <property name="Name" not-null="true" />

</natural-id>

<version name="Version" />

<property name="Description" />

<property name="UnitPrice" not-null="true" />

3. In the ActorRole mapping, add the version element shown here:
<id name="Id">

  <generator class="guid.comb" />

</id>

<version name="Version" />

<property name="Actor" not-null="true" />

<property name="Role" not-null="true" />
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How it works...
Suppose you have a database application with two users. User #1 and user #2 both pull up 
the same data on their screen and begin making changes. User #1 submits her changes back 
to the database. A few moments later, user #2 submits his changes. Without any concurrency 
checking, user #2's changes will silently overwrite user #1's changes. There are two possible 
ways to prevent this: optimistic and pessimistic concurrency.

Optimistic concurrency is the process where data is checked for changes before any update is 
executed. In this scenario, user #1 and user #2 both begin their changes. User #1 submits her 
changes. When user #2 submits his changes, his update will fail because the current data (after 
user #1's changes) doesn't match the data that user #2 originally read from the database.

In the example shown here, we use the version field to track changes to an entity.  
Update statements takes the following form:

UPDATE Product
SET    Version = 2 /* @p0 */,
       Name = 'Junk' /* @p1 */,
       Description = 'Cool' /* @p2 */,
       UnitPrice = 100 /* @p3 */
WHERE  Id = '764de11e-1fd0-491e-8158-9db8015f9be5' /* @p4 */
       AND Version = 1 /* @p5 */

NHibernate checks that the version is the same value as when the entity was loaded from  
the database, and then increments the value. If the entity was already updated, the version 
field will not be 1, and no rows will be updated by this statement. NHibernate detects the zero 
rows affected and throws a StaleStateException, meaning the entity in memory is stale, 
or out of sync with the database.

There's more...
The alternative to optimistic concurrency is pessimistic locking. Pessimistic locking is the 
process where a user obtains an exclusive lock on the data while they are editing it. It takes 
the pessimistic view that, given the chance, user #2 will overwrite user #1's changes, so it's 
best not to let user #2 even look at the data. In this scenario, once user #1 pulls up the data, 
she has an exclusive lock. User #2 will not be able to read that data. His query will wait until 
user #1 drops the lock or the query times out. Inevitably, user #1 will take a phone call or step 
away for a cup of coffee while user #2 waits for access to the data. To implement this type of 
locking with NHibernate, your application must call session.Lock within a transaction.
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Other methods of optimistic concurrency
In addition to integer version fields, NHibernate also allows you to use DateTime-based 
version fields. However, Micorosoft SQL Server has a datetime resolution of about three 
milliseconds. This may fail when two updates occur almost simultaneously. It's also possible 
to use SQL Server 2008's DateTime2 data type, which has a resolution of 100 nanoseconds, 
or even SQL Server's timestamp data type for the version field.

NHibernate allows you to use the more traditional form of optimistic concurrency through the 
mapping attribute optimistic-lock. A simple example would look like the following code:

<class name="Product" 
       dynamic-update="true" 
       optimistic-lock="dirty">

In this case, changing a Product name from Stuff to Junk would generate SQL as shown  
in the following code:

UPDATE Product
SET    Name = 'Junk' /* @p0 */
WHERE  Id = '741bd189-78b5-400c-97bd-9db80159ef79' /* @p1 */
       AND Name = 'Stuff' /* @p2 */

This ensures that the Name value hasn't been changed by another user because this user  
read the value. Another user may have changed other properties of this entity. 

Another alternative is to set optimistic-lock to all. In this case, a Product update 
would generate SQL like this:

UPDATE Product
SET    Name = 'Junk' /* @p0 */
WHERE  Id = 'd3458d6e-fa28-4dcb-9130-9db8015cc5bb' /* @p1 */
       AND Name = 'Stuff' /* @p2 */
       AND Description = 'Cool' /* @p3 */
       AND UnitPrice = 100 /* @p4 */

As you might have guessed, in this case, we check the values of all properties.

When optimistic-lock is set to dirty, dynamic-update must be true. Dynamic 
update simply means that the update statement only updates dirty properties, or properties 
with changed values, instead of explicitly setting all properties.

See also
 f Mapping a class with XML

 f Creating class hierarchy mappings

 f Mapping a one-to-many relationship

 f Setting up a base entity class
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 f Creating mappings fluently

 f Mapping with ConfORM

Creating mappings fluently
The Fluent NHibernate project brings strongly-typed C# fluent syntax mappings to NHibernate. 
In this recipe, I'll show you how to map our Eg.Core model using Fluent NHibernate.

Getting ready
Download the Fluent NHibernate binary from the Fluent NHibernate website at  
http://fluentnhibernate.org/downloads. Select a version that's compatible  
with the specific build of NHibernate you are using. The Fluent NHibernate download also 
contains the necessary assemblies for NHibernate. You may wish to use them instead.

Extract FluentNHibernate.dll from the downloaded ZIP file to the Lib folder.

Complete the previous Eg.Core model and mapping recipes.

How to do it...
1. Create a new class library project named Eg.FluentMappings.

2. Add a reference to FluentNHibernate.dll.

3. Copy Entity.cs, Product.cs, Book.cs, Movie.cs, and ActorRole.cs  
from Eg.Core to the new Eg.FluentMappings.

4. In the copied model, change the namespaces from Eg.Core  
to Eg.FluentMappings.

5. In Entity.cs, change the Version property from protected to public. 

6. Add a new folder named Mappings.

7. Create a new class named ProductMapping with the following code:
using FluentNHibernate.Mapping;

namespace Eg.FluentMappings.Mappings

{

  public class ProductMapping : ClassMap<Product>

  {

    public ProductMapping()

    {

      Id(p => p.Id)

        .GeneratedBy.GuidComb();

http://fluentnhibernate.org/downloads
http://fluentnhibernate.org/downloads
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      DiscriminateSubClassesOnColumn("ProductType");

      Version(p => p.Version);

      NaturalId()

        .Not.ReadOnly()

        .Property(p => p.Name);

      Map(p => p.Description);

      Map(p => p.UnitPrice)

        .Not.Nullable();

    }

  }

}

8. Create a new class named BookMapping with the following code:
using FluentNHibernate.Mapping;

namespace Eg.FluentMappings.Mappings

{

  public class BookMapping : SubclassMap<Book>

  {

    public BookMapping()

    {

      Map(p => p.Author);

      Map(p => p.ISBN);

    }

  }

}

9. Create a new class named MovieMapping with the following code:
using FluentNHibernate.Mapping;

namespace Eg.FluentMappings.Mappings

{

  public class MovieMapping : SubclassMap<Movie>

  {

    public MovieMapping()

    {

      Map(m => m.Director);

      HasMany(m => m.Actors)

        .KeyColumn("MovieId")

        .AsList(l => l.Column("ActorIndex"));

    }

  }

}
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10. Create a new class named ActorRole with the following code:
using FluentNHibernate.Mapping;

namespace Eg.FluentMappings.Mappings

{

  public class ActorRoleMapping : ClassMap<ActorRole>

  {

    public ActorRoleMapping()

    {

      Id(ar => ar.Id)

        .GeneratedBy.GuidComb();

      Version(ar => ar.Version);

      Map(ar => ar.Actor)

        .Not.Nullable();

      Map(ar => ar.Role)

        .Not.Nullable();

    }

  }

}

How it works...
Fluent NHibernate provides two methods for mappings: Fluent mapping syntax and 
auto-mapping. In this recipe, we use the Fluent mapping syntax. Each entity class has a 
corresponding mapping class.

Because the mapping syntax requires class members to be accessible, we must change 
the Version property from protected to public. Fluent NHibernate also includes 
some tricks to work around this issue. They're explained fully in the wiki at http://wiki.
fluentnhibernate.org/Fluent_mapping_private_properties.

Mappings for root classes are inherited from ClassMap, and subclasses in a class 
hierarchy inherit from SubclassMap. By default, Fluent NHibernate creates a 
table-per-subclass hierarchy. To use a table-per-class hierarchy instead, we specify 
DiscriminateSubClassesOnColumn in Product. Fluent NHibernate doesn't support 
table-per-concrete-class hierarchies.

When mapping the natural ID of Product, we specify .Not.ReadOnly(). This is the same 
as setting mutable="true" in the XML mapping.

Properties are mapped using the Map() method, which is equivalent to the property 
element in XML mappings.

http://wiki.fluentnhibernate.org/Fluent_mapping_private_properties
http://wiki.fluentnhibernate.org/Fluent_mapping_private_properties


Models and Mappings

34

One-to-many collections are mapped using the HasMany() method, followed by AsMap(), 
AsBag(), AsSet(), or AsList(). AsList uses the Column() method to specify a column 
name for the list index.

See also
 f Mapping a class with XML

 f Creating class hierarchy mappings

 f Mapping a one-to-many relationship

 f Setting up a base entity class

 f Bidirectional one-to-many class relationships

 f Handling versioning and concurrency

 f Creating mappings fluently

 f Mapping with ConfORM

Mapping with ConfORM
The ConfORM project brings convention-based mappings to NHibernate. In this recipe,  
I'll show you how to map your model using ConfORM conventions.

Getting ready
1. Check out the ConfORM source code from Google Code at  

http://code.google.com/p/codeconform/source/checkout.

2. Build the ConfORM project.

3. Complete the previous Eg.Core model and mapping recipes.

How to do it...
1. Create a new console project named Eg.ConfORMMappings.

2. Add references to the Eg.Core model project, ConfORM.dll  
and ConfORM.Shop.dll.

3. In Eg.Core.Entity, make the Version property public.

4. In Program.cs, add the following using statements to the beginning of the file:
using System;

using System.IO;

using System.Linq;

using System.Xml;

using System.Xml.Serialization;

http://code.google.com/p/codeconform/source/checkout
http://code.google.com/p/codeconform/source/checkout
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using ConfOrm;

using ConfOrm.NH;

using ConfOrm.Patterns;

using ConfOrm.Shop.CoolNaming;

using Eg.Core;

using NHibernate;

using NHibernate.Cfg.MappingSchema;

5. Add the following GetMapping function to the Program class:
private static HbmMapping GetMapping()

{

  var orm = new ObjectRelationalMapper();

  var mapper = new Mapper(orm, 

    new CoolPatternsAppliersHolder(orm));

  orm.TablePerClassHierarchy<Product>();

  orm.TablePerClass<ActorRole>();

  orm.Patterns.PoidStrategies.Add(

    new GuidOptimizedPoidPattern());

  orm.VersionProperty<Entity>(x => x.Version);

  orm.NaturalId<Product>(p => p.Name);

  orm.Cascade<Movie, ActorRole>(

    Cascade.All | Cascade.DeleteOrphans);

  mapper.AddPropertyPattern(mi => 

    mi.GetPropertyOrFieldType() == typeof(Decimal) && 

    mi.Name.Contains("Price"), 

    pm => pm.Type(NHibernateUtil.Currency));

  mapper.AddPropertyPattern(mi => 

    orm.IsRootEntity(mi.DeclaringType) && 

    !"Description".Equals(mi.Name), 

    pm => pm.NotNullable(true));

  mapper.Subclass<Movie>(cm => 

    cm.List(movie => movie.Actors, 

    colm => colm.Index(

      lim => lim.Column("ActorIndex")), m => { }));

  var domainClasses = typeof(Entity).Assembly.GetTypes()

    .Where(t => typeof(Entity).IsAssignableFrom(t));

  return mapper.CompileMappingFor(domainClasses);

}
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6. Add the following WriteXmlMapping function:
private static void WriteXmlMapping(HbmMapping hbmMapping)

{

  var document = Serialize(hbmMapping);

  File.WriteAllText("WholeDomain.hbm.xml", document);

}

7. Add the following Serialize function:
private static string Serialize(HbmMapping hbmElement)

{

  var setting = new XmlWriterSettings { Indent = true };

  var serializer = new XmlSerializer(typeof(HbmMapping));

  using (var memStream = new MemoryStream(2048))

  using (var xmlWriter = XmlWriter.Create(memStream, setting))

  {

    serializer.Serialize(xmlWriter, hbmElement);

    memStream.Flush();

    memStream.Position = 0;

    using (var sr = new StreamReader(memStream))

    {

      return sr.ReadToEnd();

    }

  }

}

8. In the static void Main method, add the following line:
WriteXmlMapping(GetMapping());

9. Build and run your application.

10. Browse to the application's bin\Debug folder and examine the WholeDomain.hbm.
xml file. You should find the following familiar mapping:
<?xml version="1.0" encoding="utf-8"?>

<hibernate-mapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
namespace="Eg.Core" assembly="Eg.Core" xmlns="urn:nhibernate-
mapping-2.2">

  <class name="Product">

    <id name="Id" type="Guid">

      <generator class="guid.comb" />

    </id>

    <discriminator />

    <natural-id>

      <property name="Name" not-null="true" />
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    </natural-id>

    <version name="Version" />

    <property name="Description" />

    <property name="UnitPrice" type="Currency" 

      not-null="true" />

  </class>

  <class name="ActorRole">

    <id name="Id" type="Guid">

      <generator class="guid.comb" />

    </id>

    <version name="Version" />

    <property name="Actor" not-null="true" />

    <property name="Role" not-null="true" />

  </class>

  <subclass name="Book" extends="Product">

    <property name="ISBN" />

    <property name="Author" />

  </subclass>

  <subclass name="Movie" extends="Product">

    <property name="Director" />

    <list name="Actors" cascade="all,delete-orphan">

      <key column="MovieId" />

      <list-index column="ActorIndex" />

      <one-to-many class="ActorRole" />

    </list>

  </subclass>

</hibernate-mapping>
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How it works...
With a standard NHibernate application, NHibernate takes each XML mapping  
and deserializes it into an HbmMapping object, then adds the HbmMapping object  
to the NHibernate configuration, as shown in the next diagram:

With ConfORM, we skip this deserialization step. The ConfORM mapper outputs an 
HbmMapping object built from our conventions, ready to be added to the configuration. 

ConfORM uses conventions and patterns to build a mapping directly from the model. In 
addition to ConfORM's default patterns, we use a few extra conventions in our model.

1. We begin by specifying our Product class hierarchy, which includes Books and 
Movies. We also add our ActorRole entity class individually.

2. We use the GuidOptimizedPoidPattern to find all Guid properties named Id, 
and map them as POIDs with the guid.comb generator.

3. References from Movie to ActorRole, such as our Actors collection, should use 
cascade="all-delete-orphan". We set this up with the following bit of code:
orm.Cascade<Movie, ActorRole>(

  Cascade.All | Cascade.DeleteOrphans);

4. Next, we configure a few conventions. All decimal properties with the word  
Price in the property name should be mapped as type="currency".  
We use the following code:
mapper.AddPropertyPattern(mi => 

  mi.GetPropertyOrFieldType() == typeof(Decimal) && 

  mi.Name.Contains("Price"), 

  pm => pm.Type(NHibernateUtil.Currency));
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5. All properties of root entities, except those named Description, are mapped with 
not-null="true". Remember, we're using the table-per-class hierarchy strategy, so 
our subclasses shouldn't have not-null properties. The code we use is as follows:
mapper.AddPropertyPattern(mi => 

  orm.IsRootEntity(mi.DeclaringType) && 

  !"Description".Equals(mi.Name), 

  pm => pm.NotNullable(true));

6. Finally, we map our Actors list in Movies, setting the list index column name  
to ActorIndex. We use the following code:
mapper.Subclass<Movie>(cm => 

  cm.List(movie => movie.Actors, 

  colm => colm.Index(

    lim => lim.Column("ActorIndex")), m => { }));

7. The last step in building our HbmMapping object is to call CompileMappingFor, 
passing  in every Entity type, as shown in the following code:

var domainClasses = typeof(Entity).Assembly.GetTypes()

  .Where(t => typeof(Entity).IsAssignableFrom(t));

return mapper.CompileMappingFor(domainClasses);

8. The resulting mapping object is equivalent to XML mapping contained  
in WholeDomain.hbm.xml.

See also
 f Mapping a class with XML

 f Creating class hierarchy mappings

 f Mapping a one-to-many relationship

 f Setting up a base entity class

 f Bidirectional one-to-many class relationships

 f Handling versioning and concurrency

 f Creating mappings fluently

Bidirectional one-to-many class 
relationships

In some cases, it's useful to have a bidirectional relationship between entities. In this recipe, 
I'll show you how to set up a bidirectional one-to-many relationship between two entity classes.
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How to do it...
1. Create an empty class library project named ManualRelationships.

2. Add a reference to Iesi.Collections.dll in the Lib folder.

3. Add the following Order class:
public class Order

{

  public virtual Guid Id { get; protected set; }

  public Order()

  {

    _items = new HashedSet<OrderItem>();

  }

  private ISet<OrderItem> _items;

  public virtual IEnumerable<OrderItem> Items

  {

    get

    {

      return _items;

    }

  }

  public virtual bool AddItem(OrderItem newItem)

  {

    if (newItem != null && _items.Add(newItem))

    {

      newItem.SetOrder(this);

      return true;

    }

    return false;

  }

  public virtual bool RemoveItem(

    OrderItem itemToRemove)

  {

    if (itemToRemove != null && 

      _items.Remove(itemToRemove))

    {

      itemToRemove.SetOrder(null);

      return true;

    }
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    return false;

  }

}

4. Add the following mapping as an embedded resource named Order.hbm.xml:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="ManualRelationships"

    namespace="ManualRelationships">

  <class name="Order" table="`Order`">

    <id name="Id">

      <generator class="guid.comb" />

    </id>

    <set name="Items" 

         cascade="all-delete-orphan" 

         inverse="true" 

         access="field.camelcase-underscore">

      <key column="OrderId" />

      <one-to-many class="OrderItem"/>

    </set>

  </class>

</hibernate-mapping>

5. Add the following OrderItem class:
public class OrderItem

{

  public virtual Guid Id { get; protected set; }

  public virtual Order Order { get; protected set; }

  public virtual void SetOrder(Order newOrder)

  {

    var prevOrder = Order;

    if (newOrder == prevOrder)

      return;

    Order = newOrder;

    if (prevOrder != null)

      prevOrder.RemoveItem(this);

    if (newOrder != null)

      newOrder.AddItem(this);

  }

}
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6. Add the following mapping as an embedded resource named OrderItem.hbm.xml:

<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="ManualRelationships"

    namespace="ManualRelationships">

  <class name="OrderItem">

    <id name="Id">

      <generator class="guid.comb" />

    </id>

    <many-to-one name="Order" column="OrderId" />

  </class>

</hibernate-mapping>

How it works...
Object relational mappers (ORM) are designed to overcome the impedance mismatch 
between the object model in the application and the relational model in the database. This 
mismatch is especially evident when representing a bidirectional one-to-many relationship 
between entities. In the relational model, this bidirectional relationship is represented by a 
single foreign key. In the object model, the parent entity has a collection of children, and each 
child has a reference to its parent.

To work around this mismatch, NHibernate ignores one side of the bidirectional relationship. 
The foreign key in the database is populated based on either the OrderItems reference to 
the Order or the Orders collection of OrderItems, but not both. We determine which end 
of the relationship controls the foreign key using the inverse attribute on the collection. By 
default, the Order controls the foreign key. Saving a new Order with one OrderItem will 
result in the following three SQL statements:

INSERT INTO "Order" (Id) VALUES (@p0)
INSERT INTO OrderItem (Id) VALUES (@p0)
UPDATE OrderItem SET OrderId = @p0 WHERE Id = @p1

When we specify inverse="true", the OrderItem controls the foreign key. This is 
preferable because it eliminates the extra UPDATE statement, resulting in the following  
two SQL statements:

INSERT INTO "Order" (Id) VALUES (@p0)

INSERT INTO OrderItem (OrderId, Id) VALUES (@p0, @p1)

We are responsible for keeping both sides of our two-way relationship in sync. In a normal 
class, we would add code in the property setter or the collection's add or remove methods 
to update the other end of the relationship automatically. NHibernate, however, throws 
exceptions when an object is manipulated while NHibernate is initializing it.
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For this reason, it's suggested that we prevent direct manipulation of either end of the 
relationship, and instead use methods specifically written for this purpose, as we've done here 
with AddItem, RemoveItem, and SetOrder. Notice that we've mapped a set, which implies 
that order is not significant, and that duplicates are not allowed.

There's more...
Notice the use of backticks in our table name from the Order mapping as follows:

<class name="Order" table="`Order`">

In Microsoft SQL Server, Order is a keyword. If we want to use it as an identifier, a table  
name in this case, NHibernate will need to put quotes around it. The backticks tell  
NHibernate to surround the identifier with whatever character may be appropriate  
for the database you're using.

Mappings enumerations
An improperly mapped enumeration can lead to unnecessary updates. In this recipe,  
I'll show you how to map an enumeration property to a string field.

How to do it...
1. Create a new class library project named MappingEnums.

2. Add the following AccountTypes enumeration:
public enum AccountTypes

{

  Consumer,

  Business,

  Corporate,

  NonProfit

}

3. Add the following Account class:
public class Account

{ 

  public virtual Guid Id { get; set; }

  public virtual AccountTypes AcctType { get; set; }

  public virtual string Number { get; set; }

  public virtual string Name { get; set; }

}
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4. Add an NHibernate mapping document with the following class mapping:
<class name="Account">

  <id name="Id">

    <generator class="guid.comb" />

  </id>

  <natural-id>

    <property name="Number" not-null="true"  />

  </natural-id>

  <property name="Name" not-null="true" />

  <property name="AcctType" not-null="true" />

</class>

5. On the property element for AcctType, add a type attribute with  
the following value:
NHibernate.Type.EnumStringType`1[[MappingEnums.AccountTypes, 
MappingEnums]], NHibernate

6. Set your mapping as an embedded resource.

How it works...
By default, NHibernate will map an enumeration to a numeric field based on the 
enumeration's underlying type, typically an int. For example, if we set AcctType to 
AccountTypes.Corporate, the AcctType database field would hold the integer 2. 
This has one significant drawback. An integer value by itself doesn't describe the business 
meaning of the data.

One solution is to create a lookup table containing each enumeration value alongside a 
description, but this must be maintained in perfect sync with the application code because 
otherwise it can lead to serious versioning issues. Simply rearranging the order of the 
enumeration in code from one release to the next can have disastrous effects.

Another solution, the one shown here, is to store the name of the enumeration value  
in a string field. For example, if we set AcctType to AccountTypes.Corporate,  
the AcctType database field would hold the string value Corporate.

By specifying a type attribute for AcctType, we tell NHibernate to use a custom 
class for conversion between .NET types and the database. NHibernate includes 
EnumStringType<T> to override the conversion of enumeration values to database  
values so that the string name is stored, not the numeric value.

The type value NHibernate.Type.EnumStringType`1[[MappingEnums.
AccountTypes, MappingEnums]], NHibernate is the assembly qualified  
name for NHibernate.Type.EnumStringType<AccountType>.
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Creating class components
There are cases where a set of properties are used repeatedly. These properties may even 
have their own business logic, but they don't represent an entity in your application. They are 
value objects. In this recipe, I'll show you how we can separate these properties and business 
logic into a component class without creating a separate entity.

How to do it...

1. Create a new class library project named ComponentExamples.
2. Add an Address class with the following properties:

public virtual string Lines { get; set; }

public virtual string City { get; set; }

public virtual string State { get; set; }

public virtual string ZipCode { get; set; }

3. Add a customer class with the following properties:
public virtual string Name { get; set; }

public virtual Address BillingAddress { get; set; }

public virtual Address ShippingAddress { get; set; }

4. Add the following mapping document:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="ComponentExamples"

    namespace="ComponentExamples">

  <class name="Customer">

    <id name="Id">

      <generator class="guid.comb" />

    </id>

    <property name="Name" not-null="true" />

    <component name="BillingAddress" class="Address">

      <property name="Lines" not-null="true" />

      <property name="City" not-null="true" />

      <property name="State" not-null="true" />

      <property name ="ZipCode" not-null="true" />

    </component>

    <component name="ShippingAddress" class="Address">

      <property name="Lines" not-null="true" 

                column="ShippingLines" />

      <property name="City" not-null="true" 
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                column="ShippingCity" />

      <property name="State" not-null="true" 

                column="ShippingState" />

      <property name ="ZipCode" not-null="true" 

                column="ShippingZipCode" />

    </component>

  </class>

</hibernate-mapping>

How it works...
In this recipe, we can use the Address component class throughout our model without the 
overhead of maintaining a separate entity. We've used it in our Customer class for both billing 
and shipping address. The resulting database table will appear as shown in the next screenshot:

Our model looks like this:

We get all the reuse benefits without the database work. The Address fields are included  
in every query for Customer, and are automatically loaded.



Configuration and 
Schema

In this chapter, we will cover the following topics:

 f Configuring NHibernate with App.config

 f Configuring NHibernate with hibernate.cfg.xml

 f Configuring NHibernate with code

 f Configuring NHibernate with Fluent NHibernate

 f Configuring NHibernate using ConfORM Mappings

 f Configuring NHibernate logging

 f Reducing application startup time

 f Generating the database

 f Scripting the database

 f Using NHibernate Schema Tool

Introduction
NHibernate provides an incredible number of configuration options and settings. The recipes 
in this chapter demonstrate several methods for configuring NHibernate and generating the 
necessary database schema.

Configuring NHibernate with App.config
NHibernate offers several methods for configuration and a number of configuration settings.

2
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In this recipe, I'll show you how to configure NHibernate using your application's configuration 
file with a minimal number of settings to get your application up and running quickly. This 
recipe also forms the base for several other recipes in this chapter.

Getting ready

1. Complete the Eg.Core model and mapping recipes from Chapter 1, Models  
and Mappings.

2. Add a console application project to your solution called ConfigByAppConfig.

3. Set it as the Startup project for your solution.

4. In the ConfigByAppconfig project, add references to NHibernate.dll  
and NHibernate.ByteCode.Castle.dll from the Lib folder.

5. In ConfigByAppconfig, add a reference to the Eg.Core project.

6. Add an App.config file to your console project. 

How to do it...
1. Open the App.config file.

2. Declare a section for the NHibernate configuration, as shown here:
  <configSections>

    <section name="hibernate-configuration" type="NHibernate.Cfg.
ConfigurationSectionHandler, NHibernate"/>

  </configSections>

3. Add a connectionStrings section with a connection string:
  <connectionStrings>

    <add name="db" connectionString="Server=.\SQLExpress; 
Database=NHCookbook; Trusted_Connection=SSPI"/>

  </connectionStrings>

4. Add your hibernate-configuration section:
<hibernate-configuration 

xmlns="urn:nhibernate-configuration-2.2">

<session-factory>

    <property name="proxyfactory.factory_class">

    NHibernate.ByteCode.Castle.ProxyFactoryFactory, NHibernate. 
  ByteCode.Castle

  </property>

  <property name="dialect">

  NHibernate.Dialect.MsSql2008Dialect, NHibernate

    </property>
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  <property name="connection.connection_string_name">

  db

    </property>

  <property name="adonet.batch_size">

  100

    </property>

  <mapping assembly="Eg.Core"/>

</session-factory>

</hibernate-configuration>>

5. Your completed App.config file should look like this:
<?xml version="1.0" encoding="utf-8" ?>

<configuration>

  

  <configSections>

    <section name="hibernate-configuration"

       type="NHibernate.Cfg.ConfigurationSectionHandler, 
NHibernate"/>

  </configSections>

   <connectionStrings>

    <add name="db" connectionString="Server=.\SQLExpress; 
Database=NHCookbook; Trusted_Connection=SSPI"/>

  </connectionStrings>

   <hibernate-configuration 

    xmlns="urn:nhibernate-configuration-2.2">

    <session-factory>

      <property name="proxyfactory.factory_class">

        NHibernate.ByteCode.Castle.ProxyFactoryFactory, 

        NHibernate.ByteCode.Castle

      </property>

      <property name="dialect">

        NHibernate.Dialect.MsSql2008Dialect, 

        NHibernate

      </property>

      <property name="connection.connection_string_name">

        db

      </property>

      <property name="adonet.batch_size">

        100

      </property>

      <mapping assembly="Eg.Core"/>

    </session-factory>
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  </hibernate-configuration>

</configuration>

6. Open Program.cs and add using NHibernate.Cfg; to the beginning of the file.

7. In your Main function, add the following code to configure NHibernate:
var nhConfig = new Configuration().Configure();

var sessionFactory = nhConfig.BuildSessionFactory();

Console.WriteLine("NHibernate Configured!");

Console.ReadKey();

8. Build and run your application. You will see the text NHibernate Configured!.

How it works...
The connection string we've defined points to the NHCookbook database running under  
the local Microsoft SQL Server Express 2008.

Next, we define a few properties that tell NHibernate how to behave. proxyfactory.
factory_class specifies the proxy framework we'll use. In this case, we're using Castle's 
DynamicProxy2. Out of the box, NHibernate also supports the LinFu and Spring frameworks.

The dialect property specifies a dialect class that NHibernate uses to build SQL syntax 
specific to a Relational Database Management System (RDBMS). We're using the Microsoft 
SQL 2008 dialect. Additionally, most dialects set intelligent defaults for other NHibernate 
properties, such as connection.driver_class.

The connection.connection_string_name property references our connection string 
named db. We can name the connection string anything we like, as long as this property 
matches the connection string's name.

By default, NHibernate will send a single SQL statement and wait for a response from the 
database. When we set the adonet.batch_size property to 100, NHibernate will group up 
to 100 SQL INSERT, UPDATE, and DELETE statements in a single ADO.NET command and send 
the whole batch at once. In effect, the work of 100 round trips to the database is combined 
in one. Because a roundtrip to the database is, at best, an out-of-process call, and at worst, 
a trip through the network or even the Internet, this improves performance significantly. 
Batching is currently supported when using the SqlClientDriver for Microsoft SQL Server 
or the OracleDataClientDriver for Oracle.

The mappings element defines where NHibernate will search for our mappings. In this case, 
it will search the Eg.Core assembly for embedded resources ending in .hbm.xml.

There's more...
There are several key components to an NHibernate application, as shown  
in this diagram:
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On startup, an NHibernate application builds a Configuration object. In this recipe, we 
build the configuration from settings in the App.config file. The Configuration object  
is responsible for loading mappings, reflecting the model for additional information, building 
the mapping metadata, and finally building a session factory. Building the session factory  
is an expensive operation, and should be done only once in the life of an application.

The session factory is responsible for building sessions. Unlike a session factory, building  
a session is very cheap.

A session represents a unit of work in the application. Martin Fowler defines a unit of work as 
an object that maintains a list of objects affected by a business transaction and coordinates 
the writing out of changes and the resolution of concurrency problems. An NHibernate  
session tracks changes to entities and writes those changes back to the database all at 
once. In NHibernate, this process of waiting to write to the database all at once is called 
transactional write-behind. In addition, the session is the entry point to much of the 
NHibernate API. More information about the unit of work pattern is available at http://
martinfowler.com/eaaCatalog/unitOfWork.html and in Fowler's book, Patterns  
of Enterprise Application Architecture.

The session acts as an intermediary between our application and several key NHibernate 
components. A typical application will not interact with these components directly, but 
understanding them is critical to understanding NHibernate.

A dialect is used to build SQL syntax for a specific RDBMS. For example, in Microsoft SQL 
Server, we begin a select statement with SELECT TOP 20 to specify a maximum result set 
size. Only 20 rows will be returned. To do the same in SQLite, we append LIMIT 20 to the 
end of the select statement. Each dialect provides the necessary SQL syntax string fragments 
and other information to build correct SQL strings for the chosen RDBMS.

The driver is responsible for building the batcher, creating IDbConnection and 
IDbCommand objects, and preparing those commands.

http://martinfowler.com/eaaCatalog/unitOfWork.html
http://martinfowler.com/eaaCatalog/unitOfWork.html
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The connection provider is simply responsible for opening and closing database connections.

The batcher manages the batch of commands to be sent to the database and the resulting 
data readers. Currently, only the SqlClientDriver and OracleDataDriver support 
batching. Those drivers that don't support batching provide a NonBatchingBatcher  
to manage IDbCommands and IDataReaders and simulate the existence of a single  
logical batch of commands.

NHibernate properties
Here are some of the commonly used NHibernate properties:

Property name Description
connection.provider Provider class to open and close database 

connections.
connection.driver_class This is specific to the RDBMS used, and is typically set 

by the dialect.
connection.connection_string Database connection string.
connection.connection_string_
name

Name of connection string in 
<connectionStrings> element.

connection.isolation Transaction isolation level.
dialect Required. A class to build RDBMS-specific SQL strings. 

Typically, this is one of the many dialects from the 
NHibernate.Dialect namespace.

show_sql Boolean value. Set to true to log all SQL statements to 
Console.Out. Alternatively, log4net may be used to 
log to other locations. 

current_session_context_class Class to manage contextual sessions. This is covered 
in depth in Chapter 3.

query.substitutions Comma-separated list of translations to perform on 
query strings. For example, True=1, Yes=1, False=0, 
No=0.

sql_exception_converter Class to convert RDBMS-specific ADO.NET Exceptions 
to custom exceptions.

prepare_sql Boolean value. Prepares SQL statements and caches 
the execution plan for the duration of the database 
connection. 

command_timeout Number of seconds to wait for a SQL command to 
complete before timing out.

adonet.batch_size Number of SQL commands to send at once before 
waiting for a response from the database. 
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Property name Description
generate_statistics Enables tracking of some statistical information, 

such as the number of queries executed and entities 
loaded.

proxyfactory.factory_class Required. Specifies a factory class for our chosen 
proxy framework, in this case Castle DynamicProxy2. 

format_sql Adds line endings for easier-to-read SQL statements.

Additional information about each of these settings is available in the reference 
documentation at http://www.nhforge.org/doc/nh/en/index.html.

Dialects and drivers
Many dialects set other NHibernate properties to sensible default values, including, in most 
cases, the connection.driver_class. NHibernate includes the following dialects in the 
NHibernate.Dialect namespace and drivers in the NHibernate.Driver namespace:

RDBMS Dialect(s) Driver(s)
Microsoft SQL Server MsSql2008Dialect

MsSql2005Dialect

MsSql2000Dialect

MsSql7Dialect

MsSqlCEDialect

SqlClientDriver

SqlServerCEDriver

Oracle Oracle10gDialect

Oracle9iDialect

Oracle8iDialect

OracleLiteDialect

OracleClientDriver

OracleDataClientDriver

OracleLiteDataDriver

MySql MySQLDialect

MySQL5Dialect

MySqlDataDriver

PostgreSQL PostGreSQLDialect

PostGreSQL81Dialect

PostGreSQL82Dialect

NpgsqlDriver

DB2 DB2Dialect

Db2400Dialect

DB2Driver

DB2400Driver

http://www.nhforge.org/doc/nh/en/index.html
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RDBMS Dialect(s) Driver(s)
Informix InformixDialect

InformixDialect0940

InformixDialect1000

IfxDriver

Sybase SybaseDialect

SybaseASA10Dialect

SybaseASA9Dialect

Sybase11Dialect

SybaseAdoNet12Dialect

SybaseAnywhereDialect

SybaseClientDriver

ASAClientDriver

ASA10ClientDriver

SybaseAdoNet12ClientDriver

Firebird FirebirdDialect FirebirdDriver

FirebirdClientDriver

SQLite SQLiteDialect SQLiteDriver 
SQLite20Driver

Ingres IngresDialect IngresDriver

See also
 f Configuring NHibernate with hibernate.cfg.xml

 f Configuring NHibernate with code

 f Configuring NHibernate with Fluent NHibernate

 f Configuring NHibernate using ConfORM Mappings

Configuring NHibernate with 
hibernate.cfg.xml

Another common method for configuring NHibernate uses a separate xml configuration file. In 
this recipe, I'll show you how to configure NHibernate using hibernate.cfg.xml to provide 
an identical configuration to the previous recipe.

Getting ready

1. Complete the Eg.Core model and mapping recipes from Chapter 1.

2. Add a console application project to your solution named ConfigByXML. 

3. Set it as the Startup project for your solution.
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4. In the ConfigByXML project, add references to NHibernate.dll and 
NHibernate.ByteCode.Castle.dll in the Lib folder.

5. In ConfigByXML, add a reference to the Eg.Core project.

How to do it…
1. Add an App.config file with this configuration:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

  

  <connectionStrings>

    <add name="db" connectionString="Server=.\SQLExpress; 
Database=NHCookbook; Trusted_Connection=SSPI"/>

  </connectionStrings>

</configuration>

2. Add an XML file named hibernate.cfg.xml with this XML:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-configuration

  xmlns="urn:nhibernate-configuration-2.2">

  <session-factory>

    <property name="proxyfactory.factory_class">

      NHibernate.ByteCode.Castle.ProxyFactoryFactory,

      NHibernate.ByteCode.Castle

    </property>

    <property name="dialect">

      NHibernate.Dialect.MsSql2008Dialect,

      NHibernate

    </property>

    <property name="connection.connection_string_name">

      db

    </property>

    <property name="adonet.batch_size">

      100

    </property>

    <mapping assembly="Eg.Core"/>

  </session-factory>

</hibernate-configuration>

3. On the Solution Explorer tab, right-click on hibernate.cfg.xml and select Properties.

4. Change Copy to Output Directory from Do not copy to Copy if newer.
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5. Open Program.cs and add using NHibernate.Cfg;.

6. In your Main function, add the following code to configure NHibernate:
var nhConfig = new Configuration().Configure();

var sessionFactory = nhConfig.BuildSessionFactory();

Console.WriteLine("NHibernate Configured!");

Console.ReadKey();

7. Build and run your application. You will see the text NHibernate Configured!.

How it works…
This recipe works in the same way as the previous recipe. We still use the db connection 
string defined in the App.config. However, in this recipe, we've moved the hibernate-
configuration element from the App.config file to hibernate.cfg.xml. Just as with 
the mappings, we get full IntelliSense from the schema file we added to the solution back in 
Chapter 1. We change Copy to Output Directory to ensure that our hibernate.cfg.xml 
file is copied with the build output.

There's more…
By default, NHibernate looks for its configuration in the hibernate.cfg.xml. However,  
we can specify a different configuration file using the following code:

var cfgFile = "cookbook.cfg.xml";
var nhConfig = new Configuration().Configure(cfgFile);

Additionally, we can embed our configuration file in the assembly. In this case, we pass  
in the assembly containing the resource as well as the embedded resource name.

Finally, we can pass an XmlReader to provide our configuration from any other source.

See also
 f Configuring NHibernate with App.config

 f Configuring NHibernate with code

 f Configuring NHibernate with Fluent NHibernate

 f Configuring NHibernate using ConfORM mappings

Configuring NHibernate with code
We can also configure NHibernate entirely in code. In this recipe, I'll show you how to use  
the NHibernate.Cfg.Loquacious namespace to configure NHibernate.
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Getting ready

1. Complete the Eg.Core model and mapping recipes from Chapter 1.

2. Add a console application project to your solution named ConfigByCode.

3. Set it as the Startup project for your solution.

4. In the ConfigByCode project, add references to NHibernate.dll and 
NHibernate.ByteCode.Castle.dll in the Lib folder.

5. In ConfigByCode, add a reference to the Eg.Core project.

How to do it…
1. Add an App.config file with this configuration:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

   <connectionStrings>

    <add name="db" connectionString="Server=.\SQLExpress; 
Database=NHCookbook; Trusted_Connection=SSPI"/>

  </connectionStrings>

</configuration>

2. In Program.cs, add the following using statements:
using NHibernate.ByteCode.Castle;

using NHibernate.Cfg;

using NHibernate.Cfg.Loquacious;

using NHibernate.Dialect;

3. In your Main function, add the following code to configure NHibernate:
var nhConfig = new Configuration()

  .Proxy(proxy => 

    proxy.ProxyFactoryFactory<ProxyFactoryFactory>())

  .DataBaseIntegration(db =>

  {

    db.Dialect<MsSql2008Dialect>();

    db.ConnectionStringName = "db";

    db.BatchSize = 100;

  })

  .AddAssembly("Eg.Core");

var sessionFactory = nhConfig.BuildSessionFactory();

Console.WriteLine("NHibernate Configured!");

Console.ReadKey();

4. Build and run your application. You should see the text NHibernate Configured!.



Configuration and Schema

58

How it works…
In this recipe, we create an identical NHibernate configuration using extension methods  
in the NHibernate.Cfg.Loquacious namespace. These methods offer full type safety  
and improved discoverability over code configurations in the previous version of NHibernate.

We specify proxyfactory.factory_class using the Proxy extension method. Next, we 
specify dialect, connection.connection_string_name, and adonet.batch_size 
with the DatabaseIntegration extension method. Finally, we add the embedded resource 
mappings with the AddAssembly method. AddAssembly isn't an extension method, and has 
been a part of the NHibernate configuration API for many versions.

There's more...
Notice that we are still referencing the db connection string defined in our App.config file. 
If we wanted to eliminate the App.config file entirely, we could hardcode the connection 
string with this code:

db.ConnectionString = @"Connection string here...";

This, however, is completely inflexible, and will require a full recompile and redeployment  
for even a minor configuration change.

See also
 f Configuring NHibernate with App.config

 f Configuring NHibernate with XML

 f Configuring NHibernate with Fluent NHibernate

 f Configuring NHibernate using ConfORM Mappings

Configuring NHibernate with Fluent 
NHibernate

In addition to fluent mappings and auto-mappings, the Fluent NHibernate project also brings 
its own code configuration syntax to NHibernate configuration. In this recipe, I'll show you how 
to configure NHibernate with the Fluent NHibernate syntax.

Getting ready
1. Complete the Eg.FluentMappings model and mapping from the Creating 

Mappings Fluently recipe in Chapter 1.
2. Add a console application project to your solution named ConfigByFNH.
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3. Set it as the Startup project for your solution.

4. In the ConfigByFNH project, add references to NHibernate.dll, NHibernate.
ByteCode.Castle.dll, and FluentNHibernate.dll in the Lib folder.

5. In ConfigByFNH, add a reference to the Eg.FluentMappings project.

How to do it…
1. Add an App.config file with this configuration:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

  

  <connectionStrings>

    <add name="db" connectionString="Server=.\SQLExpress; 
Database=NHCookbook; Trusted_Connection=SSPI"/>

  </connectionStrings>

</configuration>

2. In Program.cs, add the following using statements:
using Eg.FluentMappings.Mappings;

using FluentNHibernate.Cfg;

using FluentNHibernate.Cfg.Db;

using NHibernate.ByteCode.Castle;

3. In the Main method, add this code:
var nhConfig = Fluently.Configure()

  .Database(MsSqlConfiguration.MsSql2008

    .ConnectionString(connstr =>

      connstr.FromConnectionStringWithKey("db")

    )

    .ProxyFactoryFactory<ProxyFactoryFactory>()

    .AdoNetBatchSize(100)

  )

  .Mappings(mappings => mappings.FluentMappings

    .AddFromAssemblyOf<ProductMapping>()

  )

  .BuildConfiguration();

var sessionFactory = nhConfig.BuildSessionFactory();

Console.WriteLine("NHibernate configured fluently!");

Console.ReadKey();

4. Build and run your application. You should see the text NHibernate  
configured fluently!.
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How it works…
Our fluent configuration can be broken down in to three parts. First, we configure  
these properties:

1. We set the dialect property to MsSql2008Dialect when we use the MsSql2008 
static property of MsSqlConfiguration.

2. connection.connection_string_name is set to db with a call to 
FromConnectionStringWithKey.

3. When we call ProxyFactoryFactory, we set proxyfactory.factory_class  
to the Castle DynamicProxy2 proxy factory.

4. We set adonet.batch_size to 100 with a call to AdoNetBatchSize.

Next, we load mappings into our configuration. In this recipe, we load our fluent mappings 
from Chapter 1. Fluent NHibernate scans the entire assembly and loads all the fluent 
mappings it finds. Fluent NHibernate allows you to add any combination of fluent mappings, 
auto-mappings, and standard hbm.xml mappings.

Finally, from the fluent configuration, we build a standard NHibernate configuration.

See also
 f Configuring NHibernate with App.config

 f Configuring NHibernate with XML

 f Configuring NHibernate with code

 f Configuring NHibernate using ConfORM Mappings

Configuring NHibernate using 
ConfORM Mappings

As we saw in Chapter 1, ConfORM uses conventions to build HbmMapping objects that can 
be added directly to the NHibernate configuration. In this recipe, I'll show you how to add 
ConfORM mappings to our NHibernate configuration.

Getting ready

1. Complete Mapping with ConfORM recipe in Chapter 1.

2. Add a console application project to your solution named ConfigWithConfORM.

3. Set it as the Startup project for your solution.
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4. In the ConfigWithConfORM project, add references to NHibernate.dll  
and NHibernate.ByteCode.Castle.dll in the Lib folder.

5. In ConfigWithConfORM, add a reference to the Eg.ConfORMMappings project.

How to do it...
1. Add an App.config with the following configuration:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

  <configSections>

    <section name="hibernate-configuration" 

             type="NHibernate.Cfg.ConfigurationSectionHandler, 
NHibernate"/>

  </configSections>

  <connectionStrings>

    <add name="db" connectionString="Server=.\SQLExpress; 
Database=NHCookbook; Trusted_Connection=SSPI"/>

  </connectionStrings>

  <hibernate-configuration 

    xmlns="urn:nhibernate-configuration-2.2">

    <session-factory>

      <property name="proxyfactory.factory_class">

        NHibernate.ByteCode.Castle.ProxyFactoryFactory, 

        NHibernate.ByteCode.Castle

      </property>

      <property name="dialect">

        NHibernate.Dialect.MsSql2008Dialect, 

        NHibernate

      </property>

      <property name="connection.connection_string_name">

        db

      </property>

      <property name="adonet.batch_size">

        100

      </property>

    </session-factory>

  </hibernate-configuration>

</configuration>
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2. In Program.cs, add the following using statements:
using Eg.ConfORMMapping.Mappings;
using NHibernate.Cfg;

3. In the Main method, add the following code:
var mappingFactory = new MappingFactory();

var mapping = mappingFactory.CreateMapping();

var nhConfig = new Configuration().Configure();

nhConfig.AddDeserializedMapping(mapping, null);

var sessionFactory = nhConfig.BuildSessionFactory();

Console.WriteLine("NHibernate configured!");

Console.ReadKey();

4. Build and run your application. You should see NHibernate Configured!.

How it works...
In this recipe, our App.config is nearly identical to the App.config from our first 
configuration recipe. We've simply removed the <mapping> element that tells NHibernate  
to load mappings embedded in an assembly. Instead, we use ConfORM to build 
an HbmMapping object containing mappings for our entire model. We new up our 
MappingFactory and call CreateMapping.

Next, we build our NHibernate Configuration object and load the configuration from  
App.config.

The real trick of this recipe comes when we call AddDeserializedMapping. We pass in our 
HbmMapping object. As the method name suggests, it really is a deserialized XML mapping, 
except that we built it with code, not XML. In fact, we could serialize the HbmMapping object 
with the .NET XmlSerializer, and we would get an actual human-readable XML mapping 
for our model.

There's more...
Because we build our mapping with code, we get a nice speed boost during configuration 
compared with normal embedded resource XML mappings and even Fluent NHibernate,  
which serializes its mappings down to XML, then lets NHibernate deserialize them.

See also
 f Configuring NHibernate with App.config

 f Configuring NHibernate with XML

 f Configuring NHibernate with code

 f Configuring NHibernate with Fluent NHibernate
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Configuring NHibernate logging
NHibernate uses log4net, a highly customizable, open source logging framework. In this 
recipe, I'll show you a simple log4net configuration to log important NHibernate events  
to the Visual Studio debug output window.

Getting ready
Complete the earlier Configuring NHibernate with App.config recipe.

How to do it...
1. Add a reference to log4net.dll from the NHibernate download.

2. Open your application configuration file.

3. Inside the configSections element, declare a section for the log4net 
configuration:
<section name="log4net"

type="log4net.Config.Log4NetConfigurationSectionHandler, 
log4net"/>

4. After the hibernate configuration element, add this log4net configuration:
<log4net>

<appender name="trace" 

      type="log4net.Appender.TraceAppender, log4net">

  <layout type="log4net.Layout.PatternLayout, log4net">

  <param name="ConversionPattern" 

       value=" %date %level %message%newline" />

  </layout>

</appender>

<root>

  <level value="ALL" />

  <appender-ref ref="trace" />

</root>

<logger name="NHibernate">

  <level value="INFO" />

</logger>

</log4net>

5. At the beginning of your Main function, insert the following code to configure log4net:
log4net.Config.XmlConfigurator.Configure();

6. Run your application.
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7. Watch Visual Studio's debug output window.

How it works...
log4net uses appenders, layouts, and loggers to format and control log messages from  
our application, including log messages from NHibernate.

Appenders define destinations for log messages. In this recipe, we've defined a trace 
appender, which writes our log messages to System.Diagnostics.Trace. When we  
debug our application, Visual Studio listens to the trace and copies each message to the 
debug output window.

Loggers are the source of log messages. The root element defines values for all loggers,  
which can be overridden using the logger element. In our configuration, we've declared  
that all messages should be written to the appender named trace. 

In log4net, log messages have priorities. In ascending order, they are DEBUG, INFO, WARN, 
ERROR, and FATAL. In our configuration, we can define a log level with one of these priorities, 
or with ALL or OFF. A level includes its priority and all the priorities above it. For example, 
a level of WARN will also log ERROR and FATAL messages. ALL is equivalent to DEBUG: all 
messages will be logged, and OFF suppresses all messages.

With our configuration, log4net will write messages from NHibernate with a priority of INFO, 
WARN, ERROR, and FATAL, and ALL messages from other sources.

There's more...
We can use log4net in our own application. Here's a simple example of what some code might 
look like with log4net logging:
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using System.IO;
using log4net;
namespace MyApp.Project.SomeNamespace
{

    public class Foo
    {
        private static ILog log = LogManager.GetLogger(typeof(Foo));

        public string DoSomething()
        {
            log.Debug("We're doing something.");
            try
            {
                return File.ReadAllText("cheese.txt");
            }
            catch (FileNotFoundException)
            {
                log.Error("Somebody moved my cheese.txt");
                throw;
            }
        }
    }
}

We've defined a simple class named Foo. In the DoSomething() method, we write the log 
message, "We're doing something.", with a priority of DEBUG. Then we return the contents  
of the file cheese.txt. If the file doesn't exist, we log an error and throw the exception.

Because we passed in typeof(Foo) when getting the logger, Foo's logger is named MyApp.
Project.SomeNamespace.Foo, the same as the type. This is the typical naming convention 
when using log4net.

Suppose we were no longer concerned with debug level messages from Foo, but we still 
wanted to know about warnings and errors. We can redefine the log level with this simple 
addition to our configuration:

<logger name="MyApp.Project.SomeNamespace.Foo">
  <level value="WARN" />
</logger>

Alternatively, we can set the log level for the entire namespace or even the entire project  
with this configuration.

<logger name="MyApp.Project">
  <level value="WARN" />
</logger>
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Using log4net to troubleshoot NHibernate
When we set NHibernate's show_sql configuration property to true, NHibernate will write all 
SQL statements to Console.Out. This is handy in some cases, but many applications don't 
use console output. With log4net, we can write the SQL statements to the trace instead.

NHibernate also writes every SQL statement to a logger named NHibernate.SQL. These log 
messages have DEBUG priority. When we add the following snippet to our configuration, we can 
redefine the log level for this specific logger. We will get every SQL statement in the trace output.

<logger name="NHibernate.SQL">
   <level name="DEBUG" />
</logger>

See also
 f Configuring NHibernate with App.config

 f Using NHibernate Profiler

Reducing application startup time
The process of configuring NHibernate is fairly intensive and takes some time. NHibernate has 
to load, parse, and compile all our mappings and reflect the model. In this recipe, I'll show you 
how to reduce the startup time of your NHibernate application.

Getting ready
Complete the Configuring NHibernate with App.config recipe from the beginning  
of this chapter.

How to do it...
1. Add a reference to System.Configuration.dll.

2. Add a new class named ConfigurationBuilder.

3. Add the following using statements:
using System;

using System.Configuration;

using System.IO;

using System.Reflection;

using System.Runtime.Serialization.Formatters.Binary;

using Configuration = NHibernate.Cfg.Configuration;

4. In ConfigurationBuilder, add a private string constant SERIALIZED_CFG = 
"configuration.bin";
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5. Add a method named Build with the following code:
public Configuration Build()

{

  Configuration cfg = LoadConfigurationFromFile();

  if (cfg == null)

  {

    cfg = new Configuration().Configure();

    SaveConfigurationToFile(cfg);

  }

  return cfg;

}

6. Add a method named LoadConfigurationFromFile with this code:
private Configuration LoadConfigurationFromFile()

{

  if (!IsConfigurationFileValid())

    return null;

  try

  {

    using (var file = File.Open(SERIALIZED_CFG, FileMode.Open))

    {

      var bf = new BinaryFormatter();

      return bf.Deserialize(file) as Configuration;

    }

  }

  catch (Exception)

  {

    // Something went wrong

    // Just build a new one

    return null;

  }

}

7. Add a method named IsConfigurationFileValid with the following code:
private bool IsConfigurationFileValid()

{

  // If we don't have a cached config, 

  // force a new one to be built

  if (!File.Exists(SERIALIZED_CFG))

    return false;

  var configInfo = new FileInfo(SERIALIZED_CFG);
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  var asm = Assembly.GetExecutingAssembly();

  if (asm.Location == null)

    return false;

  // If the assembly is newer, 

  // the serialized config is stale

  var asmInfo = new FileInfo(asm.Location);

  if (asmInfo.LastWriteTime > configInfo.LastWriteTime)

    return false;

  // If the app.config is newer, 

  // the serialized config is stale

  var appDomain = AppDomain.CurrentDomain;

  var appConfigPath = appDomain.SetupInformation.
ConfigurationFile;

  var appConfigInfo = new FileInfo(appConfigPath);

  if (appConfigInfo.LastWriteTime > configInfo.LastWriteTime)

    return false;

  // It's still fresh

  return true;

}

8. Add a method named SaveConfigurationToFile with this code:
private void SaveConfigurationToFile(Configuration cfg)

{

  using (var file = File.Open(SERIALIZED_CFG, FileMode.Create))

  {

    var bf = new BinaryFormatter();

    bf.Serialize(file, cfg);

  }

}

9. In Program.cs, replace the NHibernate configuration code with the following code:
var nhConfig = new ConfigurationBuilder().Build();

How it works...
NHibernate's Configuration class is serializable. Thoroughly validating the mappings and 
settings takes some effort and time. The very first time our application runs, we can't escape 
this, but if we serialize our Configuration object to disk, we can deserialize it the next time we 
run it, saving us all of this busy work.

The IsConfigurationFileValid method ensures that the Configuration we've serialized 
is still fresh. If the executable or the App.config has been updated, we need to rebuild our 
configuration object from scratch.
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We compare the last write time of the various files to decide if the serialized configuration  
is stale. We use a BinaryFormatter to serialize and deserialize the configuration.

Actual configuration may vary—batteries not included
In this recipe, we only check the assembly containing 
our ConfigurationBuilder class and the App.
config. If you store your configuration and mappings 
elsewhere, you will need to adjust this code accordingly.

There's more...
This technique is especially suited for development and test suites, where we frequently 
change code, but may not change our mappings or configuration. We can skip all of the extra 
parsing and get running quickly, and test our changes.

It also works well for desktop NHibernate applications. Because a user is waiting on 
your application to launch, every second counts. It's not as useful for web applications in 
production because these basically launch once and stay running.

Generating the database
In Chapter 1, we built mappings to map our persistent classes to the database, but  
we haven't built that database.

In this recipe, I'll show you how to generate all the necessary tables, columns, keys  
and relationships in your database from your mappings—with two lines of code.

Getting ready
1. Complete the Configuring NHibernate with App.config recipe at the beginning of this 

chapter.

2. Install Microsoft SQL Server 2008 Express on your PC, using the default settings.

3. Create a blank database named NHCookbook.

This recipe works for any RDBMS supported by NHibernate. To 
use a different system, switch to the dialect for your RDBMS, 
and use a connection string appropriate for your system.
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How to do it...

1. Open Program.cs.
2. Add the using statement: using 

NHibernate.Tool.hbm2ddl;.
3. Add the following lines to the end of Main.

var schemaExport = new SchemaExport(nhConfig);

schemaExport.Create(false, true);

4. Build and run your application.
5. Open your database and examine the tables.

How it works...
The hbm2ddl (hibernate mapping to data definition language) tool uses the mapping 
metadata in the configuration object to build a SQL script of our database objects.  
It then connects to our database and runs this script.

There's more...
Alternatively, we can use the hbm2ddl.auto configuration property to build our database 
schema automatically whenever our application calls BuildSessionFactory. We can set 
the property to the following values:

 f update: The SchemaUpdate class updates our database schema, avoiding 
destructive changes. This only works for dialects that implement the 
IDataBaseSchema interface.

 f create: The SchemaExport class creates our database schema from scratch  
for a fresh database.

 f create-drop: SchemaExport recreates the database schema by first dropping 
and then creating each table.

 f validate: The SchemaValidate class compares the existing database schema  
to the schema NHibernate expects, based on your mappings. Like update, this 
requires a dialect that implements IDataBaseSchema.

While create-drop is immensely helpful during development, only validate is suggested 
for production environments, as the tiniest mistake can have huge consequences. Rather, you 
should script the database, as shown in the next recipe, and run the script explicitly to set up 
your production database.

See also
 f Configuring NHibernate with App.config
 f Scripting the database
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Scripting the database
It's usually not appropriate for your application to recreate database tables each time  
it runs. In this recipe, we'll generate a SQL script to create your database objects.

Getting ready
1. Complete the Configuring NHibernate with App.config recipe at the beginning  

of this chapter.

2. Install Microsoft SQL Server 2008 Express on your PC, using the default settings.

4. Create a blank database named NHCookbook.

This recipe works for any RDBMS supported by NHibernate. To use a 
different system, adjust your connection string and dialect accordingly.

How to do it...
1. Open Program.cs.

2. Add the using statement: using NHibernate.Tool.hbm2ddl; to the beginning  
of the file.

3. Add the following lines to the end of Main.
var schemaExport = new SchemaExport(nhConfig);

schemaExport

  .SetOutputFile(@"db.sql")

  .Execute(false, false, false);

4. Build and run your application.

5. Inspect the newly created db.sql file.

How it works...
Using the mapping metadata from the configuration object and the current dialect, hbm2ddl 
builds a SQL script for your entities.
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See also
 f Configuring NHibernate with App.config

 f Configuring NHibernate with hibernate.cfg.xml

 f Configuring NHibernate with code

 f Configuring NHibernate with Fluent NHibernate

 f Configuring NHibernate Using ConfORM Mappings

 f Generating the database

Using NHibernate Schema Tool
In many cases, you'll want to include building or updating your database in some larger 
process, such as a build script or installation process. In this recipe, I'll show you how  
to use this command-line tool to run our hbm2ddl tasks.

Getting ready

Download the latest release of NHibernate Schema Tool from http://nst.codeplex.com/.

To install NHibernate Schema Tool, follow these steps:

1. Create a new folder in C:\Program Files named NHibernateSchemaTool.
2. Copy nst.exe to the newly created folder.
3. Add C:\Program Files\NHibernateSchemaTool to your PATH  

environment variable.

After the installation of the NHibernate Schema Tool, follow these steps:

1. Complete the Configuring NHibernate with App.config recipe from the beginning  
of this chapter.

2. Install Microsoft SQL Server 2008 Express on your PC, using the default settings.

3. Create a blank database named NHCookbook.

This recipe works for any RDBMS supported by NHibernate. To use a 
different system, adjust your connection string and dialect accordingly.

http://nst.codeplex.com/
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How to do it...
1. Add a new file to your project named hibernate.cfg.xml with the following code:

<?xml version="1.0" encoding="utf-8" ?>

<hibernate-configuration 

xmlns="urn:nhibernate-configuration-2.2">

<session-factory>

  <property name="proxyfactory.factory_class">

    NHibernate.ByteCode.Castle.ProxyFactoryFactory, NHibernate.
ByteCode.Castle

  </property>

  <property name="dialect">

    NHibernate.Dialect.MsSql2008Dialect, NHibernate

  </property>

  <property name="connection.connection_string">

    Server=.\SQLExpress; Database=NHCookbook; Trusted_
Connection=SSPI

  </property>

</session-factory>

</hibernate-configuration>

2. For hibernate.cfg.xml, on the properties tab, set Copy To Output Directory  
to Copy Always.

3. Build your solution.

4. Open a command prompt window, and switch to the directory containing your 
compiled mapping assembly and hibernate.cfg.xml.

To open the command prompt window quickly, in Visual Studio, 
right-click on your project, and choose Open Folder in Windows 
Explorer. Open the bin folder. While holding down Shift, right-click 
on the Debug folder. Choose Open Command Window Here.

5. Run the following command:

nst /c:hibernate.cfg.xml /a:Eg.Core.dll /o:Create.

How it works...
NHibernate Schema Tool is a command-line wrapper for the hbm2ddl tool. This makes NST 
ideal for use in build scripts and continuous integration servers.
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The /c argument specifies the configuration file. It's no mistake that the content of 
hibernate.cfg.xml is nearly identical to the hibernate-configuration section in 
the app.config. The /a argument specifies the assembly with our classes and mapping 
embedded resource files. The /o:Create option tells NHibernate to create our database 
objects. It also supports Update and Delete.

There's more...
NST has several options, enabling a number of creative uses. NST supports these  
command-line options:

Command-line option Description
/c:<path-to-hibernate-config> Specifies NHibernate config file to use.
/a:<assembly[;assembly2 Path to assembly or semicolon-separated list 

of assemblies containing embedded .hbm.
xml files. These assemblies may also contain 
persistent classes.

/m:<assembly[;assembly2]> Path to assembly or semicolon-separated list of 
assemblies containing persistent classes.

/d:<path[;path2]> Directory or directories containing .hbm.xml 
mapping files.

/s Generate script, but don't execute. Script is written 
to the console.

/v Generate script and execute. Script is written to 
the console.

/o:<Create|Update|Delete> Specifies Create, Update, or Delete operation. 

See also
 f Configuring NHibernate with App.config

 f Configuring NHibernate with hibernate.cfg.xml

 f Configuring NHibernate with code

 f Configuring NHibernate with Fluent NHibernate

 f Configuring NHibernate Using ConfORM Mappings

 f Generating the database

 f Scripting the database



Sessions and 
Transactions

In this chapter, we will cover the following topics:

 f Setting up session per web request

 f Setting up session per presenter

 f Creating a session ASP.NET MVC action filter

 f Creating a transaction ASP.NET MVC action filter

 f Using the Conversation per Business Transaction pattern

 f Using session.Merge

 f Using session.Refresh

 f Using stateless sessions

 f Using dictionaries as entities

 f Using NHibernate with Transaction Scope

Introduction
NHibernate leaves session and transaction management up to the application. There are  
a number of different ways to manage sessions and transactions, and these depend greatly 
on the specific application architecture. In addition to a few interesting session methods,  
the recipes in this chapter show how to handle sessions and transactions for these different 
types of applications. 

3
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Setting up session per web request
Because of its simplicity, the most common pattern used in web applications for managing 
NHibernate sessions is session-per-request. In this recipe, I'll show you how to set up the 
session-per-request pattern using NHibernate's contextual sessions feature.

Getting ready
1. Create a new ASP.NET Web Forms or ASP.NET MVC application.

2. Add references to NHibernate.dll, NHibernate.ByteCode.Castle.dll, 
log4net.dll, and our Eg.Core model and mappings project from Chapter 1.

3. In the web.config file, set up the NHibernate and log4net configuration sections. 
Refer to the Configuring NHibernate with App.config recipes in Chapter 2.

How to do it...
1. In the hibernate-configuration section of web.config, add the current_

session_context_class property with a value of web.

2. If it doesn't exist already, add a new Global application class (Global.asax).

3. In Global.asax, add these using statements.
using NHibernate;

using NHibernate.Cfg;

using NHibernate.Context;

4. Create a static property named SessionFactory.
public static ISessionFactory SessionFactory { get; 

private set; }

5. In the Application_Start method, add the following code.
protected void Application_Start(object sender, EventArgs e)

{

  log4net.Config.XmlConfigurator.Configure();

  var nhConfig = new Configuration().Configure();

  SessionFactory = nhConfig.BuildSessionFactory();

}

6. In the Application_BeginRequest method, add the following code.
protected void Application_BeginRequest(object sender, EventArgs e)

{

  var session = SessionFactory.OpenSession();

  CurrentSessionContext.Bind(session);

}
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7. In the Application_EndRequest method, add the following code:
protected void Application_EndRequest(object sender, EventArgs e)

{

  var session = CurrentSessionContext.Unbind(SessionFactory);

  session.Dispose();

}

How it works...
In web applications, it's common to use a session for each web request. We open the session 
when the request begins and close it when the request ends.

NHibernate's contextual session feature allows a session to be associated with some 
application-specific scope that approximates a single unit of work. This context is configured 
with the current_session_context_class property, which specifies an implementation 
of NHibernate.Context.ICurrentSessionContext. In this case, we'll associate it with 
the web request. web is the short name for NHibernate.Context.WebSessionContext.

Even with contextual sessions, NHibernate does not open, close or dispose the session 
for us. We associate and dissociate a session with the current web request using the 
CurrentSessionContext.Bind and Unbind methods.

There's more...
To get the NHibernate session for the current web request, we use SessionFactory.
GetCurrentSession(). In our example web application, it might look something like this:

Guid productId = new Guid(Request["id"]);
Eg.Core.Product product;
var session = Global.SessionFactory.GetCurrentSession();

using (var tran = session.BeginTransaction())
{
  product = session.Get<Eg.Core.Product>(productId);
  tran.Commit();
}
Page.Title = product.Name;
Label1.Text = product.Name;
Label2.Text = product.Description;

This naive example fetches a product from the database and displays the name and 
description to the user. In a production-worthy application, we would use dependency  
injection rather than directly access the singleton. The free TekPub Concepts screencast 
provides a thorough introduction to dependency injection, and can be found at  
http://tekpub.com/view/concepts/1.



Sessions and Transactions

78

NHibernate sessions are extremely lightweight and cheap to make. Simply 
opening a session doesn't open a database connection. NHibernate makes 
every effort to avoid any delay opening a connection. On the other hand, 
NHibernate goes through great effort to create the session factory. You should 
only create one session factory for the entire lifecycle of the application.

There are many implementations of session per request using Inversion of Control containers 
and even HTTP modules. Some use contextual sessions. Others manage the session without 
NHibernate's help. A complete session per request implementation has four characteristics:

 f Create the one and only session factory when the application starts

 f Open a session when the web request begins

 f Close the session when the request ends

 f Provide a standard way to access the current session throughout the data  
access layer

See also
 f Creating a ASP.NET MVC session action filter

 f Creating a ASP.NET MVC  transaction action filter

 f Setting up session per presenter.

 f Using the Conversation per Business Transaction pattern

Setting up session per presenter
In desktop applications using the model-view-presenter pattern, it's best to  
use a session for each presenter. This approach can also be adapted to the  
model-view-view model pattern. More information on these patterns is available  
at http://en.wikipedia.org/wiki/Model-view-presenter.

In this recipe, I'll show you how to implement this session-per-presenter pattern  
with dependency injection.

Getting ready
You'll need the named scope extension to Ninject available at  
http://github.com/remogloor/ninject.extensions.namedscope.

Download the source code in ZIP format and extract it. Open the Ninject.Extensions.
NamedScope.sln solution in Visual Studio and build the solution. Copy Ninject.dll and 
Ninject.Extensions.NamedScope.dll from the build\debug folder to our Cookbook 
solution's Lib folder.

http://en.wikipedia.org/wiki/Model-view-presenter
http://en.wikipedia.org/wiki/Model-view-presenter
http://github.com/remogloor/ninject.extensions.namedscope
http://github.com/remogloor/ninject.extensions.namedscope
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If you're not familiar with the dependency injection concept, a free video tutorial is available 
from TekPub at http://tekpub.com/view/concepts/1.

This recipe can be completed with other dependency injection 
frameworks. Just substitute the NinjectBindings class with 
an equivalent configuration for your favorite DI framework.

How to do it...
1. Add a new console project to the solution named SessionPerPresenter.

2. Add references to the Eg.Core project from Chapter 1, NHibernate.dll, 
NHibernate.ByteCode.Castle.dll, Ninject.dll, and Ninject.
Extensions.NamedScope.dll.

3. Add an App.config file and set up the NHibernate and log4net configuration 
sections. Refer to the Configuring NHibernate and Configuring NHibernate logging 
recipes in Chapter 2.

4. Add a folder to the new project named Data.

5. In the Data folder, create an IDao<TEntity> interface with the following code:
public interface IDao<TEntity> : IDisposable

  where TEntity : class

{

  IEnumerable<TEntity> GetAll();

}

6. Create an implementation with the following code:
public class Dao<TEntity> : IDao<TEntity>

  where TEntity : class 

{

  private readonly ISessionProvider _sessionProvider;

  public Dao(ISessionProvider sessionProvider)

  {

    _sessionProvider = sessionProvider;

  }

  public void Dispose()

  {

    _sessionProvider.Dispose();

  }

  public IEnumerable<TEntity> GetAll()

  {

    var session = _sessionProvider.GetCurrentSession();

http://tekpub.com/view/concepts/1
http://tekpub.com/view/concepts/1
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    IEnumerable<TEntity> results;

    using (var tx = session.BeginTransaction())

    {

      results = session.QueryOver<TEntity>()

        .List<TEntity>();

      tx.Commit();

    }

    return results;

  }

}

7. In the Data folder, create an ISessionProvider interface with the following code:
public interface ISessionProvider : IDisposable

{

  ISession GetCurrentSession();

  void DisposeCurrentSession();

}

8. Create an implementation with the following code:
public class SessionProvider

  : ISessionProvider

{

  private readonly ISessionFactory _sessionFactory;

  private ISession _currentSession;

  public SessionProvider(ISessionFactory sessionFactory)

  {

    Console.WriteLine("Building session provider");

    _sessionFactory = sessionFactory;

  }

  public ISession GetCurrentSession()

  {

    if (null == _currentSession)

      _currentSession = _sessionFactory.OpenSession();

    return _currentSession;

  }

  public void DisposeCurrentSession()

  {

    _currentSession.Dispose();

    _currentSession = null;

  }

  public void Dispose()

  {
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    if (_currentSession != null)

      _currentSession.Dispose();

    _currentSession = null;

  }

}

9. Create a Ninject module named NinjectBindings with the following code:
public class NinjectBindings : NinjectModule 

{

  public override void Load()

  {

    const string presenterScope = "PresenterScope";

    var asm = GetType().Assembly;

    var presenters =

      from t in asm.GetTypes()

      where typeof (IPresenter).IsAssignableFrom(t) &&

            t.IsClass && !t.IsAbstract

      select t;

    foreach (var presenterType in presenters)

      Kernel.Bind(presenterType)

        .ToSelf()

        .DefinesNamedScope(presenterScope);

    Kernel.Bind<ISessionProvider>()

      .To<SessionProvider>()

      .InNamedScope(presenterScope);

    Kernel.Bind(typeof(IDao<>))

      .To(typeof(Dao<>));

  }

}

10. In the root of our project, create a ProductListView class with the following code:
public class ProductListView

{

  private readonly string _description;

  private readonly IEnumerable<Product> _products;

  public ProductListView(

    string description,

    IEnumerable<Product> products)

  {

    _description = description;

    _products = products;

  }

  public void Show()
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  {

    Console.WriteLine(_description);

    foreach (var p in _products)

      Console.WriteLine(" * {0}", p.Name);

  }

}

11. Create a public IPresenter interface inherited from IDisposable. This interface 
can be left empty. 

12. Create a MediaPresenter class with the following code:
public class MediaPresenter : IPresenter 

{

  private readonly IDao<Movie> _movieDao;

  private readonly IDao<Book> _bookDao;

  public MediaPresenter(IDao<Movie> movieDao, 

    IDao<Book> bookDao)

  {

    _movieDao = movieDao;

    _bookDao = bookDao;

  }

  public ProductListView ShowBooks()

  {

    return new ProductListView("All Books", 

      _bookDao.GetAll().OfType<Product>());

  }

  public ProductListView ShowMovies()

  {

    return new ProductListView("All Movies",

      _movieDao.GetAll().OfType<Product>());

  }

  public void Dispose()

  {

    _movieDao.Dispose();

    _bookDao.Dispose();

  }

}

13. Create a ProductPresenter class with the following code:
public class ProductPresenter : IPresenter 

{

  private readonly IDao<Product> _productDao;

  public ProductPresenter(IDao<Product> productDao)
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  {

    _productDao = productDao;

  }

  public ProductListView ShowAllProducts()

  {

    return new ProductListView("All Products",

      _productDao.GetAll());

  }

  public virtual void Dispose()

  {

    _productDao.Dispose();

  }

}

14. In Program.cs, in the Main method, add the following code:
var nhConfig = new Configuration().Configure();

var sessionFactory = nhConfig.BuildSessionFactory();

var kernel = new StandardKernel();

kernel.Load(new Data.NinjectBindings());

kernel.Bind<ISessionFactory>()

  .ToConstant(sessionFactory);

var media1 = kernel.Get<MediaPresenter>();

var media2 = kernel.Get<MediaPresenter>();

media1.ShowBooks().Show();

media2.ShowMovies().Show();

media1.Dispose();

media2.Dispose();

using (var product = kernel.Get<ProductPresenter>())

{

  product.ShowAllProducts().Show();

}

Console.WriteLine("Press any key");

Console.ReadKey();

15. If you like, create some test product, book, and movie data in the NHCookbook 
database.
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16. Build and run your application. You will see the following output:

How it works...
There are several interesting items in this recipe to discuss. First, we've set up a slightly 
complex object graph. For each instance of MediaPresenter, our graph appears as  
shown in the next image:

In the previous image, one instance of session provider is shared by both data access objects. 
This is accomplished with the configuration of Ninject, our dependency injection framework
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In our NinjectBindings, we match up our service interfaces to their matching 
implementations. We bind the open generic IDao<> interface to Dao<>, so that requests  
for IDao<Book> are resolved to Dao<Book>, IDao<Movie> to Dao<Movie>, and so on.

One session per presenter is accomplished with the use of DefinesNamedScope and 
InNamedScope. We find all of the IPresenter implementations in the assembly. Each 
presenter is bound and defines the PresenterScope. When we bind ISessionProvider 
to SessionProviderImpl, we use InNamedScope("PresenterScope") to indicate that 
we will have only one session provider per presenter.

A simple call to Kernel.Get<MediaPresenter>() will return a new presenter instance 
all wired up and ready to use. It will have two data access objects sharing a common session 
provider. To close the session and release any lingering database connections, be sure to call 
Dispose() when you're finished with the presenter. 

A typical Save method on a Dao may look something like this:

var session = _sessionProvider.GetCurrentSession();
try
{
  session.SaveOrUpdate(entity);
}
catch (StaleObjectStateException)
{
  _sessionProvider.DisposeCurrentSession();
  throw;
}

Notice how we are immediately throwing away the session in the catch block. When 
NHibernate throws an exception from inside a session call, the session's state is undefined. 
The only remaining operation you can safely perform on that session is Dispose(). This 
allows us to recover gracefully from any exceptions, as the exploded session is already thrown 
away, so a fresh session can take its place.

You should also take care with entities still associated with this failed session. It's usually a 
good idea to attach them to the new session, as any operation, including lazy loading, against 
the failed session will cause further exceptions. The session.Merge recipe mentioned later in 
this chapter discusses a method for accomplishing this.
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There's More...
Because the boundaries are not as well-defined as in a web application, there are two very 
common anti-patterns for handling NHibernate sessions in desktop applications. The first,  
a singleton session, has the following problems:

 f Undefined point for flushing the session to the database

 f Untestable interactions between unrelated parts of the application

 f It is impossible to recover gracefully from a StaleObjectExceptions or other  
session-exploding exceptions

 f A stateful singleton is always bad architecture

The second, a micro-session, where a session is opened to perform a single operation  
and then quickly closed loses all of the benefits of the unit of work, most notably the  
session cache. Entities will be constantly re-fetched from the database.

See also
 f Using the Conversation per Business Transaction pattern

 f Using session.Merge

Creating a session ASP.NET MVC 
action filter

Often, a unit of work maps neatly on to a single controller action. I'll show you how to create 
an action filter to manage our NHibernate sessions in an ASP.NET MVC application.

Getting ready
Setup an ASP.NET MVC application for NHibernate. The steps are as follows:

1. Create a new ASP.NET MVC application.

2. Add references to NHibernate.dll, NHibernate.ByteCode.Castle.dll, 
log4net.dll, and our Eg.Core project from Chapter 1.

3. In the web.config file, set up the NHibernate and log4net configuration sections. 
Refer to the Configuring NHibernate with App.config recipes in Chapter 2.

4. Set the current_session_context_class property to web.

5. In Global.asax, create a static property named SessionFactory.
public static ISessionFactory SessionFactory { get; 

private set; }
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6. In the Application_Start method, add this code.

log4net.Config.XmlConfigurator.Configure();

var nhConfig = new Configuration().Configure();

SessionFactory = nhConfig.BuildSessionFactory();

How to do it...
1. Add the NHibernateSessionAttribute class as shown in the following code:

[AttributeUsage(AttributeTargets.Method,

AllowMultiple=false)]

public class NHibernateSessionAttribute 

  : ActionFilterAttribute 

{

  public NHibernateSessionAttribute()

  {

    Order = 100;

  }

  protected ISessionFactory sessionFactory

  {

    get

    {

      return MvcApplication.SessionFactory;

    }

  }

  public override void OnActionExecuting(

    ActionExecutingContext filterContext)

  {

    var session = sessionFactory.OpenSession();

    CurrentSessionContext.Bind(session);

  }

  public override void OnActionExecuted(

    ActionExecutedContext filterContext)

  {

   var session = CurrentSessionContext.Unbind(sessionFactory);

   session.Close();

  }

}
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2. Decorate your controller actions with the attribute as shown in the following code:
[NHibernateSession]

public ActionResult Index()

{

  return View(DataAccessLayer.GetBooks());

}

3. Create a dummy data access layer with this code:
using System.Collections.Generic;

namespace ActionFilterExample

{

  public static class DataAccessLayer

  {

    public static IEnumerable<Eg.Core.Book> GetBooks()

    {

      var session = MvcApplication.SessionFactory

        .GetCurrentSession();

      using (var tx = session.BeginTransaction())

      {

        var books = session.QueryOver<Eg.Core.Book>()

          .List();

        tx.Commit();

        return books;

      }

    }

  }

}

4. Inside the Views folder, create a folder named Book
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4. In the Book folder, add a view using the settings shown in the following screenshot:

6. Open SQL Server Management Studio, connect to the NHCookbook database, and 
run this SQL code to create some book data:
USE NHCookbook 

INSERT INTO Product 

VALUES (

  NEWID(),

  'Eg.Core.Book',

  0,

  'NHibernate 3 Cookbook',

  'Bridging the gap between database and .NET Application',

  45.99,

  null,

  'Jason Dentler',

  '3043'

)

INSERT INTO Product 

VALUES (

  NEWID(),

  'Eg.Core.Book',

  0,
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  'NHibernate 2 Beginner's Guide',

  'Rapidly retrieve data from your database into .NET objects',

  45.99,

  null,

  'Aaron Cure',

  '978-1-847198-90-7'

)

7. Build and run your application. You will see the following web page:

How it works...
The concept behind this recipe is very similar to our session-per-request recipe at the 
beginning of the chapter. We are using NHibernate's contextual sessions with a variation  
of session-per-request.

Before the Index() controller action is executed, ASP.NET MVC will run our filter's 
OnActionExecuting method. In OnActionExecuting, our action filter opens a session 
and binds it to this web request using NHibernate's contextual sessions feature.

Similarly, ASP.NET MVC will run our filter's OnActionExecuted when Index() returns. 
In OnActionExecuted, the filter unbinds the session and closes it. Then, ASP.NET MVC 
processes the action result. In this case, it renders a view to display a list of books.

The Order property of an action filter determines in what order that action filter executes. For 
Executing events, all action filters with an unspecified Order are executed first. Then, those 
with a specific Order are executed, starting with zero, in ascending order. For Executed 
events, the process works in reverse. Essentially, it allows us to stack action filters - last in, 
first out. This provides a determinate order, so we can combine it with session-dependent 
filters with higher Order values.
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There's more...
NHibernate requires an NHibernate transaction around every database interaction, whether 
it be a direct method call on the session or an action that triggers lazy loading. With this 
implementation, it is very difficult to capture lazy loading calls in a transaction. As we will see 
in the next recipe, we can combine the proper use of sessions and transactions in a single 
action filter to allow for lazy loading elsewhere in the controller action.

Be sure an action loads all of the data required by the view. The session is not open anymore 
when the action result (a view, in this case) is rendered.

Because the session has already been closed, if a view attempts to 
access a lazy-loaded collection that wasn't loaded by the controller 
action, you will get a LazyInitializationException.

Even with more lenient implementations, it's not recommended to access the database  
from the view. Views are usually dynamic and difficult to test.

View models
To avoid this issue and many others, many ASP.NET MVC applications use view models. A view 
model class is defined for each view, and contains exactly the data required by that view, and 
nothing more. Think of it as a data transfer object between the controller and the view.

Rather than write pages of plumbing code to copy data from entities to view models, you can 
use an open source project, AutoMapper. When combined with an action filter attribute, this 
process becomes dead simple. A good example of this can be found in Jimmy Bogard's blog 
post at http://www.lostechies.com/blogs/jimmy_bogard/archive/2009/06/29/
how-we-do-mvc-view-models.aspx.

Pay attention to the Order property on the AutoMapper attribute. To allow for lazy loading 
when translating from entities to view models, the Order should be even higher than our 
session attribute. This ensures that the session is open when AutoMapper is translating.

See also
 f Setting up session per web request

 f Creating a transaction ASP.NET MVC action filter

http://www.lostechies.com/blogs/jimmy_bogard/archive/2009/06/29/how-we-do-mvc-view-models.aspx
http://www.lostechies.com/blogs/jimmy_bogard/archive/2009/06/29/how-we-do-mvc-view-models.aspx
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Creating a Transaction ASP.NET MVC 
action filter

We can extend the concepts of the previous recipe to NHibernate transactions as well. In  
this recipe, I'll show you how to create an action filter to manage our NHibernate sessions  
and transactions.

Getting ready
Complete the previous recipe, Creating a Session ASP.NET MVC action filter.

How to do it...
1. Add the NeedsPersistenceAttribute class as shown on the following lines  

of code:
  [AttributeUsage(AttributeTargets.Method,

    AllowMultiple=true)]

  public class NeedsPersistenceAttribute 

    : NHibernateSessionAttribute 

  {

    protected ISession session

    {

      get

      {

        return sessionFactory.GetCurrentSession();

      }

    }

    public override void OnActionExecuting(

      ActionExecutingContext filterContext)

    {

      base.OnActionExecuting(filterContext);

      session.BeginTransaction();

    }

    public override void OnActionExecuted(

      ActionExecutedContext filterContext)

    {

      var tx = session.Transaction;

      if (tx != null && tx.IsActive)
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        session.Transaction.Commit();

      base.OnActionExecuted(filterContext);

    }

  }

2. Decorate your controller actions with the attribute as shown in the following lines  
of code:
[NeedsPersistence]

public ActionResult Index()

{

  return View(DataAccessLayer.GetBooks());

}

3. Update the DataAccessLayer.GetBooks() method to use the following code:
var session = MvcApplication.SessionFactory

  .GetCurrentSession();

var books = session.QueryOver<Eg.Core.Book>()

  .List();

return books;

4. Build and run your application. Again, you will see the following screenshot:

How it works...
Before ASP.NET MVC executes the controller action, our NeedsPersistence action filter 
starts a new session and NHibernate transaction. If everything goes as planned, as soon  
as the action is completed, the filter commits the transaction. If the controller action rolls  
back the transaction, no action is taken.

Notice that we no longer need to use a transaction in our data access layer, as the entire 
controller action is wrapped in a transaction.
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There's more...
This attribute inherits from our session action filter defined in the previous recipe.  
If you're managing your session differently, such as session-per-request, inherit  
from ActionFilterAttribute instead.

Using the Conversation per Business 
Transaction pattern

Another common pattern for session management in desktop applications is Conversation  
per Business Transaction, often abbreviated as CpBT. In this recipe, I'll show you how to use 
the CpBT implementation available from the unofficial NHibernate AddIns project, one of  
many active NHibernate-related open source projects. uNhAddIns was started by NHibernate 
project leader, Fabio Maulo, and is maintained by several well-known NHibernate contributors.

Getting ready
You'll need to download the latest uNhAddIns project binaries from the project website at 
http://code.google.com/p/unhaddins/. Extract those binaries from the ZIP file  
to your solution's Lib folder.

How to do it...
1. Create a new console application named CpBT.

2. Add references to Castle.Core, Castle.Windsor, log4net, NHibernate, 
NHibernate.ByteCode.Castle, uNhAddIns, uNhAddIns.Adapters, 
uNhAddIns.CastleAdapters, and our Eg.Core project from Chapter 1.

3. Add an application configuration file with standard log4net and 
hibernate-configuration sections, just as we did in Chapter 2.

4. In the hibernate-configuration  session-factory element, set current_
session_context_class to uNhAddIns.SessionEasier.Conversations.
ThreadLocalConversationalSessionContext, uNhAddIns

5. Add a new folder named DataAccess.

6. To the DataAccess folder, add an IDao<TEntity> interface with these  
two methods:
TEntity Get(Guid Id);

void Save(TEntity entity);

http://code.google.com/p/unhaddins/
http://code.google.com/p/unhaddins/
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7. Add an implementation of IDao<TEntity> named Dao<TEntity> with this code:
private readonly ISessionFactory _sessionFactory;

public Dao(ISessionFactory sessionFactory)

{

  _sessionFactory = sessionFactory;

}

protected ISession Session

{

  get { return _sessionFactory.GetCurrentSession(); }

}

public TEntity Get(Guid Id)

{

  return Session.Get<TEntity>(Id);

}

public void Save(TEntity entity)

{

  Session.SaveOrUpdate(entity);

}

8. To the CpBT project, add a new folder named ApplicationServices.

9. To the ApplicationServices folder, add an IEditMovieModel interface  
with the following methods:
Movie GetMovie(Guid movieId);

void SaveMovie(Movie movie);

void SaveAll();

void CancelAll();

10. Add an implementation of IEditMovieModel named EditMovieModel  
with this code:
private readonly IDao<Movie> _movieDao;

public EditMovieModel(IDao<Movie> movieDao)

{

  _movieDao = movieDao;

}

public virtual Movie GetMovie(Guid movieId)

{

  return _movieDao.Get(movieId);

}

public virtual void SaveMovie(Movie movie)
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{

  _movieDao.Save(movie);

}

public virtual void SaveAll()

{

}

public virtual void CancelAll()

{

}

11. Add this using statement:  using uNhAddIns.Adapters;

12. Decorate the EditMovieModel class with the following attribute:
[PersistenceConversational

13. Decorate the SaveAll method with the following attribute:
[PersistenceConversation(ConversationEndMode=EndMode.End)]

14. Decorate the CancelAll method with the following attribute:
[PersistenceConversation(ConversationEndMode=EndMode.Abort)]

15. Add a public static class named ContainerProvider, and add the following  
using statements:
using Castle.Facilities.FactorySupport;

using Castle.MicroKernel.Registration;

using Castle.Windsor;

using CpBT.ApplicationServices;

using CpBT.DataAccess;

using NHibernate;

using NHibernate.Engine;

using uNhAddIns.CastleAdapters;

using uNhAddIns.CastleAdapters.AutomaticConversationManagement;

using uNhAddIns.SessionEasier;

using uNhAddIns.SessionEasier.Conversations;

16. To configure Castle Windsor for NHibernate and CpBT, add the following code to 
ContainerProvider:
private static readonly IWindsorContainer _container;

public static IWindsorContainer Container

{

  get

  {

    return _container;

  }
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}

static ContainerProvider()

{

  _container = new WindsorContainer();

  _container

    .AddFacility<PersistenceConversationFacility>();

  _container

    .AddFacility<FactorySupportFacility>();

  _container.Register(

    Component.For<ISessionFactoryProvider>()

    .ImplementedBy<SessionFactoryProvider>());

  _container.Register(

    Component.For<ISessionFactory>()

      .UsingFactoryMethod(

        () => _container

                .Resolve<ISessionFactoryProvider>()

                .GetFactory(null))

    );

  _container.Register(

    Component.For<ISessionWrapper>()

    .ImplementedBy<SessionWrapper>());

  _container.Register(

    Component.For<IConversationFactory>()

    .ImplementedBy<DefaultConversationFactory>());

  _container.Register(

    Component.For<IConversationsContainerAccessor>()

    .ImplementedBy<NhConversationsContainerAccessor>());

  _container.Register(

    Component.For(typeof(IDao<>))

      .ImplementedBy(typeof(Dao<>)));

  _container.Register(

    Component.For<IEditMovieModel>()

      .ImplementedBy<EditMovieModel>()

      .LifeStyle.Transient);

}
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17. Add the CreateMovie method to the Program class:
static Movie CreateNewMovie()

{

  return new Movie()

  {

  Name = "Hackers",

  Description = "Bad",

  UnitPrice = 12.59M,

  Director = "Iain Softley",

  Actors = new List<ActorRole>()

  {

    new ActorRole() 

    { 

    Actor = "Jonny Lee Miller", 

    Role="Zero Cool"

    },

    new ActorRole() 

    { 

    Actor = "Angelina Jolie", 

    Role="Acid Burn"

    }

  }

  };

}

18. Finally, add the following code to your main method:
log4net.Config.XmlConfigurator.Configure();

var container = ContainerProvider.Container;

Movie movie = CreateNewMovie();

Guid movieId;

var model = container.GetService<IEditMovieModel>();

model.SaveMovie(movie);

movieId = movie.Id;

model.SaveAll();

movie = null;

movie = model.GetMovie(movieId);

movie.Description = "Greatest Movie Ever";

model.CancelAll();

movie = null;
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How it works...
Conversation per Business Transaction (CpBT) introduces the idea of a long-running unit  
of work with multiple transactions. A single session is held open, perhaps allowing the user 
several opportunities to interact with the application. Within that session, we may open and 
commit several transactions, while waiting to save the entire set of changes on the final 
commit. A typical NHibernate application uses FlushMode.Commit, which means that 
the unit of work is persisted when the transaction is committed. CpBT uses FlushMode.
Never, which means that the unit of work is not automatically persisted when a transaction 
is committed. Instead, CpBT will explicitly call session.Flush() to persist the unit of work 
when the conversation has ended.

In a typical use of CpBT, we have a class representing a business transaction, or unit of work, 
and encapsulating the associated business logic. Each instance serves as a context for our 
conversation with the database. The conversation can be started, paused, resumed, and 
either ended or aborted, as shown in this image:

The following five conversation actions each handle distinct tasks in our persistent 
conversation:

 f Start aborts any previous active conversation in this context, then begins a new 
session and transaction.

 f Resume first starts a conversation if one doesn't already exist in this context,  
and then starts a new transaction.

 f Pause commits the transaction. Because CpBT uses FlushMode.Never, the unit  
of work continues and no changes are persisted.

 f End flushes the changes to the database, commits the final transaction, and closes 
the session.

 f Abort rolls back the transaction and disposes the session.
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In this implementation of CpBT, resume is implied at the beginning of each method,  
as is pause at the end of each method not decorated with end or abort. This automatic 
CpBT handling is accomplished with the PersistentConversationFacility set up 
in the ContainerProvider. If Castle would normally return a class decorated with a 
PersistenceConversational attribute, it will instead return a proxy object. This proxy 
object handles all of the CpBT actions for us. Thanks to this powerful bit of aspect-oriented 
programming, we can simply call our business logic methods normally without caring much  
for the session or transactions. Aspect-oriented programming allows us to separate these 
cross-cutting concerns, such as session and transaction management, from our true business 
logic. More information about aspect-oriented programming can be found on Wikipedia at 
http://en.wikipedia.org/wiki/Aspect-oriented_programming.

In our main method, we have two conversations. The first begins when we save our new 
instance of the movie Hackers with a call to SaveMovie. The SaveMovie method is wrapped 
in a transaction. This transaction is automatically committed at the end of the method when the 
conversation is implicitly paused. However, because CpBT uses FlushMode.Never, the movie 
was only associated with the session, not written to the database. This transaction is only used 
to meet NHibernate's requirement regarding transaction usage. It does not persist the unit of 
work. When we call the SaveAll method, the conversation is resumed and another transaction 
is started. Because this method is decorated with EndMode.End, when the method ends, CpBT 
explicitly calls session.Flush(). The unit of work containing the insert of our new Hackers 
movie is persisted to the database, and finally the transaction is committed.

Because our current conversation just ended, the next conversation begins with the call to 
GetMovie. A new session and transaction are started, and the Hackers movie is fetched 
from the database using the movie's ID. When GetMovie ends, the transaction is committed 
without persisting our (currently empty) unit of work. We then change the movie's description to 
"Greatest Movie Ever". However, we quickly change our minds and call CancelAll. When we 
call CancelAll, we abort the session, abandoning our changes to the movie's description.

There's more...
When relying on FlushMode.Never and explicit flushing of the session as we are with CpBT, 
choose an identity generator that does not require data to be inserted in the database in 
order for a persistent object identifier (POID) to be generated. The POID generator identity 
on all RDBMS, as well as native when running on Microsoft SQL Server, will cause your data 
to be flushed early in the conversation in order to generate an ID value, breaking the unit of 
work. If you were to abort this conversation, those database changes would not be undone.

uNhAddIns also includes CpBT implementations for the Spring framework, and the PostSharp 
tool, or with a solid understanding of aspect oriented programming, you can write your own.

See also
 f Setting up session per presenter

 f Using the Burrows framework

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://en.wikipedia.org/wiki/Aspect-oriented_programming
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Using session.Merge
session.Merge is perhaps one of the most misunderstood features in NHibernate. In this 
recipe, I'll show you how to use session.Merge to associate a dirty, detached entity with a new 
session. This is particularly handy when recovering from StaleObjectStateExceptions.

Getting ready

Using our Eg.Core model from Chapter 1 and the Configuring NHibernate with App.config 
recipe from Chapter 2, set up a console application.

How to do it...
1. Add the following code to your Main method:

var book = CreateAndSaveBook(sessionFactory);

book.Name = "Dormice in Action";

book.Description = "Hibernation of the Hazel Dormouse";

book.UnitPrice = 0.83M;

book.ISBN = "0123";

using (var session = sessionFactory.OpenSession())

{

  using (var tx = session.BeginTransaction())

  {

    var mergedBook = (Book) session.Merge(book);

    tx.Commit();

    // Returns false

    ReferenceEquals(book, mergedBook);

  }

}

2. Add the CreateAndSaveBook method:
private static Book CreateAndSaveBook(

  ISessionFactory sessionFactory)

{

  var book = new Book()

  {

    Name = "NHibernate 3.0 Cookbook",

    Description = "Pure Awesome.",

    UnitPrice = 50.0M,

    ISBN = "3043",
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    Author = "Jason Dentler",

  };

  using (var session = sessionFactory.OpenSession())

  {

    using (var tx = session.BeginTransaction())

    {

      session.Save(book);

      tx.Commit();

      session.Evict(book);

    }

  }

  return book;

}

How it works...
In CreateAndSaveBook, we create a book and save it to the database. We commit our 
transaction, evict the book from session, close the session, and return the book. This sets up 
our problem. We now have an entity without a session. Changes to this entity are not being 
tracked. It's just a plain ordinary book object.

We continue to change the book object, and now we want to save those changes. NHibernate 
doesn't know what we've done to this book. It could have been passed through other layers or 
tiers of a large application. We don't know with which session it's associated, if any. We may 
not even know if the book exists in the database. 

Session.Merge handles all of this uncertainty for us. If the current session has a book with 
this ID, data from our book is copied on to the persistent book object in the session, and the 
persistent book object is returned.

If the current session doesn't have a book with this ID, NHibernate loads it from the database. 
The changes are copied on to the persistent book object that was just loaded in to the 
session. The persistent book object is returned.

If NHibernate didn't find a book with that ID in the database, it copies data from our book 
object on to a new persistent book associated with the session, and returns the new 
persistent book object.

The end result of session.Merge is the same. The book it returns is not the same instance 
we passed in, but it contains all of our changes and is associated with the current session. 
When we commit our transaction, those changes are written to the database.

The book we passed in is not associated with the current session.
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See also
 f Using session.Refresh

Using session.Refresh
Especially in desktop applications, it may be necessary to reload an entity to reflect recent 
changes made in a different session. In this recipe, we'll use session.Refresh to refresh 
an entity's data as it is being manipulated by two sessions.

Getting ready

Following Configuring NHibernate with App.config from Chapter 2, setup a console application 
for NHibernate with our Eg.Core model from Chapter 1.

How to do it...
1. Add the following code to your Main method.

var sessionA = sessionFactory.OpenSession();

var sessionB = sessionFactory.OpenSession();

Guid productId;

Product productA;

Product productB;

productA = new Product()

{

  Name = "Lawn Chair",

  Description = "Lime Green, Comfortable",

  UnitPrice = 10.00M

};

using (var tx = sessionA.BeginTransaction())

{

  Console.WriteLine("Saving product.");

  productId = (Guid) sessionA.Save(productA);

  tx.Commit();

}

using (var tx = sessionB.BeginTransaction())

{

  Console.WriteLine("Changing price.");

  productB = sessionB.Get<Product>(productId);
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  productB.UnitPrice = 15.00M;

  tx.Commit();

}

using (var tx = sessionA.BeginTransaction())

{

  Console.WriteLine("Price was {0:c}",

    productA.UnitPrice);

  sessionA.Refresh(productA);

  Console.WriteLine("Price is {0:c}", 

    productA.UnitPrice);

  tx.Commit();

}

sessionA.Close();

sessionB.Close();

Console.ReadKey();

2. Run your application. You will see the following output:

How it works...
In this contrived example, we open two sessions and manipulate two instances of the same 
entity. In session A, we save a newly created product – a $10 lime green lawn chair. Then  
in session B, we get the very same lawn chair. We now have two instances of the same 
entity. One is associated with session A and the other with session B.

We change the price of session B's lawn chair to $15. Notice that we don't call any method 
to save or update the database. Because session B loaded the lawn chair, it is tracking 
the changes and will automatically update the database when the session is flushed. This 
happens automatically when we commit the transaction. This is called automatic dirty 
checking. Session A's instance of lawn chair is still priced at $10.

When we call sessionA.Refresh, NHibernate will update session A's lawn chair with  
fresh data from the database. Now session A's lawn chair shows the new $15 price.
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There's more...
session.Refresh is especially important in desktop applications, where we may have 
several sessions running simultaneously to handle multiple databound forms, and we want 
our saved changes on one form to be reflected immediately on another form displaying the 
same entity.

In this scenario, you will most likely set up some sort of message publishing between forms 
so that saving an entity on one form broadcasts an "I saved this entity" message to other 
forms displaying the same entity. When a form receives such a message, it calls session.
Refresh to get the new data.

See also
 f Setting up session per presenter

Using stateless sessions
When processing large amounts of data, you can usually improve performance by using  
an API that's closer to the "bare metal", often times trading off some higher-level features  
in the process. In NHibernate, this high performance, low-level API is the stateless session.

In this recipe, we'll use a stateless session to update our movie prices.

Getting ready

Just as before, follow Configuring NHibernate with App.config from Chapter 2 to set up  
a console application with NHibernate and our Eg.Core model.

How to do it...
1. To create some data with which to work, add the following code to your Main method:

using (var session = sessionFactory.OpenStatelessSession())

{

  using (var tx = session.BeginTransaction())

  {

    for (int i = 0; i < 1000; i++)

    session.Insert(new Movie()

    {

      Name = "Movie " + i.ToString(),

      Description = "A great movie!",

      UnitPrice = 14.95M,
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      Director = "Johnny Smith"

    });

    tx.Commit();

  }

}

2. Next, let's update our movie prices. Add the following code to the Main method:
using (var session = sessionFactory.OpenStatelessSession())

{

  using (var tx = session.BeginTransaction())

  {

  var movies = GetMovies(session);

  foreach (var movie in movies)

  {

    UpdateMoviePrice(movie);

    session.Update(movie);

  }

  tx.Commit();

  }

}

3. Add the GetMovies method:
static IEnumerable<Movie> GetMovies(IStatelessSession session)

{

  return session.CreateQuery("from Movie")

  .List<Movie>();

}

4. Finally, add our UpdateMoviePrice method:
static Random rnd = new Random();

static void UpdateMoviePrice(Movie movie)

{

  // Random price between $9.95 and $24.95

  movie.UnitPrice = (decimal) rnd.Next(10, 26) - 0.05M;

}
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How it works...
Using a stateless session, we create 1000 movies. Stateless sessions don't implement 
transactional write-behind, meaning that the SQL statements are not delayed until we 
commit the transaction. However, because we have batching turned on, they don't happen 
immediately either. 100 insert statements are queued up at a time and sent all together. 
If we turned batching off, these would be sent one at a time immediately with each call to 
session.Insert.

Next, we fetch all of our movies from the database with a query. These movies are detached; 
they are not associated with a session. Entities can't be associated with stateless sessions. 
This is the case whether we load our entities with a query or the Get method.

Because stateless sessions don't implement automatic dirty checking, we have to call 
session.Update to save our changes to each movie.

There's more...
A stateless session is essentially a stripped-down version of a standard NHibernate session. 
It doesn't use a first level cache or perform automatic dirty checking, and it doesn't support 
lazy loading. In fact, it doesn't even keep references to entities, which helps avoid memory 
leaks when processing thousands of entities. Cascading is ignored. You must explicitly insert, 
update, or delete each entity one at a time. Stateless sessions also bypass the second-level 
cache, event listeners, interceptors, and even the NHibernate.SQL log4net logger.

Despite these limitations, stateless sessions are very useful in high performance batch 
processing situations where you need to work with real objects. When you can work with 
the raw data, there are usually better alternatives like plain old SQL, HQL bulk actions, 
SqlBulkCopy, or ETL tools. For the plain old SQL route, simple access the ADO.NET 
connection object from session.Connection and write your ADO.NET code as  
you normally would.

Using dictionaries as entities
A little-known feature of NHibernate is EntityMode.Map. In this recipe, I'll show you how  
we can use this feature to persist entities without classes.

Getting ready
Set up a new console project for NHibernate by following these steps:

1. Create a new console project.

2. Add references to NHibernate.dll and NHibernate.ByteCode.Castle.dll.
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3. Add the following code to your main function:
var nhConfig = new Configuration().Configure();

var sessionFactory = nhConfig.BuildSessionFactory();

4. Add an App.config file to your project.
5. Inside the configuration element, declare a hibernate-configuration 

section, as shown:
<configSections>

  <section name="hibernate-configuration"

           type="NHibernate.Cfg.ConfigurationSectionHandler, 
NHibernate"/>

</configSections>

6. Inside the configuration element, add a connection string named db as shown:
<connectionStrings>

    <add name="db" connectionString="Server=.\SQLExpress; 
Database=NHCookbook; Trusted_Connection=SSPI"/>

  </connectionStrings>

7. Add the hibernate-configuration section with the following configuration:
<hibernate-configuration

xmlns="urn:nhibernate-configuration-2.2">

<session-factory>

  <property name="proxyfactory.factory_class">

  NHibernate.ByteCode.Castle.ProxyFactoryFactory,

  NHibernate.ByteCode.Castle

  </property>

  <property name="dialect">

  NHibernate.Dialect.MsSql2008Dialect,

  NHibernate

  </property>

  <property name="connection.connection_string_name">

  db

  </property>

  <property name="adonet.batch_size">

  100

  </property>

  <mapping assembly="yourAssemblyHere"/>

</session-factory>

</hibernate-configuration>

8. Set the mapping assembly value to the name of your project.
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How to do it...
1. In your hibernate-configuration session-factory element, add a 

default_entity_mode property with the value dynamic-map.

2. Create a new Product.hbm.xml mapping file with this mapping:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">

  <class entity-name="Product" 

         discriminator-value="Eg.Core.Product">

    <id name="Id" type="Guid">

      <generator class="guid.comb" />

    </id>

    <discriminator column="ProductType" type="String" />

    <natural-id mutable="true">

      <property name="Name" not-null="true" 

                type="String" />

    </natural-id>

    <version name="Version" type="Int32"/>

    <property name="Description" type="String" />

    <property name="UnitPrice" not-null="true" 

              type="Currency" />

  </class>

</hibernate-mapping>

3. Again, create a mapping file named Movie.hbm.xml with the following mapping:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">

  <subclass entity-name="Movie" extends="Product" 

            discriminator-value="Eg.Core.Movie">

    <property name="Director" type="String" />

    <list name="Actors" cascade="all-delete-orphan">

      <key column="MovieId" />

      <index column="ActorIndex" />

      <one-to-many entity-name="ActorRole"/>

    </list>

  </subclass>

</hibernate-mapping>

4. Finally, create a mapping file named ActorRole.hbm.xml with the following mapping:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">

  <class entity-name="ActorRole">
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    <id name="Id" type="Guid">

      <generator class="guid.comb" />

    </id>

    <version name="Version" type="Int32" />

    <property name="Actor" type="String" 

              not-null="true" />

    <property name="Role" type="String" 

              not-null="true" />

  </class>

</hibernate-mapping>

5. Don't forget to set your mapping files as embedded resources.

6. In main, after building the session factory, create a movie object as a dictionary  
using the following code:
var movieActors = new List<Dictionary<string, object>>()

{

  new Dictionary<string, object>() {

  {"Actor","Keanu Reeves"},

  {"Role","Neo"}

  },

  new Dictionary<string, object>() {

  {"Actor", "Carrie-Ann Moss"},

  {"Role", "Trinity"}

  }

};

var movie = new Dictionary<string, object>()

{

  {"Name", "The Matrix"},

  {"Description", "Sci-Fi Action film"},

  {"UnitPrice", 18.99M},

  {"Director", "Wachowski Brothers"},

  {"Actors", movieActors}

};

7. After building the movie dictionary, save it using the following code:
using (var session = sessionFactory.OpenSession())

{

  using (var tx = session.BeginTransaction())

  {

  session.Save("Movie", movie);

  tx.Commit();

  }

}
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8. Build and run your application.

9. Check your database's Product and ActorRole tables.

How it works...
EntityMode.Map allows us to define our entities as dictionaries instead of statically typed 
objects. There are three key pieces to this approach.

First, instead of creating sessions using the default EntityMode.Poco where NHibernate 
expects us to interact with it using plain old class objects, we've told NHibernate to use 
EntityMode.Map by setting default_entity_mode to dynamic-map. Remember from 
Chapter 1 that, because of NHibernate's Java roots, NHibernate uses the term map in place 
of dictionary.

Next, we've made some slight changes to our mappings. First, you'll notice that we've set an 
entity-name instead of a class name. This allows us to specify an entity by name, instead 
of allowing NHibernate to decide based on the type of object we pass in. Next, you'll notice 
we specify types for all of our properties. We don't have classes that NHibernate can reflect 
to guess our data types. We have to tell it. Finally, we specify discriminator values. You'll 
remember from Chapter 2 that the default discriminator value is the type's FullName. The 
default discriminator is actually the entity-name, which defaults to the type's FullName. In 
this case, we don't have a type, and if we used our entity-names, the data wouldn't match our 
normal mappings. We override the values simply so the data will match perfectly with the data 
from our other recipes.

Finally, we interact with the session using dictionaries (maps) and entity-name strings instead 
of objects with types.

There's more...
While this example may seem a bit academic, with the release of the Dynamic Language 
Runtime and the new dynamic feature of C# 4, this type of scenario will undoubtedly prove 
useful in bridging the gap between NHibernate and the dynamic language world.

Partially dynamic
It's rarely desirable to use EntityMode.Map throughout your application, as shown in this 
recipe. Instead, you may want to use it only in a specific case, where you would rather not 
create matching classes. In this scenario, we would not set the default_entity_mode 
property, and would instead open a child session in map mode. The code to accomplish this  
is as follows:

using (var pocoSession = sessionFactory.OpenSession())
{
  using (var childSession =
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  pocoSession.GetSession(EntityMode.Map))

  {
    // Do something here
  }
}

Using NHibernate with TransactionScope
Reliable integration with other systems is a common business requirement. When these 
systems report error conditions, it's necessary to roll back not only the local database work, 
but perhaps the work of multiple transactional resources. In this recipe, I'll show you how to 
use Microsoft's TransactionScope and NHibernate to achieve this goal.

Getting ready
Create a new console application project.

Add references to the Eg.Core project in Chapter 1, NHibernate.dll, and NHibernate.
ByteCode.Castle.dll.

Get the console application ready by following the Configuring NHibernate with App.config  
and Configuring log4net recipes in Chapter 2.

How to do it...
1. Add a reference to System.Transaction.

2. Add a public interface named IReceiveProductUpdates with the following  
three methods:
void Add(Product product);

void Update(Product product);

void Remove(Product product);

3. Add a public class named WarehouseFacade with this code:
public class WarehouseFacade : IReceiveProductUpdates

{

  public void Add(Product product)

  {

    Console.WriteLine("Adding {0} to warehouse system.",

                product.Name);

  }

  public void Update(Product product)

  {
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    Console.WriteLine("Updating {0} in warehouse system.",

                      product.Name);

  }

  public void Remove(Product product)

  {

    Console.WriteLine("Removing {0} from warehouse system.",

                      product.Name);

    var message = string.Format(

      "Warehouse still has inventory of {0}.",

      product.Name);

    throw new ApplicationException(message);

  }

}

4. Add a public class named ProductCatalog with this code:
public class ProductCatalog : IReceiveProductUpdates

{

  private readonly ISessionFactory _sessionFactory;

  public ProductCatalog(ISessionFactory sessionFactory)

  {

    _sessionFactory = sessionFactory;

  }

  public void Add(Product product)

  {

    Console.WriteLine("Adding {0} to product catalog.",

                      product.Name);

    using (var session = _sessionFactory.OpenSession())

    using (var tx = session.BeginTransaction())

    {

      session.Save(product);

      tx.Commit();

    }

  }

  public void Update(Product product)

  {

    Console.WriteLine("Updating {0} in product catalog.",

                      product.Name);

    using (var session = _sessionFactory.OpenSession())

    using (var tx = session.BeginTransaction())
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    {

      session.Update(product);

      tx.Commit();

    }

  }

  public void Remove(Product product)

  {

    Console.WriteLine("Removing {0} from product catalog.",

                      product.Name);

    using (var session = _sessionFactory.OpenSession())

    using (var tx = session.BeginTransaction())

    {

      session.Delete(product);

      tx.Commit();

    }

  }

}

5. Update the Program class with the following code:
class Program

{

  static void Main(string[] args)

  {

    var nhConfig = new Configuration()

      .Configure();

    var sessionFactory = nhConfig

      .BuildSessionFactory();

    var catalog = new ProductCatalog(sessionFactory);

    var warehouse = new WarehouseFacade();

    var p = new Program(catalog, warehouse);

    var sprockets = new Product()

                     {

                       Name = "Sprockets",

                       Description = "12 pack, metal",

                       UnitPrice = 14.99M

                     };

    p.AddProduct(sprockets);

    sprockets.UnitPrice = 9.99M;
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    p.UpdateProduct(sprockets);

    p.RemoveProduct(sprockets);

    Console.WriteLine("Press any key.");

    Console.ReadKey();

  }

  private readonly IReceiveProductUpdates[] _services;

  public Program(params IReceiveProductUpdates[] services)

  {

    _services = services;

  }

  private void AddProduct(Product newProduct)

  {

    Console.WriteLine("Adding {0}.", newProduct.Name);

    try

    {

      using (var scope = new TransactionScope())

      {

        foreach (var service in _services)

          service.Add(newProduct);

        scope.Complete();

      }

    }

    catch (Exception ex)

    {

      Console.WriteLine("Product could not be added.");

      Console.WriteLine(ex.Message);

    }

  }

  private void UpdateProduct(Product changedProduct)

  {

    Console.WriteLine("Updating {0}.",

                      changedProduct.Name);

    try

    {

      using (var scope = new TransactionScope())

      {

        foreach (var service in _services)

          service.Update(changedProduct);
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        scope.Complete();

      }

    }

    catch (Exception ex)

    {

      Console.WriteLine("Product could not be updated.");

      Console.WriteLine(ex.Message);

    }

  }

  private void RemoveProduct(Product oldProduct)

  {

    Console.WriteLine("Removing {0}.",

                      oldProduct.Name);

    try

    {

      using (var scope = new TransactionScope())

      {

        foreach (var service in _services)

          service.Remove(oldProduct);

        scope.Complete();

      }

    }

    catch (Exception ex)

    {

      Console.WriteLine("Product could not be removed.");

      Console.WriteLine(ex.Message);

    }

  }

}



Chapter 3

117

6. Build and run your application. You should see this output:

7. Check the NHCookbook database. You should find a Product row for Sprockets  
with a unit price of $9.99.

How it works...
In this recipe, we work with two services that receive product updates. The first, a product 
catalog, uses NHibernate to store product data. The second, a small facade, is not as  
well-defined. It could use a number of different technologies to integrate our application  
with the larger warehouse system it represents.

Our services allow us to add, update, and remove products in these two systems. By wrapping 
these changes in a TransactionScope, we gain the ability to roll back the product catalog 
changes if the warehouse system fails, maintaining a consistent state.

Remember that NHibernate requires an NHibernate transaction when interacting with 
the database. TransactionScope is not a substitute. As illustrated in the next image, 
the TransactionScope should completely surround both the session and NHibernate 
transaction. The call to TransactionScope.Complete() should occur after the session 
has been disposed. Any other order will most likely lead to nasty, production crashing bugs 
like connection leaks.
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When we attempt to remove a product, our WarehouseFacade throws an exception, and 
things get a little strange. We committed the NHibernate transaction, so why didn't our 
delete happen? It did, but it was rolled back by the TransactionScope. When we started 
our NHibernate transaction, NHibernate detected the ambient transaction created by the 
TransactionScope and enlisted. The underlying connection and database transaction  
were held until the TransactionScope committed, or in this case, rolled back.

See also
 f Creating a session ASP.NET MVC action filter

 f Creating a transaction ASP.NET MVC action filter



4
Queries

In this chapter, we will cover the following topics:

 f Using CriteriaQueries

 f Using QueryOver

 f Using QueryOver projections and aggregates

 f Using MultiCriteria

 f Using the Hibernate Query Language

 f Using MultiQuery

 f Using Named Queries

 f Using Futures

 f Eager loading child collections

 f Using LINQ to NHibernate

 f Using Detached Queries

 f Using HQL for bulk data changes

Introduction
All but the last two recipes in this chapter begin with the following common steps. In addition 
to the normal process of mapping our model and configuring log4net and NHibernate, this 
also takes care of the necessary but repetitive plumbing code.

1. Complete the Eg.Core model and mapping project from Chapter 1.

2. Add a new console application to your solution.

3. Add an App.config file.
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4. In App.config, configure NHibernate and log4net following the Configuring 
NHibenate with App.config and Configuring NHibernate Logging recipes in Chapter 2.

5. Create a new class called ExampleDataCreator with the following code:
public class ExampleDataCreator

{

  private readonly ISessionFactory _sessionFactory;

  public ExampleDataCreator(

    ISessionFactory sessionFactory)

  {

    if (sessionFactory == null) 

      throw new ArgumentNullException("sessionFactory");

    _sessionFactory = sessionFactory;

  }

  public void SetUpDatabase()

  {

    using (var session = _sessionFactory.OpenSession())

    using (var tx = session.BeginTransaction())

    {

      ClearDatabase(session);

      CreateMovies(session);

      CreateBook(session);

      tx.Commit();

    }

  }

  private static void ClearDatabase(ISession session)

  {

    session

      .CreateQuery("delete from ActorRole")

      .ExecuteUpdate();

    session

      .CreateQuery("delete from Product")

      .ExecuteUpdate();

  }

  private static void CreateMovies(ISession session)

  {

    session.Save(

      new Movie()

        {
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          Name = "Raiders of the Lost Ark",

          Description = "Awesome",

          UnitPrice = 9.59M,

          Director = "Steven Spielberg",

          Actors = new List<ActorRole>()

                     {

                       new ActorRole()

                         {

                           Actor = "Harrison Ford",

                           Role = "Indiana Jones"

                         }

                     }

        });

    session.Save(

      new Movie()

        {

          Name = "The Bucket List",

          Description = "Good",

          UnitPrice = 15M,

          Director = "Rob Reiner",

          Actors = new List<ActorRole>()

                     {

                       new ActorRole()

                         {

                           Actor = "Jack Nicholson",

                           Role = "Edward Cole"

                         },

                       new ActorRole()

                         {

                           Actor = "Morgan Freeman",

                           Role = "Carter Chambers"

                         }

                     }

        });

  }

  private static void CreateBook(ISession session)

  {

    session.Save(

      new Book()

        {
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          Name = "NHibernate 3.0 Cookbook",

          Description = "NHibernate examples",

          UnitPrice = 50M,

          Author = "Jason Dentler",

          ISBN = "978-1-849513-04-3"

        });

  }

}

6. Create another class called NameAndPrice with the following code:
public class NameAndPrice

{

  public NameAndPrice()

  {

  }

  public NameAndPrice(string name, decimal price)

  {

    Name = name;

    Price = price;

  }

  public string Name { get; set; }

  public decimal Price { get; set; }

}

7. Create a new class called Queries with this code:
public class Queries

{

  private readonly ISession _session;

  public Queries(ISession session)

  {

    if (session == null) 

      throw new ArgumentNullException("session");

    _session = session;

  }

}

8. In Program.cs, add the following methods to the Program class:
static void RunQueries(ISession session)

{
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}

static void Show(string heading,

             IEnumerable<Movie> movies)

{

  Console.WriteLine(heading);

  foreach (var m in movies)

    ShowMovie(m);

  Console.WriteLine();

}

static void Show(string heading, Book book)

{

  Console.WriteLine(heading);

  ShowBook(book);

  Console.WriteLine();

}

static void Show(string heading,

                 IEnumerable<Product> products)

{

  Console.WriteLine(heading);

  foreach (var p in products)

  {

    if (p is Movie)

    {

      ShowMovie((Movie)p);

    }

    else if (p is Book)

    {

      ShowBook((Book)p);

    }

    else

      ShowProduct(p);

  }

  Console.WriteLine();

}

static void Show(string heading,

                 decimal moneyValue)

{

  Console.WriteLine(heading);

  Console.WriteLine("{0:c}", moneyValue);
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  Console.WriteLine();

}

static void Show(string heading,

                 IEnumerable<NameAndPrice> results)

{

  Console.WriteLine(heading);

  foreach (var item in results)

    ShowNameAndPrice(item);

  Console.WriteLine();

}

static void ShowNameAndPrice(NameAndPrice item)

{

  Console.WriteLine("{0:c} {1}",

                    item.Price, item.Name);

}

static void ShowProduct(Product p)

{

  Console.WriteLine("{0:c} {1}",

                    p.UnitPrice, p.Name);

}

static void ShowBook(Book b)

{

  Console.WriteLine("{0:c} {1} (ISBN {2})",

    b.UnitPrice, b.Name, b.ISBN);

}

static void ShowMovie(Movie movie)

{

  var star = movie.Actors

    .Select(actorRole => actorRole.Actor)

    .FirstOrDefault();

  Console.WriteLine("{0:c} {1} starring {2}",

    movie.UnitPrice, movie.Name, star ?? "nobody");

}

9. Add the following code in the Main method:
log4net.Config.XmlConfigurator.Configure();

var nhConfig = new Configuration().Configure();

var sessionFactory = nhConfig.BuildSessionFactory();
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new ExampleDataCreator(sessionFactory)

  .SetUpDatabase();

using (var session = sessionFactory.OpenSession())

using (var tx = session.BeginTransaction())

{

  RunQueries(session);

  tx.Commit();

}

Console.WriteLine("Press any key");

Console.ReadKey();

The SQL queries shown in this chapter, and in fact, throughout the book, 
are specific to the Microsoft SQL Server 2008 dialect. If you use a different 
dialect and RDBMS, the SQL queries resulting from these examples may be 
slightly different.

Using Criteria Queries
In the last chapter, we fetched our entities by their ID. In this recipe, I'll show you a few basic 
criteria queries to fetch entities by other properties.

How to do it...
1. Complete the setup steps in the introduction at the beginning of this chapter.

2. In the Queries class, add the following method:
public IEnumerable<Movie> GetMoviesDirectedBy(string directorName)

{

  return _session.CreateCriteria<Movie>()

    .Add(Restrictions.Eq("Director", directorName))

    .List<Movie>();

}

3. In the Queries class, add the following method to query for movies by actor name:
public IEnumerable<Movie> GetMoviesWith(string actorName)

{

  return _session.CreateCriteria<Movie>()

    .CreateCriteria("Actors", JoinType.InnerJoin)

    .Add(Restrictions.Eq("Actor", actorName))

    .List<Movie>();

}
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4. To query for a book by its ISBN, add the following method:
public Book GetBookByISBN(string isbn)

{

  return _session.CreateCriteria<Book>()

    .Add(Restrictions.Eq("ISBN", isbn))

    .UniqueResult<Book>();

}

5. Add the following method to find all the products in a price range:
public IEnumerable<Product> GetProductByPrice(

  decimal minPrice,

  decimal maxPrice)

{

  return _session.CreateCriteria<Product>()

    .Add(Restrictions.And(

      Restrictions.Ge("UnitPrice", minPrice),

      Restrictions.Le("UnitPrice", maxPrice)

           ))

    .AddOrder(Order.Asc("UnitPrice"))

    .List<Product>();

}

6. In Program.cs, use the following code for the RunQueries method:
static void RunQueries(ISession session)

{

  var queries = new Queries(session);

  Show("Movies directed by Spielberg:",

    queries.GetMoviesDirectedBy(

    "Steven Spielberg"));

  Show("Movies with Morgan Freeman:", 

    queries.GetMoviesWith(

    "Morgan Freeman"));

  Show("This book:",

    queries.GetBookByISBN(

    "978-1-849513-04-3"));

  Show("Cheap products:", 

    queries.GetProductByPrice(0M, 15M));

}
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7. Build and run your application. You should see the following output:

How it works...
Let's work through each of these four queries individually.

 f GetMoviesDirectedBy query
_session.CreateCriteria<Movie>()

        .Add(Restrictions.Eq("Director", directorName))

        .List<Movie>();

In the above code, we use session.CreateCriteria to get an ICriteria 
object. Our generic parameter, Movie, tells NHibernate that we're going to query on 
movies. In the second line, we restrict the movies to only those directed by Steven 
Spielberg. Finally, we call the List method, which executes the query and returns 
our Steven Spielberg movies. Because of the generic parameter Movie, NHibernate 
returns a strongly typed IList<Movie> instead of an IList.

In Microsoft SQL Server, this results in the following SQL query:

SELECT   this_.Id          as Id1_0_,

         this_.Name        as Name1_0_,

         this_.Description as Descript4_1_0_,

         this_.UnitPrice   as UnitPrice1_0_,

         this_.Director    as Director1_0_

FROM     Product this_

WHERE    this_.ProductType = 'Eg.Core.Movie'

         AND this_.Director = 'Steven Spielberg' /* @p0 */



Queries

128

 f GetMoviesWith query
_session.CreateCriteria<Movie>()

        .CreateCriteria("Actors", JoinType.InnerJoin)

        .Add(Restrictions.Eq("Actor", actorName))

        .List<Movie>();

We are again querying movies, but in this example, we are querying based on a child 
collection. We want all of Morgan Freeman's movies. In terms of our model, we want 
to return all of the Movies with an associated ActorRole object where the Actor 
property equals the string 'Morgan Freeman'.

The second line sets up an inner join between Movies and ActorRoles based on 
the contents of a Movie's Actors collection. Remember from SQL that an inner join 
only returns the rows with a match. CreateCriteria also changes the context of 
the query from Movie to ActorRole. This allows us to filter our ActorRoles further 
on the third line.

On the third line, we simply filter the ActorRole objects down to only Morgan 
Freeman's roles. Because of the inner join, this also filters the Movies. Finally,  
we execute the query and get the results with a call to List<Movie>.

Here is the resulting SQL query in Microsoft SQL Server:

SELECT this_.Id            as Id1_1_,

       this_.Version       as Version1_1_,

       this_.Name          as Name1_1_,

       this_.Description   as Descript5_1_1_,

       this_.UnitPrice     as UnitPrice1_1_,

       this_.Director      as Director1_1_,

       actorrole1_.Id      as Id0_0_,

       actorrole1_.Version as Version0_0_,

       actorrole1_.Actor   as Actor0_0_,

       actorrole1_.Role    as Role0_0_

FROM   Product this_

       inner join ActorRole actorrole1_

         on this_.Id = actorrole1_.MovieId

WHERE  this_.ProductType = 'Eg.Core.Movie'

       AND actorrole1_.Actor = 'Morgan Freeman' /* @p0 */

 f GetBookByISBN query
_session.CreateCriteria<Book>()

        .Add(Restrictions.Eq("ISBN", isbn))

        .UniqueResult<Book>();
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In this criteria query, we're searching for a particular book by its ISBN. Because we 
use UniqueResult<Book> instead of List<Book>, NHibernate returns a single 
Book object, or null if it's not found. This query assumes ISBN is unique.

We get this simple SQL query:

SELECT this_.Id          as Id1_0_,

       this_.Name        as Name1_0_,

       this_.Description as Descript4_1_0_,

       this_.UnitPrice   as UnitPrice1_0_,

       this_.Author      as Author1_0_,

       this_.ISBN        as ISBN1_0_

FROM   Product this_

WHERE  this_.ProductType = 'Eg.Core.Book'

       AND this_.ISBN = '3043' /* @p0 */

 f GetProductByPrice query
_session.CreateCriteria<Product>()

        .Add(Restrictions.And(

          Restrictions.Ge("UnitPrice", minPrice),

          Restrictions.Le("UnitPrice", maxPrice)

               ))

        .AddOrder(Order.Asc("UnitPrice"))

        .List<Product>()

With this criteria query, we combine a greater than or equal to operation and a less 
than or equal to operation using an And operation to return products priced between 
two values. The And restriction takes two child restrictions as parameters.

We could also use the Between restriction to create an equivalent criteria query  
like this:

.Add(Restrictions.Between("UnitPrice", minPrice, maxPrice))

We use the AddOrder method to sort our product results by ascending unit price.

Here's the resulting SQL query in Microsoft SQL Server:

SELECT   this_.Id          as Id1_0_,

         this_.Name        as Name1_0_,

         this_.Description as Descript4_1_0_,

         this_.UnitPrice   as UnitPrice1_0_,

         this_.Director    as Director1_0_,

         this_.Author      as Author1_0_,

         this_.ISBN        as ISBN1_0_,

         this_.ProductType as ProductT2_1_0_
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FROM     Product this_

WHERE    (this_.UnitPrice >= 0 /* @p0 */

          and this_.UnitPrice <= 15 /* @p1 */)

ORDER BY this_.UnitPrice asc

There's more...
The criteria API is intended for dynamically built queries, such as the advanced search  
feature we see on many retail websites, where the user may choose any number of filter  
and sort criteria. However, these queries must be parsed and compiled on the fly.

For relatively static queries with a set of well-known parameters, it is preferable to use  
named HQL queries, as these are precompiled when we build the session factory.

The criteria API suffers from the magic strings problem, where strings refer to properties  
and classes in our application. With strongly typed APIs, we can easily change a property 
name using the refactoring tools of Visual Studio or ReSharper. With the criteria API, when  
we change a property name in our model, we have to find and update every criteria query  
that uses the property. As we will see in the next recipe, the new QueryOver API helps solve 
this problem.

See also
 f Using QueryOver

 f Using QueryOver projections and aggregates

 f Using MultiCriteria

 f Using Named Queries

 f Using Detached Queries

Using QueryOver
NHibernate 3.0 has added a new fluent syntax to criteria queries. Although it's not an actual 
LINQ provider, it does bring the familiar lambda syntax to criteria queries, eliminating the 
magic strings problem. In this recipe, I'll show you the new QueryOver syntax for the criteria 
queries from our last recipe.

How to do it...
1. Complete the setup steps in the introduction at the beginning of this chapter.

2. In the Queries class, add the following method:
public IEnumerable<Movie> GetMoviesDirectedBy(string directorName)
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{

  return _session.QueryOver<Movie>()

    .Where(m => m.Director == directorName)

    .List();

}

3. In the Queries class, add the following method to query for movies by actor's name:
public IEnumerable<Movie> GetMoviesWith(string actorName)

{

  return _session.QueryOver<Movie>()

    .OrderBy(m => m.UnitPrice).Asc

    .Inner.JoinQueryOver<ActorRole>(m => m.Actors)

    .Where(a => a.Actor == actorName)

    .List();

}

4. So we can query for a book by its ISBN by adding the following method:
public Book GetBookByISBN(string isbn)

{

  return _session.QueryOver<Book>()

    .Where(b => b.ISBN == isbn)

    .SingleOrDefault();

}

5. Add the following method to find all the products in a price range:
public IEnumerable<Product> GetProductByPrice(

  decimal minPrice,

  decimal maxPrice)

{

  return _session.QueryOver<Product>()

    .Where(p => p.UnitPrice >= minPrice

                && p.UnitPrice <= maxPrice)

    .OrderBy(p => p.UnitPrice).Asc

    .List();

}

6. In Program.cs, use the following code for the RunQueries method:
static void RunQueries(ISession session)

{

  var queries = new Queries(session);

  Show("Movies directed by Spielberg:",

    queries.GetMoviesDirectedBy(

    "Steven Spielberg"));
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  Show("Movies with Morgan Freeman:", 

    queries.GetMoviesWith(

    "Morgan Freeman"));

  Show("This book:",

    queries.GetBookByISBN(

    "978-1-849513-04-3"));

  Show("Cheap products:", 

    queries.GetProductByPrice(0M, 15M));

}

7. Build and run your application. You should see the following screenshot:

How it works...
In the previous code, we've implemented the queries from the last recipe using NHibernate's 
new QueryOver syntax. Using this syntax, most restrictions can be represented using the 
Where method, which takes a lambda expression as input. For example, to filter our movies 
on director name, we use .Where(m => m.Director == directorName). In many 
cases, we can combine multiple restrictions in a single Where. To get products within a 
particular price range, we could write this:

.Where(p => p.UnitPrice >= minPrice)

.And(p => p.UnitPrice <= maxPrice)
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We could also combine it into one Where, like this:

.Where(p => p.UnitPrice >= minPrice && p.UnitPrice <= maxPrice)

Some restrictions, such as Between, don't have equivalent lambda expressions. For these 
operations, we begin with WhereRestrictionOn to specify the property we'll use. Then, we 
follow it with a call to the restriction's method. For example, we could write this same price 
range filter using Criteria's Between restriction:

.WhereRestrictionOn(p => p.UnitPrice)

.IsBetween(minPrice).And(maxPrice)

To create a join, we use JoinQueryOver, like this:

.Inner.JoinQueryOver<ActorRole>(m => m.Actors)

In QueryOver, UniqueResult is replaced with the LINQ-like SingleOrDefault.

There's more...
QueryOver is a new API on top of NHibernate's existing criteria queries. Should we need 
to use the criteria API directly, we can get to the criteria query inside through QueryOver's 
UnderlyingCriteria property.

See also
 f Using QueryOver projections and aggregates

 f Using Criteria Queries

 f MultiCriteria

 f Named Queries

 f Detached Queries

Using QueryOver projections 
and aggregates

In some cases, we only need specific properties of an entity. In other cases, we may need  
the results of an aggregate function, such as average or count. In this recipe, I'll show you  
how to write QueryOver queries with projections and aggregates.
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How to do it...
1. Complete the setup steps in the introduction at the beginning of this chapter.

2. Add the following method to the Queries class.
public IEnumerable<NameAndPrice> GetMoviePriceList()

{

  return _session.QueryOver<Movie>()

    .Select(m => m.Name, m => m.UnitPrice)

    .List<object[]>()

    .Select(props =>

      new NameAndPrice()

      {

        Name = (string)props[0],

        Price = (decimal)props[1]

      });

}

3. Add the following method to Queries to fetch a simple average movie price:
public decimal GetAverageMoviePrice()

{

  var result = _session.QueryOver<Movie>()

    .Select(Projections.Avg<Movie>(m => m.UnitPrice))

    .SingleOrDefault<double>();

  return Convert.ToDecimal(result);

}

4. To get a list of directors and the average price of their movies, add  
the following method:
public IEnumerable<NameAndPrice> GetAvgDirectorPrice()

{

  return _session.QueryOver<Movie>()

    .Select(list => list

      .SelectGroup(m => m.Director)

      .SelectAvg(m => m.UnitPrice)

    )

    .List<object[]>()

    .Select(props =>

      new NameAndPrice()

      {

        Name = (string)props[0],

        Price = Convert.ToDecimal(props[1])
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      });

}

5. In Program.cs, use the following code in the RunQueries method:
static void RunQueries(ISession session)

{

  var queries = new Queries(session);

  Show("Movie Price List:",

    queries.GetMoviePriceList());

  Show("Average Movie Price:",

    queries.GetAverageMoviePrice());

  Show("Average Price by Director:",

    queries.GetAvgDirectorPrice());

}

6. Build and run your application. You should see the following output:

How it works...
Again, we'll discuss each query separately. The queries are as follows:

 f GetMoviePriceList query

Here's the code we used for our movie price list query:

_session.QueryOver<Movie>()

.Select(m => m.Name, m => m.UnitPrice)

.List<object[]>()
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.Select(props =>

  new NameAndPrice()

  {

    Name = (string)props[0],

    Price = (decimal)props[1]

  });

In this query, we want to return a list containing only movie names and their prices. 
To accomplish this, we project two properties from our Movie object: Name and 
UnitPrice. We do this using QueryOver's Select method. Our QueryOver ends  
with a call to List. Because we are returning the values of individual properties 
instead of entire Movie objects, our generic argument specifies that we'll return  
a list of object arrays. Each element in the list represents a row in our query results. 
The first element of each of those object arrays is the movie's Name. The second  
is the movie's UnitPrice.

The resulting SQL query for Microsoft SQL Server is as follows:

SELECT this_.Name      as y0_,

       this_.UnitPrice as y1_

FROM   Product this_

WHERE  this_.ProductType = 'Eg.Core.Movie'

To return a list of strongly typed objects instead of these object arrays, we use  
a standard LINQ to Objects Select from System.Linq to put our query results  
into neat NameAndPrice objects.

 f GetAverageMoviePrice query
_session.QueryOver<Movie>()

.Select(Projections.Avg<Movie>(m => m.UnitPrice))

.SingleOrDefault<double>();

In the previous code, we query for the average price of all movies in the database. We 
call our aggregate function through Projections.Avg, and then project the result.

Because we have projected a single aggregate result, we execute the query and get 
the result with a call to .SingleOrDefault<double>(). We expect a double to 
be returned by the average aggregate function. However, because we're dealing with 
money, we'll convert it to a decimal before returning it to our application.

This QueryOver results in the following SQL Query:

SELECT avg(cast(this_.UnitPrice as DOUBLE PRECISION)) as y0_

FROM   Product this_

WHERE  this_.ProductType = 'Eg.Core.Movie'
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 f GetAvgDirectorPrice query

With the following code, we query for a list of movie directors and the average price  
of their movies.

_session.QueryOver<Movie>()

.Select(list => list

  .SelectGroup(m => m.Director)

  .SelectAvg(m => m.UnitPrice)

)

.List<object[]>()

.Select(props =>

  new NameAndPrice()

  {

    Name = (string)props[0],

    Price = Convert.ToDecimal(props[1])

  });

In this case, we will group by and project the Director property and project  
the average UnitPrice, using this syntax:

.Select(list => list

  .SelectGroup(m => m.Director)

  .SelectAvg(m => m.UnitPrice)

)

Just as we did in our first query, we return a list of object arrays, and then transform 
them into a list of NameAndPrice objects with LINQ to Objects.

Here is the resulting SQL query:

SELECT   this_.Director                                as y0_,

         avg(cast(this_.UnitPrice as DOUBLE PRECISION)) as y1_

FROM     Product this_

WHERE    this_.ProductType = 'Eg.Core.Movie'

GROUP BY this_.Director

See also
 f Using Criteria Queries

 f Using QueryOver

 f Using MultiCriteria

 f Using Named Queries

 f Using Detached Queries
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Using MultiCriteria
To display many forms and web pages, we need to run several queries. For example, it's 
common to display search results one page at a time. This typically requires two queries. The 
first counts all the available results, and the second fetches the data for only 10 or 20 results. 
MultiCriteria allows us to combine these two queries into a single database round  
trip, speeding up our application. In this recipe, I'll show you how to use MultiCriteria to  
fetch a paged result set of products.

How to do it...
1. Complete the setup steps in the introduction at the beginning of this chapter.

2. Add the following structure inside the Queries class:
public struct PageOf<T>

{

  public int PageCount;

  public int PageNumber;

  public IEnumerable<T> PageOfResults;

}

3. Add the following methods to the Queries class:
public PageOf<Product> GetPageOfProducts(

  int pageNumber,

  int pageSize)

{

  var skip = (pageNumber - 1) * pageSize;

  var countQuery = GetCountQuery();

  var resultQuery = GetPageQuery(skip, pageSize);

  var multiCrit = _session.CreateMultiCriteria()

    .Add<int>("count", countQuery)

    .Add<Product>("page", resultQuery);

  var productCount = ((IList<int>)multiCrit

    .GetResult("count")).Single();

  var products = (IList<Product>)multiCrit

    .GetResult("page");

  var pageCount = (int) Math.Ceiling(

    productCount/(double) pageSize);

  return new PageOf<Product>()

           {



Chapter 4

139

             PageCount = pageCount,

             PageOfResults = products,

             PageNumber = pageNumber

           };

}

private ICriteria GetCountQuery()

{

  return _session.QueryOver<Product>()

    .Select(list => list

            .SelectCount(m => m.Id))

    .UnderlyingCriteria;

}

private ICriteria GetPageQuery(int skip, int take)

{

  return _session.QueryOver<Product>()

    .OrderBy(m => m.UnitPrice).Asc

    .Skip(skip)

    .Take(take)

    .UnderlyingCriteria;

}

4. In Program.cs, use the following code in the RunQueries method:
static void RunQueries(ISession session)

{

  var queries = new Queries(session);

  var result = queries.GetPageOfProducts(1, 2);

  var heading = string.Format("Page {0} of {1}",

                              result.PageNumber,

                              result.PageCount);

  Show(heading, result.PageOfResults);

}

5. Build and run your application. You should see the following output:
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How it works...
The MultiCriteria API may be used with any NHibernate-supported RDBMS. However, only 
Microsoft SQL Server and Oracle can combine these queries into a single round trip to the 
database. For all other RDBMS, this functionality is simulated. In either case, your application 
doesn't need to be concerned. It just works.

In this recipe, we combine two criteria queries in a single round trip to the database. Our  
first query counts all the products in the database. Our second query returns a page with  
the first two of our three products, sorted by unit price. We use QueryOver's Skip and Take  
to accomplish this.

There are a couple of interesting things to point out with the MultiCriteria syntax.

var multiCrit = session.CreateMultiCriteria()
  .Add<int>("count", countQuery)
  .Add<Movie>("page", resultQuery);

First, you'll notice that we've labeled our queries with "count" and "page". This is not 
required. Instead, we could use the index of each criteria object in the MultiCriteria to fetch 
the results. It's a little more difficult to mess up names than list indices, so we'll use names.

We use generic arguments to specify the element type for our results. That is, our first  
query returns a list of integers and the second returns a list of movies. The MultiCriteria 
doesn't provide a method for directly returning a single entity or scalar value. Instead, we use 
LINQ to Object's Single method to fetch the first and only value from the list.

When we get the product count, both queries are immediately executed, and the results are 
stored in memory. When we get the page of products, the MultiCriteria simply returns  
the results of the already-executed query.

See also
 f Using QueryOver

 f Using MultiQuery

 f Using Futures

Using the Hibernate Query Language
So far, we've covered various queries using NHibernate's Criteria API and its new QueryOver 
syntax. NHibernate provides another, more powerful query method named Hibernate Query 
Language, a domain-specific language that blends familiar SQL-like syntax with object-oriented 
thinking. In this recipe, I'll show you how to use the Hibernate Query Language to perform 
those same queries.
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How to do it...
1. Complete the steps in the introduction at the beginning of this chapter, naming  

the new console application HQLExample.

2. Add a new mapping document named NameAndPrice.hbm.xml with this xml code.  
Don't forget to set the Build action to Embedded Resource.
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="HQLExample"

    namespace="HQLExample">

  <import class="NameAndPrice"/>

</hibernate-mapping>

3. In App.config, add <mapping assembly="HQLExample"/> below the mapping 
element for Eg.Core.

4. Add the following methods to the Queries class:
public IEnumerable<Movie> GetMoviesDirectedBy(string directorName)

{

  var hql = @"from Movie m 

              where m.Director = :director";

  return _session.CreateQuery(hql)

    .SetString("director", directorName)

    .List<Movie>();

}

public IEnumerable<Movie> GetMoviesWith(string actorName)

{

  var hql = @"select m

              from Movie m

              inner join m.Actors as ar

              where ar.Actor = :actorName";

  return _session.CreateQuery(hql)

    .SetString("actorName", actorName)

    .List<Movie>();

}

public Book GetBookByISBN(string isbn)

{

  var hql = @"from Book b

              where b.ISBN = :isbn";

  return _session.CreateQuery(hql)

    .SetString("isbn", isbn)
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    .UniqueResult<Book>();

}

public IEnumerable<Product> GetProductByPrice(

  decimal minPrice,

  decimal maxPrice)

{

  var hql = @"from Product p

              where p.UnitPrice >= :minPrice

              and p.UnitPrice <= :maxPrice

              order by p.UnitPrice asc";

  return _session.CreateQuery(hql)

    .SetDecimal("minPrice", minPrice)

    .SetDecimal("maxPrice", maxPrice)

    .List<Product>();

}

public IEnumerable<NameAndPrice> GetMoviePriceList()

{

  var hql = @"select new NameAndPrice(

              m.Name, m.UnitPrice)

              from Movie m";

  return _session.CreateQuery(hql)

    .List<NameAndPrice>();

}

public decimal GetAverageMoviePrice()

{

  var hql = @"select Cast(avg(m.UnitPrice) 

              as Currency)

              from Movie m";

  return _session.CreateQuery(hql)

    .UniqueResult<decimal>();

}

public IEnumerable<NameAndPrice> GetAvgDirectorPrice()

{

  var hql = @"select new NameAndPrice(

                m.Director, 

                Cast(avg(m.UnitPrice) as Currency)

              )

              from Movie m
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              group by m.Director";

  return _session.CreateQuery(hql)

    .List<NameAndPrice>();

}

5. In Program.cs, use the following code in the RunQueries method:
static void RunQueries(ISession session)

{

  var queries = new Queries(session);

  Show("Movies directed by Spielberg:",

    queries.GetMoviesDirectedBy(

    "Steven Spielberg"));

  Show("Movies with Morgan Freeman:",

    queries.GetMoviesWith(

    "Morgan Freeman"));

  Show("This book:",

    queries.GetBookByISBN(

    "978-1-849513-04-3"));

  Show("Cheap products:",

    queries.GetProductByPrice(0M, 15M));

  Show("Movie Price List:",

    queries.GetMoviePriceList());

  Show("Average Movie Price:",

    queries.GetAverageMoviePrice());

  Show("Average Price by Director:",

    queries.GetAvgDirectorPrice());

}
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6. Build and run your application. You should see the following output:

How it works...
Hibernate Query Language (HQL) syntax resembles SQL in many ways, but operates at an 
object level. We build all of our queries as strings. Much like DbCommands in ADO.NET, we 
create IQuery objects around those query strings, set the parameter values, and execute 
our queries with List or UniqueResult. Similar to the "at" sign (@) in Microsoft SQL Server 
queries, in HQL, we prepend our parameter names with a colon (:) in the query string. When 
we set the parameter value, we don't include the colon.

 f GetMoviesDirectedBy query

We have this very basic HQL query:

from Movie m 

where m.Director = :director
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For brevity, we've aliased our movies as simply m. In this case, there is an implied 
select m to project our movies. We have a single parameter, director, which  
we use to filter our movies. 

 f GetMoviesWith query
select m

from Movie m

inner join m.Actors as ar

where ar.Actor = :actorName

In this query, we join from movies to their actor roles. Notice that unlike SQL, we  
don't need to specify ActorRoles or set up a comparison with an ON clause 
explicitly. NHibernate already understands the relationships between our entities.  
We filter those actor roles based on actor name. Just as with SQL, because we use  
an inner join, this filter on actor role effectively filters our movies as well.

 f GetProductByPrice query
from Product p

where p.UnitPrice >= :minPrice

and p.UnitPrice <= :maxPrice

order by p.UnitPrice asc

In this query, we filter our Product based on a price range defined by the two 
parameters, minPrice and maxPrice. This query could also be written using  
HQL's between:

from Product p

where p.UnitPrice between

:minPrice and :maxPrice

order by p.UnitPrice asc

As with SQL, the order by clause sorts our products by unit price.

 f GetMoviePriceList query

We have this simple query:

select new NameAndPrice(m.Name, m.UnitPrice)

from Movie m

When working with HQL, think in terms of objects and properties, not tables 
and columns. This query passes the Name and UnitPrice properties into this 
constructor of our NameAndPrice class:

public NameAndPrice(string name, decimal unitPrice)

Then it projects the resulting NameAndPrice instances. To make NHibernate  
aware of this class, we use the following import mapping:

<import class="NameAndPrice"/>
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As an alternative, just as with criteria and QueryOver, we could simply project  
Name and UnitPrice, return a list of object arrays, and then use LINQ to  
Objects to transform those object arrays into NameAndPrice instances, as  
shown in the following code:

var hql = @"select m.Name, m.UnitPrice

            from Movie m";

var query = session.CreateQuery(hql);

return query.List<object[]>()

  .Select(props =>

    new NameAndPrice(

      (string)props[0],

      (decimal)props[1]));

In this case, we wouldn't need to import our NameAndPrice class.

 f GetAverageMoviePrice query
select Cast(avg(m.UnitPrice) as Currency)

from Movie m

In this query, we use the aggregate function average. This returns a scalar value of 
type double, so we cast it back to NHibernate's Currency type. The equivalent .NET 
type is decimal, so we execute the query using UniqueResult<decimal>().

 f GetAvgDirectorPrice query
select new NameAndPrice(

    m.Director, 

    Cast(avg(m.UnitPrice) as Currency)

)

from Movie m

group by m.Director

In this query, we group by Director. We then pass Director and our average 
UnitPrice into the constructor of NameAndPrice. Just as before, because avg 
returns a double, we'll need to Cast it back to Currency first.

There's more...
In addition to the mapped properties and collections on our entities, HQL allows you  
to query on two implied and special properties:

 f The property class is the full name of the type of our entity. For example,  
to query for books, we could write the following:
from Product p where p.class='Eg.Core.Book'
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 f The property id always represents the POID of the entity, regardless of what we may 
name it in our entity. We can query for three books at a time with this query:
from Book b where b.id in (@id0, @id1, @id2)

See also
 f Using Criteria Queries

 f Using QueryOver

 f Using MultiQuery

 f Using Named Queries

 f Using Detached Queries

Using MultiQuery
Just like we can combine several ICriteria and QueryOver queries into a single database round 
trip with MultiCriteria, we can combine several HQL queries with MultiQuery. Particularly in 
a production setting where the database and application are on separate machines, each 
round trip to the database is very expensive. Combining work in this way can greatly improve 
application performance. In this recipe, I'll show you how to fetch a product count and page  
of product results using a MultiQuery.

How to do it...
1. Complete the setup steps in the introduction at the beginning of this chapter.

2. Add the following structure inside the Queries class:
public struct PageOf<T>

{

  public int PageCount;

  public int PageNumber;

  public IEnumerable<T> PageOfResults;

}

3. Add the following methods to the Queries class:
public PageOf<Product> GetPageOfProducts(

  int pageNumber,

  int pageSize)

{

  var skip = (pageNumber - 1) * pageSize;

  var countQuery = GetCountQuery();

  var resultQuery = GetPageQuery(skip, pageSize);
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  var multiQuery = _session.CreateMultiQuery()

    .Add<long>("count", countQuery)

    .Add<Product>("page", resultQuery);

  var productCount = ((IList<long>)multiQuery

    .GetResult("count")).Single();

  var products = (IList<Product>)multiQuery

    .GetResult("page");

  var pageCount = (int) Math.Ceiling(

    productCount/(double) pageSize);

  return new PageOf<Product>()

           {

             PageCount = pageCount,

             PageOfResults = products,

             PageNumber = pageNumber

           };

}

private IQuery GetCountQuery()

{

  var hql = @"select count(p.Id) from Product p";

  return _session.CreateQuery(hql);

}

private IQuery GetPageQuery(int skip, int take)

{

  var hql = @"from Product p order by p.UnitPrice asc";

  return _session.CreateQuery(hql)

    .SetFirstResult(skip)

    .SetMaxResults(take);

}

4. In Program.cs, use the following code in the RunQueries method:
static void RunQueries(ISession session)

{

  var queries = new Queries(session);

  var result = queries.GetPageOfProducts(1, 2);

  var heading = string.Format("Page {0} of {1}",

                              result.PageNumber,

                              result.PageCount);

  Show(heading, result.PageOfResults);

}



Chapter 4

149

5. Build and run your application. You should see the following output:

How it works...
In this recipe, we build two HQL queries. The first returns a count of all our products.  
It's important to note that HQL's count returns an Int64 or long.

The second query returns a single page of products. We use SetFirstResult to 
determine where our results begin. For example, passing zero to SetFirstResult will 
return all the results. Passing 10 will skip the first 10 results, returning the 11th product 
and beyond. We combine this with SetMaxResults to return a single page of results. 
.SetFirstResult(10).SetMaxResults(10) will return the 11th through 20th product. 

We add each of our queries to our MultiQuery object, specifying a label or name, and, with 
the generic argument, the type of list to return. Just as with MultiCriteria, there's no way 
to return a single entity or scalar value directly. In this example, our count query will return a 
list of Int64s containing one item, and our page query will return a list of Products. We'll 
use LINQ to Objects's Single() method to extract the actual count value.

We use the label again in our call to GetResults to return a specific result set. The first call 
to GetResults executes all the queries in a single batch. Each subsequent call only returns 
the results of an already executed query. 

See also
 f Using MultiCritieria

 f Using Named Queries

Using Named Queries
Just as with SQL, mixing inline HQL with business logic is generally a losing battle. The code 
becomes unreadable, and the queries are nearly impossible to properly unit test. In this 
recipe, I'll show you how we can move these HQL queries out of our code, improve readability 
and testability, and even improve performance by parsing and pre-compiling queries.
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How to do it...
1. Complete the steps in the introduction at the beginning of this chapter, naming  

the new console application NamedQueryExample.

2. Add a new mapping document named GetBookByISBN.hbm.xml with the following 
xml code. Don't forget to set the Build action to Embedded Resource.
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">

  <query name="GetBookByISBN">

    <![CDATA[

    from Book b where b.ISBN = :isbn

    ]]>

  </query>

</hibernate-mapping>

3. In App.config, add <mapping assembly="NamedQueryExample"/> below  
the mapping element for Eg.Core.

4. Add the following methods to the Queries class:
public Book GetBookByISBN(string isbn)

{

  return _session.GetNamedQuery("GetBookByISBN")

    .SetString("isbn", isbn)

    .UniqueResult<Book>();

}

5. In Program.cs, use the following code in the RunQueries method:
static void RunQueries(ISession session)

{

  var queries = new Queries(session);

  Show("This book:", queries.GetBookByISBN(

    "978-1-849513-04-3"));

}

6. Build and run your application. You should see the following output:



Chapter 4

151

How it works...
In this recipe, we use the familiar GetBookByISBN query. We use GetNamedQuery to build 
a standard HQL IQuery object. This time, we've defined the query in a mapping document 
rather than in code.

This is the optimal method for querying with NHibernate in nearly every case. As with any 
HQL query, NHibernate will parse, compile, and verify this query against our entity mappings 
and model. Because it's in a mapping document, this work is done upfront when we build the 
session factory. If NHibernate finds any errors, it will throw an exception when we build our 
session factory, instead of when we execute the query. This is preferable for the same reasons 
that compiler errors are preferable to runtime exceptions. It provides an obvious, upfront 
check. In addition, this upfront parsing and compilation is cached for later use. NHibernate 
only has to build the necessary SQL once.

There's more...
MultiQuery provides a shortcut for adding named queries. It looks like the following code:

var multiQuery = session.CreateMultiQuery()
  .AddNamedQuery<int>("count", "CountAllProducts")
  .Add<Product>("page", pageQuery);

In this case, we use the shortcut to add our count query. In order to set the first result  
and maximum result count, we need to build our page query separately.

Named SQL queries
In addition to HQL, NHibernate also allows us to create named queries in SQL. This is only 
appropriate in advanced cases where HQL simply won't work, or where a query has been 
hand-optimized. The C# code for working with a SQL named query is identical to an HQL 
named query. This allows you to create queries in HQL and swap in a faster SQL query later 
without changing your application code. Only the mapping document is different. It looks like 
the following code:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">
  <sql-query name="GetBookByISBN_SQL">
    <return alias="b" class="Eg.Core.Book, Eg.Core" />
    <![CDATA[
    SELECT 
      b.Id AS [b.Id],
      b.Name AS [b.Name],
      b.Description AS [b.Description],
      b.UnitPrice AS [b.UnitPrice],
      b.Author AS [b.Author],
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      b.ISBN as [b.ISBN]
    FROM Product b
    WHERE b.ProductType = 'Eg.Core.Book'
    AND b.ISBN = :isbn
    ]]>
    <query-param name="isbn" type="string"/>
  </sql-query>
</hibernate-mapping>

The return element defines the alias we use in our query results, as well as the entity  
to build from that data.

HQL AddIn
The free open source HQL AddIn tool from Jose Romaniello integrates with Visual Studio 2010 
to provide IntelliSense syntax highlighting, and syntax checking when designing HQL queries.

More information is available from the project's website at  
http://hqladdin.codeplex.com/.

See also
 f Using the Hibernate Query Language

 f Using Detached Queries

Using Futures
We've learned to use MultiCriteria and MultiQuery to batch our queries together. NHibernate's 
Futures feature provides a simpler API for batching criteria and queries. In this recipe, I'll show 
you how to use NHibernate's new Futures feature to return a paged product result.

How to do it...
1. Complete the setup steps in the introduction at the beginning of this chapter, naming 

the new console application PagingResults.

http://hqladdin.codeplex.com/
http://hqladdin.codeplex.com/
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2. Add a new mapping document named CountAllProducts.hbm.xml with the 
following xml code. Don't forget to set the Build action to Embedded Resource.
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">

  <query name="CountAllProducts">

    <![CDATA[

    select count(p.Id) from Product p

    ]]>

  </query>

</hibernate-mapping>

3. Add another mapping document named GetAllProducts.hbm.xml and set  
the Build action to embedded resource. Use the following xml:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">

  <query name="GetAllProducts">

    <![CDATA[

    from Product p order by p.UnitPrice asc

    ]]>

  </query>

</hibernate-mapping>

4. In App.config, add <mapping assembly="PagedResults"/> below  
the mapping element for Eg.Core.

5. Add the following structure inside the Queries class:
public struct PageOf<T>

{

  public int PageCount;

  public int PageNumber;

  public IEnumerable<T> PageOfResults;

}

6. Add the following method to the Queries class:
public PageOf<Product> GetPageOfProducts(

  int pageNumber,

  int pageSize)

{

  var skip = (pageNumber - 1) * pageSize;

  var productCount = 

    _session.GetNamedQuery("CountAllProducts")

    .FutureValue<long>();

  var products = 
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    _session.GetNamedQuery("GetAllProducts")

    .SetFirstResult(skip)

    .SetMaxResults(pageSize)

    .Future<Product>();

  var pageCount = (int) Math.Ceiling(

    productCount.Value/(double) pageSize);

  return new PageOf<Product>()

           {

             PageCount = pageCount,

             PageOfResults = products,

             PageNumber = pageNumber

           };

}

7. In Program.cs, use the following code in the RunQueries method:
static void RunQueries(ISession session)

{

  var queries = new Queries(session);

  var result = queries.GetPageOfProducts(1, 2);

  var heading = string.Format("Page {0} of {1}",

                              result.PageNumber,

                              result.PageCount);

  Show(heading, result.PageOfResults);

}

8. Build and run your application. You should see the following output:

How it works...
In this recipe, we are using the simpler Futures syntax to again retrieve a count of all products, 
along with a page of products for display.

When we call IQuery or ICriteria's Future or FutureValue, NHibernate returns an 
object representing the potential results of that query. It also queues up the query in a hidden 
MultiCriteria or MultiQuery inside the session.
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When we call FutureValue, it returns an IFutureValue<>, representing a single entity 
or scalar value. For Future, it returns an IEnumerable<>. NHibernate waits until we 
access  Value property of IFutureValue<> or enumerate the IEnumerable. When we do, 
NHibernate executes the hidden futures MultiCriteria and MultiQuery for this session.

In this specific example, both queries are executed when we use productCount.Value  
to calculate the page count. As you can see, this delayed loading is mostly transparent  
to the application.

There's more...
The two minor caveats when using futures are as follows:

 f An attempt to load the results of a future query after the session has been closed  
will throw an exception.

 f While the syntax is identical, ICriteria and IQuery objects are handled separately 
in the session. If you have an ICriteria-based future and an IQuery-based future, 
evaluating one will not cause the other to execute.

See also
 f Using Criteria Queries

 f Using QueryOver

 f Using MultiCriteria

 f Using the Hibernate Query Language 

 f Using MultiQuery

Eager loading child collections
Often, when we query for some set of entities, we also need to load some children of those 
entities. In this recipe, I'll show you how we can use NHibernate's Futures with the session 
cache to eager load the child collections of our query results.

How to do it...
1. Complete the setup steps in the introduction at the beginning of this chapter.

2. Add the following method to the Queries class:
public IEnumerable<Product> GetAllProducts()

{

  var products = _session.CreateQuery(

    @"from Product p 



Queries

156

      order by p.UnitPrice asc")

    .Future<Product>();

  _session.CreateQuery(

    @"from Movie m

      left join fetch m.Actors")

    .Future<Movie>();

  return products.ToList();

}

3. In Program.cs, use the following code in the RunQueries method:
static void RunQueries(ISession session)

{

  var queries = new Queries(session);

  Show("Product List:",

       queries.GetAllProducts());

}

4. Build and run your application. You should see the following output:

How it works...
In this recipe, we eagerly load the ActorRoles for our Movies to avoid a select N+1 bug. In a 
select N+1 situation, with one select statement, you load some entities from the database 
and begin to enumerate through them. As you enumerate through them, you access some 
lazy loaded property or collection. This triggers a separate database query for each entity in 
the original query. If we iterated through 1000 entities, we would have the original query plus 
1000 nearly identical queries because we triggered lazy loading, hence the name select N+1. 
This creates N+1 round trips to the database, which will quickly kill performance, overwork the 
database, and could even crash the database.

In this recipe's code, we iterate through each product in the database. For each movie,  
we display the name of the actor in the starring role. This would normally trigger a  
separate database query for each movie, a potential select N+1 problem.
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Our recipe uses two Futures queries. The first simply returns all products, sorted by unit  
price. The second Futures query, shown next, has the secret sauce:

_session.CreateQuery(
  @"from Movie m
    left join fetch m.Actors")
  .Future<Movie>();

We query for all movies with a left outer join to actor roles. This returns all movies and their 
actor roles, including the movies without actor roles. The word fetch tells NHibernate that 
we want to also load the actor role entities, not just join for the purposes of filtering. So, our 
second Futures query loads all Movies and their ActorRoles.

You have probably noticed that we don't actually assign the resulting IEnumerable<Movie> 
to a variable and use it anywhere. That's because we don't actually care about the results of 
this query. Its only purpose is to sneak into the session's hidden MultiQuery for futures and 
get executed.

When we enumerate the result of the first query, both queries get executed. First, NHibernate 
loads up all the products, including movies, and puts those in the session cache. At this point, 
each movie's Actors collection is uninitialized. When NHibernate executes the second query, 
it initializes those collections as it loads the query results.

The end result is that we can output the name of the movie's star without causing another 
query. That data has already been loaded.

The following are the resulting SQL queries:

select   product0_.Id          as Id1_,
         product0_.Version     as Version1_,
         product0_.Name        as Name1_,
         product0_.Description as Descript5_1_,
         product0_.UnitPrice   as UnitPrice1_,
         product0_.Director    as Director1_,
         product0_.Author      as Author1_,
         product0_.ISBN        as ISBN1_,
         product0_.ProductType as ProductT2_1_
from     Product product0_
order by product0_.UnitPrice asc

select movie0_.Id          as Id1_0_,
       actors1_.Id         as Id0_1_,
       movie0_.Version     as Version1_0_,
       movie0_.Name        as Name1_0_,
       movie0_.Description as Descript5_1_0_,
       movie0_.UnitPrice   as UnitPrice1_0_,
       movie0_.Director    as Director1_0_,
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       actors1_.Version    as Version0_1_,
       actors1_.Actor      as Actor0_1_,
       actors1_.Role       as Role0_1_,
       actors1_.MovieId    as MovieId0__,
       actors1_.Id         as Id0__,
       actors1_.ActorIndex as ActorIndex0__
from   Product movie0_
       left outer join ActorRole actors1_
         on movie0_.Id = actors1_.MovieId
where  movie0_.ProductType = 'Eg.Core.Movie'

There's more...
An alternative for greatly reducing the impact of a select N+1 problem is to use the batch-size 
property in the mapping. Suppose we had added batch-size to our movies mapping, as shown 
in the following code:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
    assembly="Eg.Core"
    namespace="Eg.Core">
  <subclass name="Movie" extends="Product">
    <property name="Director" />
    <list name="Actors" cascade="all-delete-orphan"
          batch-size="10">
      <key column="MovieId" />
      <index column="ActorIndex" />
      <one-to-many class="ActorRole"/>
    </list>
  </subclass>
</hibernate-mapping>

With a typical select N+1 bug, we would trigger a query on each movie. When we set batch-
size to 10, this behavior changes. NHibernate needs to query for the contents of an Actors 
collection to initialize it, but it notices the batch-size setting. It finds nine other uninitialized 
Actors collections in the session and loads all of them at once with a single query.

If we have 10 movies, we only need two queries instead of 11. For 20 movies, we need  
three instead of 21 and so on. This cuts out about 90 percent of our queries.

See also
 f Using Futures

 f Using NHibernate Profiler
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Using LINQ to NHibernate
NHibernate 3.0 includes a new LINQ provider. In this recipe, I'll show you how to execute  
LINQ queries with NHibernate.

How to do it...
1. Complete the steps in the introduction at the beginning of this chapter.

2. Add the following methods to the Queries class:
public IEnumerable<Movie> GetMoviesDirectedBy(

  string directorName)

{

  var query = from m in _session.Query<Movie>()

              where m.Director == directorName

              select m;

  return query.ToList();

}

public IEnumerable<Movie> GetMoviesWith(

  string actorName)

{

  var query = from m in _session.Query<Movie>()

              where m.Actors.Any(

                ar => ar.Actor == actorName)

              select m;

  return query.ToList();

}

public Book GetBookByISBN(string isbn)

{

  var query = from b in _session.Query<Book>()

              where b.ISBN == isbn

              select b;

  return query.SingleOrDefault();

}

public IEnumerable<Product> GetProductByPrice(

  decimal minPrice,

  decimal maxPrice)

{

  var query = from p in _session.Query<Product>()

              where p.UnitPrice >= minPrice &&
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              p.UnitPrice <= maxPrice

              orderby p.UnitPrice ascending 

              select p;

  return query.ToList();

}

public IEnumerable<NameAndPrice> GetMoviePriceList()

{

  var query = from m in _session.Query<Movie>()

              select new NameAndPrice(

                m.Name,

                m.UnitPrice);

  return query.ToList();

}

public decimal GetAverageMoviePrice()

{

  return _session.Query<Movie>()

    .Average(m => m.UnitPrice);

}

public IEnumerable<NameAndPrice> GetAvgDirectorPrice()

{

  var query = from m in _session.Query<Movie>()

              group m by m.Director

              into g

              select new NameAndPrice(

                g.Key,

                g.Average(i => i.UnitPrice));

  return query.ToList();

}

3. In Program.cs, use the following code in the RunQueries method:
static void RunQueries(ISession session)

{

  var queries = new Queries(session);

  Show("Movies directed by Spielberg:",

    queries.GetMoviesDirectedBy(

    "Steven Spielberg"));

  Show("Movies with Morgan Freeman:",

    queries.GetMoviesWith(

    "Morgan Freeman"));
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  Show("This book:",

    queries.GetBookByISBN(

    "978-1-849513-04-3"));

  Show("Cheap products:",

    queries.GetProductByPrice(0M, 15M));

  Show("Movie Price List:",

    queries.GetMoviePriceList());

  Show("Average Movie Price:",

    queries.GetAverageMoviePrice());

  Show("Average Price by Director:",

    queries.GetAvgDirectorPrice());

}

4. Build and run your application. You should see the following output:
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How it works...
session.Query<> returns an IQueryable for the new, fully functional NHibernate LINQ 
provider. This recipe uses the same well-known LINQ syntax supported by many LINQ providers. 
MSDN's 101 LINQ samples, found at http://msdn.microsoft.com/en-us/vcsharp/
aa336746.aspx, provide an excellent beginner's reference to LINQ syntax.

See also
 f Named Queries

 f Using LINQ specifications in the data access layer

Using Detached Queries
In some cases, it may be preferable to build an HQL or criteria query object in parts of your 
application without access to the NHibernate session, and then execute them elsewhere  
with a session. In this recipe, I'll show you how to use detached queries and criteria.

Getting ready

Set up a new NHibernate console application using our Eg.Core model from Chapter 1. 
Configure log4net to send the NHibernate.SQL debug output to the .NET trace, just as we  
did in Chapter 2.

How to do it...
Add the following code to your Main method:

var isbn = "3043";

var query = DetachedCriteria.For<Book>()
  .Add(Restrictions.Eq("ISBN", isbn));

using (var session = sessionFactory.OpenSession())
{
  using (var tx = session.BeginTransaction())
  {
    var book = query.GetExecutableCriteria(session)
      .UniqueResult<Book>();
    tx.Commit();
  }
}

http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx
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How it works...
In this recipe, we've used a DetachedCriteria object from the NHibernate.Criterion 
namespace. This allows us to set up our query without an active session. Later, inside a 
transaction, we call GetExecutableCriteria to return an ICriteria associated with  
the session. Finally, we call UniqueResult to return the book.

There's more...
NHibernate also provides DetachedQuery and DetachedNamedQuery in the NHibernate.
Impl namespace for detached HQL queries. The code is given as follows:

var query = new DetachedNamedQuery("GetBookByISBN")
  .SetString("isbn", isbn);

var query = new DetachedQuery(hql)
  .SetString("isbn", isbn);

Detached criteria and queries implement the query objects pattern shown on Martin  
Fowler's website at http://martinfowler.com/eaaCatalog/queryObject.html.

See also
 f Using Criteria Queries

 f Using the Hibernate Query Language

 f Using Named Queries

Using HQL for bulk data changes
In the previous chapter, we learned how to use NHibernate to insert, update, and delete 
individual entities using ISession methods. NHibernate also allows us to perform some bulk 
data changes with executable HQL. In this recipe, I'll show you how we can use HQL to update 
all of our books with a single statement.

Getting ready

Set up a new NHibernate console application using our Eg.Core model from Chapter 1. 
Configure log4net to send the NHibernate.SQL debug output to the .NET trace, just as we  
did in Chapter 2.

http://martinfowler.com/eaaCatalog/queryObject.html
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How to do it...
Add the following code to your Main method:

using (var session = sessionFactory.OpenSession())
{
  using (var tx = session.BeginTransaction())
  {
    var hql = @"update Book b 
               set b.UnitPrice = :minPrice
               where b.UnitPrice < :minPrice";
    session.CreateQuery(hql)
      .SetDecimal("minPrice", 55M)
      .ExecuteUpdate();

    tx.Commit();
  }
}

How it works...
We have the following executable HQL query:

update Book b 
set b.UnitPrice = :minPrice
where b.UnitPrice < :minPrice

We call ExecuteUpdate method of IQuery to run this statement. This results  
in the following SQL statement:

update Product
set    UnitPrice = 55 /* @p0 */
where  ProductType = 'Eg.Core.Book'
       and UnitPrice < 55 /* @p1 */

This will only affect the database. These changes will not be reflected in the state  
of in-memory objects, the second level cache, or anywhere else outside the database.

There's more...
We could also define this query in a mapping and load it like any other named query.

In addition to bulk updates, NHibernate also supports bulk deletes and bulk inserts.  
The syntax for bulk deletes is identical to bulk updates, but without set. Neither update  
nor delete support joins. Instead, use sub-queries in the where clause.
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Bulk inserts
NHibernate supports bulk inserts in the following form:

insert into destinationEntity (id, prop1, prop2) select b.id, 
b.prop1, b.prop2 from sourceEntity b where...

There are a few items to keep in mind when considering this solution. First, property types 
must match exactly. While the database may be perfectly able to convert between types  
such as int and long, NHibernate requires them to be the same type.

IDs are particularly limited. There are two options:

 f The first option is to copy the ID from a property of the source entity. This may be the 
ID of the source entity, or any other property. Depending on your existing data, this is 
not always appropriate.

 f The second option uses the entity's POID generator to create an identity for each 
newly inserted object. However, this only works when the ID is database-generated. 
This excludes nearly all of the preferred identity generators, such as guidcomb and 
hilo. To use the entity's ID generator, simply omit the ID column from the list of 
properties to be set.

See also
 f Using Named Queries





5
Testing

In this chapter, we will cover the following topics:

 f Using NHibernate Profiler

 f Testing with the SQLite in-memory database

 f Preloading data with SQLite

 f Using the Fluent NHibernate persistence tester

 f Using the Ghostbusters test

Introduction
Testing is a critical step in the development of any application. The recipes in this chapter are 
designed to ease the testing process and expose common issues.

Using NHibernate Profiler
NHibernate Profiler from Hibernating Rhinos is the number one tool for analyzing and 
visualizing what is happening inside your NHibernate application, and for discovering issues 
you may have. In this recipe, I'll show you how to get up and running with NHibernate Profiler.

Getting ready
Download NHibernate Profiler from http://nhprof.com, and unzip it. As it is a commercial 
product, you will also need a license file. You may request a 30-day trial license from the 
NHProf website.

Using our Eg.Core model from Chapter 1, set up a new NHibernate console application  
with log4net, just as we did in Chapter 2.

http://nhprof.com
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How to do it...
1. Add a reference to HibernatingRhinos.Profiler.Appender.dll from the NH 

Profiler download.

2. In the session-factory element of App.config, set the property generate_
statistics to true.

3. Add the following code to your Main method:
log4net.Config.XmlConfigurator.Configure();

HibernatingRhinos.Profiler.Appender.

  NHibernate.NHibernateProfiler.Initialize();

var nhConfig = new Configuration().Configure();

var sessionFactory = nhConfig.BuildSessionFactory();

using (var session = sessionFactory.OpenSession())

{

  var books = from b in session.Query<Book>()

             where b.Author == "Jason Dentler"

             select b;

  foreach (var book in books)

    Console.WriteLine(book.Name);

}

4. Run NHProf.exe from the NH Profiler download, and activate the license. 

5. Build and run your console application.

6. Check the NH Profiler. It should look like the next screenshot. Notice the gray dots 
indicating alerts next to the Session #1 and Recent Statements.
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7. Select Session #1 from the Sessions list at the top left pane.

8. Select the statement from the top right pane.

9. Notice the SQL statement in the following screenshot:

10. Click on See the 1 row(s) resulting from this statement.

11. Enter your database connection string in the field provided, and click on OK.

12. Close the query results window. 

13. Switch to the Alerts tab, and notice the alert: Use of implicit transaction  
is discouraged.

14. Click on the Read more link for more information and suggested solutions to this 
particular issue.
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15. Switch to the Stack Trace tab, as shown in the next screenshot:

16. Double-click on the NHProfTest.NHProfTest.Program.Main stack frame to jump  
to that location inside Visual Studio.

17. Using the following code, wrap the foreach loop in a transaction and commit the 
transaction:
using (var tx = session.BeginTransaction())

{

  foreach (var book in books)

    Console.WriteLine(book.Name);

  tx.Commit();

}

18. In NH Profiler, right-click on Sessions on the top left pane,  
and select Clear All Sessions.

19. Build and run your application.

20. Check NH Profiler for alerts.

How it works...
NHibernate Profiler uses a custom log4net appender to capture data about NHibernate 
activities inside your application and transmit that data to the NH Profiler application.

As we learned in Chapter 2, setting generate_statistics allows NHibernate to capture 
many key data points. These statistics are displayed in the lower, left-hand side of the pane  
of NHibernate Profiler.

We initialize NHibernate profiler with a call to NHibernateProfiler.Initialize(). For 
best results, do this when your application begins, just after you have configured log4net.
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There's more...
NHibernate profiler also supports offline and remote profiling, as well as command-line 
options for use with build scripts and continuous integration systems. 

In addition to NHibernate warnings and errors, NH Profiler alerts us to 12 common misuses  
of NHibernate, which are as follows:

 f Transaction disposed without explicit rollback or commit: If no action is taken, 
transactions will rollback when disposed. However, this often indicates a missing 
commit rather than a desire to rollback the transaction.

 f Using a single session on multiple threads is likely a bug: A Session should only be 
used by one thread at a time. Sharing a session across threads is usually a bug, not 
an explicit design choice with proper locking. 

 f Use of implicit transaction is discouraged: As we have seen in Chapter 3, nearly all 
session activity should happen inside an NHibernate transaction. 

 f Excessive number of rows: In nearly all cases, this indicates a poorly designed query 
or bug. 

 f Large number of individual writes: This indicates a failure to batch writes, either 
because adonet.batch_size is not set, or possibly because an Identity-type POID 
generator is used, which effectively disables batching.

 f Select N+1: This alert indicates a particular type of anti-pattern where, typically, we 
load and enumerate a list of parent objects, lazy-loading their children as we move 
through the list. Instead, we should eagerly fetch those children before enumerating 
the list.

 f Superfluous updates, use inverse="true": NH Profiler detected an 
unnecessary update statement from a bi-directional one-to-many relationship. Use 
inverse="true" on the many side (list, bag, set, and others) of the relationship  
to avoid this.

 f Too many cache calls per session: This alert is targeted particularly at applications 
using a distributed (remote) second-level cache. By design, NHibernate does not 
batch calls to the cache, which can easily lead to hundreds of slow remote calls. It 
can also indicate an over reliance on the second-level cache, whether remote or local.

 f Too many database calls per session: This usually indicates a misuse of the 
database, such as querying inside a loop, a select N+1 bug, or an excessive  
number of writes.

 f Too many joins: A query contains a large number of joins. When executed in a batch, 
multiple simple queries with only a few joins often perform better than a complex 
query with many joins. This alert can also indicate unexpected Cartesian products.
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 f Unbounded result set: NH Profiler detected a query without a row limit. When  
the application is moved to production, these queries may return huge result sets, 
leading to catastrophic performance issues. As insurance against these issues, set  
a reasonable maximum on the rows returned by each query. 

 f Different parameter sizes result in inefficient query plan cache usage: NH Profiler 
detected two identical queries with different parameter sizes. Each of these queries 
will create a query plan. This problem grows exponentially with the size and number 
of parameters used. Setting prepare_sql to true allows NHibernate to generate 
queries with consistent parameter sizes. 

See also
 f Configuring NHibernate with App.config

 f Configuring log4net logging

Fast testing with SQLite in-memory 
database

Running a full range of tests for a large NHibernate application can take some time. In this 
recipe, I will show you how to use SQLite's in-memory database to speed up this process.

This is not meant to replace running integration tests against the real RDBMS 
before moving to production. Rather, it is a smoke test to provide feedback to 
developers quickly before running the slower integration tests.

Getting ready
1. Download and install NUnit from http://nunit.org. 

2. Download and install SQLite from http://sqlite.phxsoftware.com.

Note: This recipe will work with other test frameworks such 
as MSTest, MbUnit, and xUnit. Just replace the NUnit-specific 
attributes with those for your preferred framework.

How to do it...
1. Create a new, empty class library project.

2. Add references to our Eg.Core model from Chapter 1, as well as nunit.
framework, System.Data.Sqlite, log4net, NHibernate and NHibernate.
ByteCode.Castle. 

http://nunit.org
http://sqlite.phxsoftware.com
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System.Data.Sqlite has 32-bit and 64-bit versions. Use the 
appropriate file for your operating system and target platform.

3. Add an application configuration file with NHibernate and log4net configuration 
sections just as we did in Chapter 2.

4. Change the log4net configuration to use a ConsoleAppender.

5. Add a new, static class named NHConfigurator with the following code:
private const string CONN_STR =

  "Data Source=:memory:;Version=3;New=True;";

private static readonly Configuration _configuration;

private static readonly ISessionFactory _sessionFactory;

static NHConfigurator()

{

  

  _configuration = new Configuration().Configure()

    .DataBaseIntegration(db =>

    {

      db.Dialect<SQLiteDialect>();

      db.Driver<SQLite20Driver>();

      db.ConnectionProvider<TestConnectionProvider>();

      db.ConnectionString = CONN_STR;

    })

    .SetProperty(Environment.CurrentSessionContextClass,

      "thread_static");

  

  var props = _configuration.Properties;

  if (props.ContainsKey(Environment.ConnectionStringName))

    props.Remove(Environment.ConnectionStringName);

  _sessionFactory = _configuration.BuildSessionFactory();

}

public static Configuration Configuration

{

  get

  {

    return _configuration;

  }

}
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public static ISessionFactory SessionFactory

{

  get

  {

    return _sessionFactory;

  }

}

6. Add a new, abstract class named BaseFixture using the following code:
protected static ILog log = new Func<ILog>(() =>

{

  log4net.Config.XmlConfigurator.Configure();

  return LogManager.GetLogger(typeof(BaseFixture));

}).Invoke();

protected virtual void OnFixtureSetup() { }

protected virtual void OnFixtureTeardown() { }

protected virtual void OnSetup() { }

protected virtual void OnTeardown() { }

[TestFixtureSetUp]

public void FixtureSetup()

{

  OnFixtureSetup();

}

[TestFixtureTearDown]

public void FixtureTeardown()

{

  OnFixtureTeardown();

}

[SetUp]

public void Setup()

{

  OnSetup();

}

[TearDown]

public void Teardown()

{

  OnTeardown();

}
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7. Add a new, abstract class named NHibernateFixture, inherited from 
BaseFixture, with the following code:
protected ISessionFactory SessionFactory

{

  get

  {

    return NHConfigurator.SessionFactory;

  }

}

protected ISession Session

{

  get

  {

    return SessionFactory.GetCurrentSession();

  }

}

protected override void OnSetup()

{

  SetupNHibernateSession();

  base.OnSetup();

}

protected override void OnTeardown()

{

  TearDownNHibernateSession();

  base.OnTeardown();

}

protected void SetupNHibernateSession()

{

  TestConnectionProvider.CloseDatabase();

  SetupContextualSession();

  BuildSchema();

}

protected void TearDownNHibernateSession()

{

  TearDownContextualSession();

  TestConnectionProvider.CloseDatabase();

}

private void SetupContextualSession()
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{

  var session = SessionFactory.OpenSession();

  CurrentSessionContext.Bind(session);

}

private void TearDownContextualSession()

{

  var sessionFactory = NHConfigurator.SessionFactory;

  var session = CurrentSessionContext.Unbind(sessionFactory);

  session.Close();

}

private void BuildSchema()

{

  var cfg = NHConfigurator.Configuration;

  var schemaExport = new SchemaExport(cfg);

  schemaExport.Create(false, true);

}

8. Add a new class named PersistenceTests, inherited from NHibernateFixture.

9. Decorate the PersistenceTests class with NUnit's TestFixture attribute.

10. Add the following test method to PersistenceTests:
[Test]

public void Movie_cascades_save_to_ActorRole()

{

  Guid movieId;

  Movie movie = new Movie()

  {

    Name = "Mars Attacks",

    Description = "Sci-Fi Parody",

    Director = "Tim Burton",

    UnitPrice = 12M,

    Actors = new List<ActorRole>()

      {

        new ActorRole() {

          Actor = "Jack Nicholson",

          Role = "President James Dale"

        }

      }

  };

  using (var session = SessionFactory.OpenSession())
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  using (var tx = session.BeginTransaction())

  {

    movieId = (Guid)session.Save(movie);

    tx.Commit();

  }

  using (var session = SessionFactory.OpenSession())

  using (var tx = session.BeginTransaction())

  {

    movie = session.Get<Movie>(movieId);

    tx.Commit();

  }

  Assert.That(movie.Actors.Count == 1);

}

11. Build the project.

12. Start NUnit.

13. Select File | Open Project.

14. Select the project's compiled assembly from the bin\Debug folder.

15. Click on Run.

How it works...
NHConfigurator loads an NHibernate configuration from the App.config, then overwrites 
the dialect, driver, connection provider, and connection string properties to use SQLite instead. 
It also uses the thread static session context to provide sessions to code that may rely on 
NHibernate contextual sessions. Finally, we remove the connection.connection_string_
name property, as we have provided a connection string value.

The magic of SQLite happens in our custom TestConnectionProvider class. Typically, 
a connection provider will return a new connection from each call to GetConnection(), 
and close the connection when CloseConnection() is called. However, each SQLite in-
memory database only supports a single connection. That is, each new connection creates 
and connects to its own in-memory database. When the connection is closed, the database 
is lost. When each test begins, we close any lingering connections. This ensures we will get 
a fresh, empty database. When NHibernate first calls GetConnection(), we open a new 
connection. We return this same connection for each subsequent call. We ignore any calls 
to CloseConnection(). Finally, when the test is completed, we dispose the database 
connection, effectively disposing the in-memory database with it.

This provides a perfectly clean database for each test, ensuring that remnants of a  
previous test cannot contaminate the current test, possibly altering the results.



Testing

178

In BaseFixture, we configure log4net and set up some virtual methods that can  
be overridden in inherited classes.

In NHibernateFixture, we override OnSetup, which runs just before each test. For code 
that may use contextual sessions, we open a session and bind it to the context. We also 
create our database tables with NHibernate's schema export. This, of course, opens  
a database connection, establishing our in-memory database.

We override OnTeardown, which runs after each test, to unbind the session from the session 
context, close the session, and finally close the database connection. When the connection is 
closed, the database is erased from memory.

The test uses the session from the NHibernateFixture to save a movie with an associated 
ActorRole. We use two separate sessions to save, and then fetch the movie to ensure 
that when we fetch the movie, we load it from the database rather than just returning the 
instance from the first level cache. This gives us a true tests of what we have persisted in the 
database. Once we've fetched the movie back from the database, we make sure it still has 
an ActorRole. This test ensures that when we save a movie, the save cascades down to 
ActorRoles in the Actors list as well.

There's more...
While SQLite in-memory databases are fast, the SQLite engine has several limitations. For 
example, foreign key constraints are not enforced. Its speed makes it great for providing quick 
test feedback, but because of the limitations, before deploying the application, it is best to run 
all tests against the production database engine. There are a few approaches to testing with a 
real RDBMS, each with significant issues, which are as follows:

 f Drop and recreate the database between each test. This is extremely slow for 
enterprise-level databases. A full set of integration tests may take hours to run,  
but this is the least intrusive option.

 f Roll back every transaction to prevent changes to the database. This is very limiting. 
For instance, even our simple Persistence test would require some significant 
changes to work in this way. This may require you to change business logic to suit  
a testing limitation.

 f Clean up on a test-by-test basis. For instance, for every insert, perform a delete.  
This is a manual, labor-intensive, error-prone process. 

See also
 f Preloading data with SQLite

 f Using the Fluent NHibernate Persistence tester

 f Using the Ghostbusters test
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Preloading data with SQLite
It is often desirable to preload the database with test data before running tests.  In this recipe, I 
will show you how to quickly load the in-memory database with data from a SQLite file database.

Getting ready
Complete the previous recipe, Fast testing with SQLite in-memory database.

Create a SQLite file database with identical schema, containing test data. This can  
be accomplished in a number of ways. Perhaps the easiest is to export an in-memory 
database using SQLiteLoader.ExportData from this recipe. 

How to do it...
1. Add a new class named SQLiteLoader using the following code:

private static ILog log = LogManager.GetLogger(typeof(SQLiteLoad
er));

private const string ATTACHED_DB = "asdfgaqwernb";

public void ImportData(

  SQLiteConnection conn,

  string sourceDataFile)

{

  

  var tables = GetTableNames(conn);

  AttachDatabase(conn, sourceDataFile);

  foreach (var table in tables)

  {

    var sourceTable = string.Format("{0}.{1}", 

      ATTACHED_DB, table);

    CopyTableData(conn, sourceTable, table);

  }

  DetachDatabase(conn);

}

public void ExportData(

  SQLiteConnection conn,

  string destinationDataFile)

{

  var tables = GetTableNames(conn);
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  AttachDatabase(conn, destinationDataFile);

  foreach (var table in tables)

  {

    var destTable = string.Format("{0}.{1}",

      ATTACHED_DB, table);

    CopyTableData(conn, table, destTable);

  }

  DetachDatabase(conn);

}

private IEnumerable<string> GetTableNames(

  SQLiteConnection conn)

{

  string tables = SQLiteMetaDataCollectionNames.Tables;

  DataTable dt = conn.GetSchema(tables);

  return from DataRow R in dt.Rows

         select (string)R["TABLE_NAME"];

}

private void AttachDatabase(

  SQLiteConnection conn,

  string sourceDataFile)

{

  SQLiteCommand cmd = new SQLiteCommand(conn);

  cmd.CommandText = String.Format("ATTACH '{0}' AS {1}",

    sourceDataFile, ATTACHED_DB);

  log.Debug(cmd.CommandText);

  cmd.ExecuteNonQuery();

}

private void CopyTableData(

  SQLiteConnection conn,

  string source,

  string destination)

{

  SQLiteCommand cmd = new SQLiteCommand(conn);

  cmd.CommandText = string.Format(

    "INSERT INTO {0} SELECT * FROM {1}", 

    destination, source);
  log.Debug(cmd.CommandText);
  cmd.ExecuteNonQuery();
}  
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private void DetachDatabase(SQLiteConnection conn)
{
  SQLiteCommand cmd = new SQLiteCommand(conn);
  cmd.CommandText = string.Format(«DETACH {0}», ATTACHED_DB);
  log.Debug(cmd.CommandText);
  cmd.ExecuteNonQuery();

}

2. Add a new abstract class named DataDependentFixture, inherited  
from NHibernateFixture, using the following code:
protected abstract string GetSQLiteFilename();

protected override void OnSetup()

{

  base.OnSetup();

  var conn = (SQLiteConnection) Session.Connection;

  new SQLiteLoader().ImportData(conn, GetSQLiteFilename());

}

3. Add a new class named QueryTests, inherited from DataDependentFixture.

4. In QueryTests, override GetSQLiteFilename() to return the path to your  
SQLite file.

5. Add the following test to QueryTests:
[Test]

public void Director_query_should_return_one_movie()

{

  var query = Session.QueryOver<Movie>()

    .Where(m => m.Director == "Tim Burton");

  using (var tx = Session.BeginTransaction())

  {

    var movies = query.List<Movie>();

    Assert.That(movies.Count == 1);

    tx.Commit();

  }

}

6. Decorate QueryTests with NUnit's TestFixture attribute.

7. Build the project.

8. Run the NUnit tests.
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How it works...
In the QueryTests fixture, GetSQLiteFilename() returns the path of the SQLite file 
containing our test data. DataDependentFixture passes this file path and our connection 
to the SQLite in-memory database over to SQLiteLoader.ImportData().

We call SQLiteConnection.GetSchema() to create a list of table names in the database. 

Next, we attach the file database to the in-memory database using the command ATTACH 
'filePath' AS schemaName where filePath is the path to the file database 
and schemaName is a string constant. This allows us to reference the tables in the file 
database from the memory database. For example, if our file database has a table named 
tblTestData, and we use the string asdf for schemaName, we can execute SELECT * 
FROM asdf.tblTestData.

We loop through each table, executing the statement INSERT INTO tableName SELECT 
* FROM schemaName.tableName. This command quickly copies all the data from a table 
in the file database to an identical table in the memory database. Because SQLite doesn't 
enforce foreign key constraints, we do not need to be concerned with the order we use to  
copy this data.

Finally, we detach the file database using the command DETACH schemaName.

There's more...
We can use SQLiteLoader.ExportData to move data from the SQLite in-memory database 
to a file database. Also, each test fixture can use test data from a different file database.

See also
 f Fast testing with SQLite in-memory

 f Using the Ghostbusters test

Using the Fluent NHibernate Persistence 
Tester

Mappings are a critical part of any NHibernate application. In this recipe, I'll show you how  
to test those mappings using Fluent NHibernate's Persistence tester.

Getting ready
Complete the Fast testing with SQLite in-Memory database recipe mentioned previously  
in this chapter.
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How to do it...
1. Add a reference to FluentNHibernate.

2. In PersistenceTests.cs, add the following using statement:
using FluentNHibernate.Testing;

3. Add the following three tests to the PersistenceTests fixture:
[Test]

public void Product_persistence_test()

{

  new PersistenceSpecification<Product>(Session)

    .CheckProperty(p => p.Name, "Product Name")

    .CheckProperty(p => p.Description, "Product Description")

    .CheckProperty(p => p.UnitPrice, 300.85M)

    .VerifyTheMappings();

}

[Test]

public void ActorRole_persistence_test()

{

  new PersistenceSpecification<ActorRole>(Session)

  .CheckProperty(p => p.Actor, "Actor Name")

  .CheckProperty(p => p.Role, "Role")

  .VerifyTheMappings();

}

[Test]

public void Movie_persistence_test()

{

  new PersistenceSpecification<Movie>(Session)

  .CheckProperty(p => p.Name, "Movie Name")

  .CheckProperty(p => p.Description, "Movie Description")

  .CheckProperty(p => p.UnitPrice, 25M)

  .CheckProperty(p => p.Director, "Director Name")

  .CheckList(p => p.Actors, new List<ActorRole>()

  {

    new ActorRole() { Actor = "Actor Name", Role = "Role" }

  })

  .VerifyTheMappings();

}

4. Run these tests with NUnit.
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How it works...
The Persistence tester in Fluent NHibernate can be used with any mapping method.  
It performs the following four steps:

1. Create a new instance of the entity (Product, ActorRole, Movie) using the values 
provided. 

2. Save the entity to the database.

3. Get the entity from the database.

4. Verify that the fetched instance matches the original.

At a minimum, each entity type should have a simple Persistence test, such as the one shown 
previously. More information about the Fluent NHibernate Persistence tester can be found  
on their wiki at http://wiki.fluentnhibernate.org/Persistence_
specification_testing.

See also
 f Testing with the SQLite in-memory database

 f Using the Ghostbusters test

Using the Ghostbusters test
As part of automatic dirty checking, NHibernate compares the original state of an entity to  
its current state. An otherwise unchanged entity may be updated unnecessarily because a 
type conversion caused this comparison to fail. In this recipe, I will show you how to detect 
these "ghost update" issues with the Ghostbusters test.

Getting ready
Complete the recipe Fast testing with SQLite in-memory database.

How to do it...
1. Add a new class named Ghostbusters using the following code:

private static readonly ILog log = 

  LogManager.GetLogger(typeof(Ghostbusters));

private readonly Configuration _configuration;

private readonly ISessionFactory _sessionFactory;

private readonly Action<string> _failCallback;

private readonly Action<string> _inconclusiveCallback;

http://wiki.fluentnhibernate.org/Persistence_specification_testing
http://wiki.fluentnhibernate.org/Persistence_specification_testing
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public Ghostbusters(Configuration configuration,

ISessionFactory sessionFactory,

Action<string> failCallback,

Action<string> inconclusiveCallback)

{

  _configuration = configuration;

  _sessionFactory = sessionFactory;

  _failCallback = failCallback;

  _inconclusiveCallback = inconclusiveCallback;

}

public void Test()

{

  var mappedEntityNames = _configuration.ClassMappings

  .Select(mapping => mapping.EntityName);

  foreach (string entityName in mappedEntityNames)

    Test(entityName);

}

public void Test<TEntity>()

{

  Test(typeof(TEntity).FullName);

}

public void Test(string entityName)

{

  object id = FindEntityId(entityName);

  if (id == null)

  {

    var msg = string.Format(

     "No instances of {0} in database.", 

      entityName);

    _inconclusiveCallback.Invoke(msg);

    return;

  }

  log.DebugFormat("Testing entity {0} with id {1}", 

    entityName, id);

  Test(entityName, id);

}

public void Test(string entityName, object id)

{
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  var ghosts = new List<String>();

  var interceptor = new GhostInterceptor(ghosts);

  using (var session = _sessionFactory.OpenSession(interceptor))

  using (var tx = session.BeginTransaction())

  {

    session.Get(entityName, id);

    session.Flush();

    tx.Rollback();

  }

  if (ghosts.Any())

    _failCallback.Invoke(string.Join("\n", ghosts.ToArray()));

}

private object FindEntityId(string entityName)

{

  object id;

  using (var session = _sessionFactory.OpenSession())

  {

    var idQueryString = string.Format(

      "SELECT e.id FROM {0} e", 

      entityName);

    var idQuery = session.CreateQuery(idQueryString)

    .SetMaxResults(1);

    using (var tx = session.BeginTransaction())

    {

      id = idQuery.UniqueResult();

      tx.Commit();

    }

  }

  return id;

}

2. Add another class named GhostInterceptor using the following code:
private static readonly ILog log = 

  LogManager.GetLogger(typeof(GhostInterceptor));

private readonly IList<string> _ghosts;

private ISession _session;

public GhostInterceptor(IList<string> ghosts)

{

  _ghosts = ghosts;
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}

public override void SetSession(ISession session)

{

  _session = session;

}

public override bool OnFlushDirty(

object entity, object id, object[] currentState,

object[] previousState, string[] propertyNames, IType[] types)

{

  var msg = string.Format("Flush Dirty {0}", 

    entity.GetType().FullName);

  log.Error(msg);

  _ghosts.Add(msg);

  ListDirtyProperties(entity);

  return false;

}

public override bool OnSave(

object entity, object id, object[] state,

string[] propertyNames, IType[] types)

{

  var msg = string.Format("Save {0}", 

    entity.GetType().FullName);

  log.Error(msg);

  _ghosts.Add(msg);

  return false;

}

public override void OnDelete(

object entity, object id, object[] state,

string[] propertyNames, IType[] types)

{

  var msg = string.Format("Delete {0}", 

    entity.GetType().FullName);

  log.Error(msg);

  _ghosts.Add(msg);

}

private void ListDirtyProperties(object entity)

{

  string className = 

    NHibernateProxyHelper.GuessClass(entity).FullName;
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  var sessionImpl = _session.GetSessionImplementation();

  var persister = 

    sessionImpl.Factory.GetEntityPersister(className);

  var oldEntry = 

    sessionImpl.PersistenceContext.GetEntry(entity);

  if ((oldEntry == null) && (entity is INHibernateProxy))

  {

    var proxy = entity as INHibernateProxy;

    object obj = 

      sessionImpl.PersistenceContext.Unproxy(proxy);

    oldEntry = sessionImpl.PersistenceContext.GetEntry(obj);

  }

  object[] oldState = oldEntry.LoadedState;

  object[] currentState = persister.GetPropertyValues(entity, 

    sessionImpl.EntityMode);

  int[] dirtyProperties = persister.FindDirty(currentState, 

    oldState, entity, sessionImpl);

  foreach (int index in dirtyProperties)

  {

    var msg = string.Format(

      "Dirty property {0}.{1} was {2}, is {3}.",

      className,

      persister.PropertyNames[index],

      oldState[index] ?? "null",

      currentState[index] ?? "null");

    log.Error(msg);

    _ghosts.Add(msg);

  }

}

3. Add the following test to the PersistenceTests fixture:
[Test]

public void GhostbustersTest()

{

  using (var tx = Session.BeginTransaction())

  {

    Session.Save(new Movie()
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    {
      Name = "Ghostbusters",
      Description = "Science Fiction Comedy",
      Director = "Ivan Reitman",
      UnitPrice = 7.97M,
      Actors = new List<ActorRole>()
      {
        new ActorRole() 
        { 
          Actor = "Bill Murray",
          Role = "Dr. Peter Venkman"
        }
      }
    });

    Session.Save(new Book()
    {
      Name = "Who You Gonna Call?",
      Description = "The Real Ghostbusters comic series",
      UnitPrice = 30.00M,
      Author = "Dan Abnett",
      ISBN = "1-84576-141-3"
    });

    tx.Commit();
  }

  new Ghostbusters(
    NHConfigurator.Configuration,
    NHConfigurator.SessionFactory,
    new Action<string>(msg => Assert.Fail(msg)),
    new Action<string>(msg => Assert.Inconclusive(msg))
  ).Test();

}

4. Run the tests with NUnit.

How it works...
The Ghostbusters test finds issues where a session's automatic dirty checking determines 
that an entity is dirty (has unsaved changes) when, in fact, no changes were made. This 
can happen for a few reasons, but it commonly occurs when a database field that allows 
nulls is mapped to a non-nullable property such as integer or DateTime, or when an enum 
property is mapped with type="int".  For example, when a null value is loaded in to an 
integer property, the value is automatically converted to integer's default value, zero. When 
the session is flushed, automatic dirty checking will see that the value is no longer null and 
update the database value to zero. This is referred to as a "ghost" update.
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At the heart of our Ghostbusters test, we have the GhostInterceptor. An interceptor 
allows an application to intercept session events before any database action occurs. This 
interceptor can be set globally on the NHibernate configuration or passed as a parameter to 
sessionFactory.OpenSession as we've done in this recipe.

When we flush a session containing a dirty entity, the interceptor's OnFlushDirty method 
is called. GhostInterceptor compares the current values of the dirty entity's properties 
to their original values and reports these back to our Ghostbusters class.  Similarly, we also 
intercept Save and Delete events, though these are much less common.

Our Ghostbusters class coordinates the testing. For example, we can call 
Test(entityName,id) to test using a particular instance of an entity. If we  
strip this test down to its core, we end up with this:

session.Get(entityName, id);
session.Flush();
tx.Rollback();

Notice that we simply get an entity from the database and immediately flush the session. This 
runs automatic dirty checking on a single unchanged entity. Any database changes resulting 
from this Flush() are ghosts.

If we call Test(entityName) or Test<Entity>(), Ghostbusters will first query the 
database for an ID for the entity, then run the test. For a test on our Movie entity, this ID 
query would be:

SELECT e.id FROM Eg.Core.Movie e

This lowercase id property has special meaning in HQL. In HQL, lowercase id always refers 
to the entity's POID. In our model, it happens to be named Id, but we could have just as easily 
named it "Bob."

Finally, if we simply call the Test() method, Ghostbusters will test one instance of each 
mapped entity. This is the method we use in our tests.

This Ghostbusters test has somewhat limited value in automated tests as we've done here.  
It really shines when testing migrated or updated production data.

See also
 f Using the Hibernate Query Language
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Data Access Layer

In this chapter, we will cover the following topics:

 f Transaction Auto-wrapping for the data access layer

 f Setting up an NHibernate repository

 f Using Named Queries in the data access layer

 f Using ICriteria in the data access layer

 f Using Paged Queries in the data access layer

 f Using LINQ specifications in the data access layer

Introduction
There are two styles of data access layer common in today's applications. The first recipe 
shows the beginnings of a typical data access object. The remaining recipes show how  
to set up a repository-based data access layer with NHibernate's various APIs.

Transaction Auto-wrapping for the data 
access layer

In this recipe, I'll show you how we can set up the data access layer to wrap all data access  
in NHibernate transactions automatically.

Getting ready

Complete the Eg.Core model and mappings from Chapter 1.
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How to do it...
1. Create a new class library named Eg.Core.Data.

2. Add a reference to NHibernate.dll and the Eg.Core project.

3. Add the following two DAO classes:
public class DataAccessObject<T, TId>

  where T : Entity<TId>

{

  private readonly ISessionFactory _sessionFactory;

  private ISession session

  {

    get

    {

      return _sessionFactory.GetCurrentSession();

    }

  }

  public DataAccessObject(ISessionFactory sessionFactory)

  {

    _sessionFactory = sessionFactory;

  } 

  public T Get(TId id)

  {

    return Transact(() => session.Get<T>(id));

  }

  public T Load(TId id)

  {

    return Transact(() => session.Load<T>(id));

  }

  public void Save(T entity)

  {

    Transact(() => session.SaveOrUpdate(entity));

  }

  public void Delete(T entity)

  {

    Transact(() => session.Delete(entity));

  }

  private TResult Transact<TResult>(Func<TResult> func)
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  {

    if (!session.Transaction.IsActive)

    {

      // Wrap in transaction

      TResult result;

      using (var tx = session.BeginTransaction())

      {

        result = func.Invoke();

        tx.Commit();

      }

      return result;

    }

    // Don't wrap;

    return func.Invoke();

  }

  private void Transact(Action action)

  {

    Transact<bool>(() =>

    {

      action.Invoke();

      return false;

    });

  }

}

public class DataAccessObject<T>

  : DataAccessObject<T, Guid>

  where T : Entity

{

}

How it works...
NHibernate requires that all data access occurs inside an NHibernate transaction. As we saw 
with the Transaction action filter recipe in Chapter 4, this can be easily accomplished with AOP.

Remember, the ambient transaction created by TransactionScope 
is not a substitute for a NHibernate transaction.
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This recipe shows a more explicit approach. To ensure that at least all our data access layer 
calls are wrapped in transactions, we create a private Transact function that accepts a 
delegate, consisting of some data access methods, such as session.Save or session.
Get. This Transact function first checks if the session has an active transaction. If it 
does, Transact simply invokes the delegate. If it doesn't, it creates an explicit NHibernate 
transaction, then invokes the delegate, and finally commits the transaction. If the data access 
method throws an exception, the transaction will be rolled back automatically as the exception 
bubbles up through the using block.

There's more...
This transactional auto-wrapping can also be set up using SessionWrapper from the unofficial 
NHibernate AddIns project at http://code.google.com/p/unhaddins. This class wraps 
a standard NHibernate session. By default, it will throw an exception when the session is used 
without an NHibernate transaction. However, it can be configured to check for and create 
a transaction automatically, much in the same way I've shown you here. This is the same 
SessionWrapper we used in the Conversation per Business Transaction recipe in Chapter 3.

See also
 f Setting up an NHibernate repository

Setting up an NHibernate Repository
Many developers prefer the repository pattern over data access objects. In this recipe,  
I'll show you how to set up the repository pattern with NHibernate.

Getting ready

Set up the Eg.Core project with the model and mappings from Chapter 1.

How to do it...
1. Create a new, empty class library project named Eg.Core.Data.

2. Add a reference to Eg.Core project in Chapter 1.

3. Add the following IRepository interface:
public interface IRepository<T>: IEnumerable<T> 

where T : Entity 

{ 

  void Add(T item);

  bool Contains(T item);

  int Count { get; }
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  bool Remove(T item);

}

4. Create a new, empty class library project named Eg.Core.Data.Impl.

5. Add references to Eg.Core and Eg.Core.Data

6. Add a new abstract class named NHibernateBase using the following code:
protected readonly ISessionFactory _sessionFactory;

protected virtual ISession session

{

  get

  {

    return _sessionFactory.GetCurrentSession();

  }

}

public NHibernateBase(ISessionFactory sessionFactory)

{

  _sessionFactory = sessionFactory;

}

protected virtual TResult Transact<TResult>(

Func<TResult> func)

{

  if (!session.Transaction.IsActive)

  {

    // Wrap in transaction

    TResult result;

    using (var tx = session.BeginTransaction())

    {

      result = func.Invoke();

      tx.Commit();

    }

    return result;

  }

  // Don't wrap;

  return func.Invoke();

}

protected virtual void Transact(Action action)

{

  Transact<bool>(() =>

  {
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    action.Invoke();

    return false;

  });

}

7. Add a new class named NHibernateRepository using the following code:
public class NHibernateRepository<T> : 

  NHibernateBase,

  IRepository<T> where T : Entity

{

  public NHibernateRepository(ISessionFactory sessionFactory)

    : base(sessionFactory)

  {

  }

  public void Add(T item)

  {

    Transact(() => session.Save(item));

  }

  public bool Contains(T item)

  {

    if (item.Id == default(Guid))

      return false;

    return Transact(() => session.Get<T>(item.Id)) != null;

  }

  public int Count

  {

    get

    {

      return Transact(() => session.Query<T>().Count());

    }

  }

  public bool Remove(T item)

  {

    Transact(() => session.Delete(item));

    return true;

  }

  public IEnumerator<T> GetEnumerator()

  {

    return Transact(() => session.Query<T>()
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           .Take(1000).GetEnumerator());

  }

  IEnumerator IEnumerable.GetEnumerator()

  {

    return Transact(() => GetEnumerator());

  }

}

How it works...
The repository pattern, as explained in http://martinfowler.com/eaaCatalog/
repository.htm, has two key features:

 f It behaves as an in-memory collection

 f Query specifications are submitted to the repository for satisfaction.

In this recipe, we are concerned only with the first feature, behaving as an in-memory 
collection. The remaining recipes in this chapter will build on this base, and show various 
methods for satisfying the second point.

Because our repository should act like an in-memory collection, it makes sense that  
our IRepository<T> interface should resemble ICollection<T>.

Our NHibernateBase class provides both contextual session management and the automatic 
transaction wrapping explained in the previous recipe.

NHibernateRepository simply implements the members of IRepository<T>.

There's more...
The Repository pattern reduces data access to its absolute simplest form, but this 
simplification comes with a price. We lose much of the power of NHibernate behind an 
abstraction layer. Our application must either do without even basic session methods  
like Merge, Refresh, and Load, or allow them to leak through the abstraction.

See also
 f Transaction Auto-wrapping for the data access layer

 f Using Named Queries in the data access layer

 f Using ICriteria in the data access layer

 f Using Paged Queries in the data access layer

 f Using LINQ specifications in the data access layer
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Using Named Queries in the data 
access layer

Named Queries encapsulated in query objects is a powerful combination. In this recipe,  
I'll show you how to use Named Queries with your data access layer.

Getting ready
Download the latest release of the Common Service Locator from http://
commonservicelocator.codeplex.com, and extract Microsoft.Practices.
ServiceLocation.dll to your solution's libs folder.

Complete the previous recipe, Setting up an NHibernate repository.

Following the Fast testing with SQLite in-memory database recipe in Chapter 5,  
create a new NHibernate test project named Eg.Core.Data.Impl.Test.

Include the Eg.Core.Data.Impl assembly as an additional mapping assembly  
in your test project's App.Config with the following xml:

<mapping assembly="Eg.Core.Data.Impl"/>

How to do it...
1. In the Eg.Core.Data project, add a folder for the Queries namespace.

2. Add the following IQuery interfaces:
public interface IQuery

{

}

public interface IQuery<TResult> : IQuery 

{

  TResult Execute();

}

3. Add the following IQueryFactory interface:
public interface IQueryFactory

{

  TQuery CreateQuery<TQuery>() where TQuery :IQuery;

}
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4. Change the IRepository interface to implement the IQueryFactory interface,  
as shown in the following code:
public interface IRepository<T> 

: IEnumerable<T>, IQueryFactory

  where T : Entity 

{

  void Add(T item);

  bool Contains(T item);

  int Count { get; }

  bool Remove(T item);

}

5. In the Eg.Core.Data.Impl project, change the NHibernateRepository 
constructor and add the _queryFactory field, as shown in the following code:
private readonly IQueryFactory _queryFactory;

public NHibernateRepository(ISessionFactory sessionFactory,

  IQueryFactory queryFactory)

  : base(sessionFactory)

{

  _queryFactory = queryFactory;

}

6. Add the following method to NHibernateRepository:
public TQuery CreateQuery<TQuery>() where TQuery : IQuery

{

  return _queryFactory.CreateQuery<TQuery>();

}

7. In the Eg.Core.Data.Impl project, add a folder for the Queries namespace.

8. To the Eg.Core.Data.Impl project, add a reference to Microsoft.Practices.
ServiceLocation.dll.

9. To the Queries namespace, add this QueryFactory class:
public class QueryFactory : IQueryFactory 

{

  private readonly IServiceLocator _serviceLocator;

  public QueryFactory(IServiceLocator serviceLocator)

  {

    _serviceLocator = serviceLocator;

  }

  public TQuery CreateQuery<TQuery>() where TQuery : IQuery

  {
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    return _serviceLocator.GetInstance<TQuery>();

  }

}

10. Add the following NHibernateQueryBase class:
public abstract class NHibernateQueryBase<TResult> 

  : NHibernateBase, IQuery<TResult>

{

  protected NHibernateQueryBase(

    ISessionFactory sessionFactory)

    : base(sessionFactory) { }

  public abstract TResult Execute();

}

11. Add an empty INamedQuery interface, as shown in the following code:
public interface INamedQuery

{

  string QueryName { get; }

}

12. Add a NamedQueryBase class, as shown in the following code:
public abstract class NamedQueryBase<TResult>

  : NHibernateQueryBase<TResult>, INamedQuery

{

  protected NamedQueryBase(ISessionFactory sessionFactory)

    : base(sessionFactory) { }

  public override TResult Execute()

  {

    var nhQuery = GetNamedQuery();

    return Transact(() => Execute(nhQuery));

  }

  protected abstract TResult Execute(IQuery query);

  protected virtual IQuery GetNamedQuery()

  {

    var nhQuery = session.GetNamedQuery(

      ((INamedQuery) this).QueryName);

    SetParameters(nhQuery);

    return nhQuery;

  }

  protected abstract void SetParameters(IQuery nhQuery);
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  public virtual string QueryName

  {

    get { return GetType().Name; }

  }

}

13. In Eg.Core.Data.Impl.Test, add a test fixture named QueryTests inherited 
from NHibernateFixture.

14. Add the following test and three helper methods:
[Test]

public void NamedQueryCheck()

{

  var errors = new StringBuilder();

  var queryObjectTypes = GetNamedQueryObjectTypes();

  var mappedQueries = GetNamedQueryNames();

  foreach (var queryType in queryObjectTypes)

  {

    var query = GetQuery(queryType);

    if (!mappedQueries.Contains(query.QueryName))

    {

      errors.AppendFormat(

        "Query object {0} references non-existent " + 

        "named query {1}.",

        queryType, query.QueryName);

      errors.AppendLine();

    }

  }

  if (errors.Length != 0)

    Assert.Fail(errors.ToString());

}

private IEnumerable<Type> GetNamedQueryObjectTypes()

{

  var namedQueryType = typeof(INamedQuery);

  var queryImplAssembly = typeof(BookWithISBN).Assembly;

  var types = from t in queryImplAssembly.GetTypes()

              where namedQueryType.IsAssignableFrom(t)

              && t.IsClass

              && !t.IsAbstract
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              select t;

  return types;

}

private IEnumerable<string> GetNamedQueryNames()

{

  var nhCfg = NHConfigurator.Configuration;

  var mappedQueries = nhCfg.NamedQueries.Keys

    .Union(nhCfg.NamedSQLQueries.Keys);

  return mappedQueries;

}

private INamedQuery GetQuery(Type queryType)

{

  return (INamedQuery) Activator

    .CreateInstance(queryType, 

    new object[] { SessionFactory });

}

15. For our example query, in the Queries namespace of Eg.Core.Data,  
add the following interface:
public interface IBookWithISBN : IQuery<Book>

{

  string ISBN { get; set; }

}

16. Add the implementation to the Queries namespace of Eg.Core.Data.Impl  
using the following code:
public class BookWithISBN : 

  NamedQueryBase<Book>, IBookWithISBN

{

  public BookWithISBN(ISessionFactory sessionFactory)

    : base(sessionFactory) { }

  public string ISBN { get; set; }

  protected override void SetParameters(

    NHibernate.IQuery nhQuery)

  {

    nhQuery.SetParameter("isbn", ISBN);

  }

  protected override Book Execute(NHibernate.IQuery query)

  {
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    return query.UniqueResult<Book>();

  }

}

17. Finally, add the embedded resource mapping, BookWithISBN.hbm.xml, to 
Eg.Core.Data.Impl with the following xml code:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">

  <query name="BookWithISBN">

    <![CDATA[

    from Book b where b.ISBN = :isbn

    ]]>

  </query>

</hibernate-mapping>

How it works...
As we learned in the previous recipe, according to the repository pattern, the repository 
is responsible for fulfilling queries, based on the specifications submitted to it. These 
specifications are limiting. They only concern themselves with whether a particular item 
matches the given criteria. They don't care for other necessary technical details, such as  
eager loading of children, batching, query caching, and so on. We need something more 
powerful than simple where clauses. We lose too much to the abstraction.

The query object pattern defines a query object as a group of criteria that can self-organize 
in to a SQL query. The query object is not responsible for the execution of this SQL. This is 
handled elsewhere, by some generic query runner, perhaps inside the repository. While a 
query object can better express the different technical requirements, such as eager loading, 
batching, and query caching, a generic query runner can't easily implement those concerns 
for every possible query, especially across the half-dozen query APIs provided by NHibernate.

These details about the execution are specific to each query, and should be handled by the 
query object. This enhanced query object pattern, as Fabio Maulo has named it, not only self-
organizes into SQL but also executes the query, returning the results. In this way, the technical 
concerns of a query's execution are defined and cared for with the query itself, rather than 
spreading into some highly complex, generic query runner.

According to the abstraction we've built, the repository represents the collection of entities 
that we are querying. Since the two are already logically linked, if we allow the repository to 
build the query objects, we can add some context to our code. For example, suppose we have 
an application service that runs product queries. When we inject dependencies, we could 
specify IQueryFactory directly. This doesn't give us much information beyond "This service 
runs queries." If, however, we inject IRepository<Product>, we have a much better idea 
about what data the service is using.
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The IQuery interface is simply a marker interface for our query objects. Besides advertising 
the purpose of our query objects, it allows us to easily identify them with reflection.

The IQuery<TResult> interface is implemented by each query object. It specifies only  
the return type and a single method to execute the query.

The IQueryFactory interface defines a service to create query objects. For the purpose of 
explanation, the implementation of this service, QueryFactory, is a simple service locator. 
IQueryFactory is used internally by the repository to instantiate query objects.

The NamedQueryBase class handles most of the plumbing for query objects, based on 
named HQL and SQL queries. As a convention, the name of the query is the name of the 
query object type. That is, the underlying named query for BookWithISBN is also named 
BookWithISBN. Each individual query object must simply implement SetParameters and 
Execute(NHibernate.IQuery query), which usually consists of a simple call to query.
List<SomeEntity>() or query.UniqueResult<SomeEntity>().

The INamedQuery interface both identifies the query objects based on Named Queries, and 
provides access to the query name. The NamedQueryCheck test uses this to verify that each 
INamedQuery query object has a matching named query.

Each query has an interface. This interface is used to request the query object from the 
repository. It also defines any parameters used in the query. In this example, IBookWithISBN 
has a single string parameter, ISBN. The implementation of this query object sets the :isbn 
parameter on the internal NHibernate query, executes it, and returns the matching Book 
object.

Finally, we also create a mapping containing the named query BookWithISBN, which  
is loaded into the configuration with the rest of our mappings.

There's more...
The code used in the query object setup would look like the following code:

var query = bookRepository.CreateQuery<IBookWithISBN>();
query.ISBN = "12345";
var book = query.Execute();

See also
 f Transaction Auto-wrapping for the data access layer

 f Setting up an NHibernate repository

 f Using ICriteria in the data access layer

 f Using Paged Queries in the data access layer

 f Using LINQ specifications in the data access layer
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Using ICriteria in the data access layer
For queries where the criteria are not known in advance, such as a website's advanced 
product search, ICriteria queries are more appropriate than named HQL queries. In this 
recipe, I'll show you how to use the same DAL infrastructure with ICriteria and QueryOver 
queries.

Getting ready
Complete the previous recipe, Using Named Queries in the data access layer.

How to do it...
1. In Eg.Core.Data.Impl.Queries, add a new, empty, public interface named 

ICriteriaQuery.
2. Add a class named CriteriaQueryBase with the following code:

public abstract class CriteriaQueryBase<TResult> : 

  NHibernateQueryBase<TResult>, ICriteriaQuery 

{

  public CriteriaQueryBase(ISessionFactory sessionFactory)

    : base(sessionFactory) { }

  public override TResult Execute()

  {

    var criteria = GetCriteria();

    return Transact(() => Execute(criteria));

  }

  protected abstract ICriteria GetCriteria();

  protected abstract TResult Execute(ICriteria criteria);

}

3. In Eg.Core.Data.Queries, add the following enum:
public enum AdvancedProductSearchSort

{

  PriceAsc,

  PriceDesc,

  Name

}
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4. Add a new interface named IAdvancedProductSearch with the following code:
public interface IAdvancedProductSearch 

: IQuery<IEnumerable<Product>>

{

  string Name { get; set; }

  string Description { get; set; }

  decimal? MinimumPrice { get; set; }

  decimal? MaximumPrice { get; set; }

  AdvancedProductSearchSort Sort { get; set; }

}

5. In Eg.Core.Data.Impl.Queries, add the following class:
public class AdvancedProductSearch

  : CriteriaQueryBase<IEnumerable<Product>>, 

    IAdvancedProductSearch 

{

  public AdvancedProductSearch(ISessionFactory sessionFactory)

    : base(sessionFactory) { }

  public string Name { get; set; }

  public string Description { get; set; }

  public decimal? MinimumPrice { get; set; }

  public decimal? MaximumPrice { get; set; }

  public AdvancedProductSearchSort

    Sort { get; set; }

  protected override ICriteria GetCriteria()

  {

    return GetProductQuery().UnderlyingCriteria;

  }

  protected override IEnumerable<Product> Execute(

    ICriteria criteria)

  {

    return criteria.List<Product>();

  }

  private IQueryOver GetProductQuery()

  {

    var query = session.QueryOver<Product>();

    AddProductCriterion(query);

    return query;

  }
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  private void AddProductCriterion<T>(

    IQueryOver<T, T> query) where T : Product 

  {

    if (!string.IsNullOrEmpty(Name))

      query = query.WhereRestrictionOn(p => p.Name)

        .IsInsensitiveLike(Name, MatchMode.Anywhere);

    if (!string.IsNullOrEmpty(Description))

      query.WhereRestrictionOn(p => p.Description)

        .IsInsensitiveLike(Description, MatchMode.Anywhere);

    if (MinimumPrice.HasValue)

      query.Where(p => p.UnitPrice >= MinimumPrice);

    if (MaximumPrice.HasValue)

      query.Where(p => p.UnitPrice <= MaximumPrice);

    switch (Sort)

    {

      case AdvancedProductSearchSort.PriceDesc:

        query = query.OrderBy(p => p.UnitPrice).Desc;

        break;

      case AdvancedProductSearchSort.Name:

        query = query.OrderBy(p => p.Name).Asc;

        break;

      default:

        query = query.OrderBy(p => p.UnitPrice).Asc;

        break;

    }

  }

}

How it works...
In this recipe, we reuse the same repository and query infrastructure from the Using Named 
Queries in The Data Access Layer recipe. Our simple base class for ICriteria-based query 
objects splits query creation from query execution and handles transactions for us automatically.

The example query we use is typical for an "advanced product search" use case. When a user 
fills in a particular field on the UI, the corresponding criterion is included in the query. When 
the user leaves the field blank, we ignore it.
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We check each search parameter for data. If the parameter has data, we add the appropriate 
criterion to the query. Finally, we set the order by clause based on the Sort parameter and 
return the completed ICriteria query. The query is executed inside a transaction, and the 
results are returned.

There's more...
For this type of query, typically, each query parameter would be set to the value of  
some field on your product search UI. On using this query, your code looks like this:

var query = repository.CreateQuery<IAdvancedProductSearch>();
query.Name = searchCriteria.PartialName;
query.Description = searchCriteria.PartialDescription;
query.MinimumPrice = searchCriteria.MinimumPrice;
query.MaximumPrice = searchCriteria.MaximumPrice;
query.Sort = searchCriteria.Sort;
var results = query.Execute();

See also
 f Transaction Auto-wrapping for The Data Access Layer

 f Setting up an NHibernate Repository

 f Using Named Queries in The Data Access Layer

 f Using Paged Queries in The Data Access Layer

 f Using LINQ specifications in The Data Access Layer

Using Paged Queries in the data 
access layer

In an effort to avoid overwhelming the user, and increase application responsiveness, large 
result sets are commonly broken into smaller pages of results. In this recipe, I'll show you  
how we can easily add paging to a QueryOver query object in our DAL.

Getting ready
Complete the recipe, Using Named Queries in the data access layer.
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How to do it...
1. In Eg.Core.Data.Queries, add a class using the following code:

public class PagedResult<T>

{

  public int TotalItems { get; set; }

  public IEnumerable<T> PageOfResults { get; set; }

}

2. Add an interface using the following code:
public interface IPagedQuery<T>

  : IQuery<PagedResult<T>>

{

  int PageNumber { get; set; }

  int ItemsPerPage { get; set; }

}

3. In Eg.Core.Data.Impl.Queries, add the following class:
public abstract class PagedQueryOverBase<T>

  : NHibernateQueryBase<PagedResult<T>>,

    IPagedQuery<T>

{

  public PagedQueryOverBase(ISessionFactory sessionFactory)

    : base(sessionFactory) { }

  public int PageNumber { get; set; }

  public int ItemsPerPage { get; set; }

  public override PagedResult<T> Execute()

  {

    var query = GetQuery();

    SetPaging(query);

    return Transact(() => Execute(query));

  }

  protected abstract IQueryOver<T, T> GetQuery();

  protected virtual void SetPaging(

    IQueryOver<T, T> query)

  {

    int maxResults = ItemsPerPage;

    int firstResult = (PageNumber - 1) * ItemsPerPage;

    query.Skip(firstResult).Take(maxResults);
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  }

  protected virtual PagedResult<T> Execute(

    IQueryOver<T, T> query)

  {

    var results = query.Future<T>();

    var count = query.ToRowCountQuery().FutureValue<int>();

    return new PagedResult<T>()

    {

      PageOfResults = results,

      TotalItems = count.Value

    };

  }

}

4. In Eg.Core.Data.Queries, add an interface for the example query:
public interface IPagedProductSearch

  : IPagedQuery<Product>

{

  string Name { get; set; }

  string Description { get; set; }

  decimal? MinimumPrice { get; set; }

  decimal? MaximumPrice { get; set; }

  PagedProductSearchSort Sort { get; set; }

}

5. Add the following enumeration for choosing the sort option:
public enum PagedProductSearchSort

{

  PriceAsc,

  PriceDesc,

  Name

}

6. In Eg.Core.Data.Impl.Queries, implement the interface using the following class:
public class PagedProductSearch

  : PagedQueryOverBase<Product>, 

    IPagedProductSearch  

{

  public PagedProductSearch(ISessionFactory sessionFactory)

    : base(sessionFactory) { }
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  public string Name { get; set; }

  public string Description { get; set; }

  public decimal? MinimumPrice { get; set; }

  public decimal? MaximumPrice { get; set; }

  public PagedProductSearchSort

    Sort { get; set; }

  protected override IQueryOver<Product, Product> GetQuery()

  {

    var query = session.QueryOver<Product>();

    if (!string.IsNullOrEmpty(Name))

      query = query.WhereRestrictionOn(p => p.Name)

        .IsInsensitiveLike(Name, MatchMode.Anywhere);

    if (!string.IsNullOrEmpty(Description))

      query.WhereRestrictionOn(p => p.Description)

        .IsInsensitiveLike(Description, MatchMode.Anywhere);

    if (MinimumPrice.HasValue)

      query.Where(p => p.UnitPrice >= MinimumPrice);

    if (MaximumPrice.HasValue)

      query.Where(p => p.UnitPrice <= MaximumPrice);

    switch (Sort)

    {

      case PagedProductSearchSort.PriceDesc:

        query = query.OrderBy(p => p.UnitPrice).Desc;

        break;

      case PagedProductSearchSort.Name:

        query = query.OrderBy(p => p.Name).Asc;

        break;

      default:

        query = query.OrderBy(p => p.UnitPrice).Asc;

        break;

    }

    return query;

  }

}
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How it works...
In this recipe, we've defined a common PagedResult<T> return type for all paged queries. 
We've also defined the IPagedQuery<T> interface, which specifies the paging parameters 
and a return type of PagedResult<T>.

As defined in PagedQueryOverBase, each subclassed query object must return a standard 
IQueryOver<T, T> query from GetQuery(). The PagedQueryOverBase class sets the 
appropriate Skip and Take values based on the specified page number and items per page. 
Then it uses futures to get the results. The row count query is created from the result set 
query using the new ToRowCountQuery() method. The future queries are executed when 
the count query result is put into the PagedResult<T> object.

See also
 f Transaction Auto-wrapping for the data access layer

 f Setting up an NHibernate repository

 f Using Named Queries in the data access layer

 f Using ICriteria in the data access layer

 f Using LINQ specifications in the data access layer

Using LINQ Specifications in the data 
access layer

With the completion of LINQ to NHibernate for NHibernate 3.0, we can easily implement 
the specification pattern. In this recipe, I'll show you how to set up and use the specification 
pattern with the NHibernate repository.

Getting ready
Download the LinqSpecs library from http://linqspecs.codeplex.com. Copy 
LinqSpecs.dll from the Downloads folder to your solution's libs folder.

Complete the Setting up an NHibernate Repository recipe.

How to do it...
1. In Eg.Core.Data and Eg.Core.Data.Impl, add a reference to LinqSpecs.dll.

2. Add these two methods to the IRepository interface.
IEnumerable<T> FindAll(Specification<T> specification);

T FindOne(Specification<T> specification);
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3. Add the following three methods to NHibernateRepository:
public IEnumerable<T> FindAll(Specification<T> specification)

{

  var query = GetQuery(specification);

  return Transact(() => query.ToList());

}

public T FindOne(Specification<T> specification)

{

  var query = GetQuery(specification);

  return Transact(() => query.SingleOrDefault());

}

private IQueryable<T> GetQuery(

  Specification<T> specification)

{

  return session.Query<T>()

    .Where(specification.IsSatisfiedBy());

}

4. Add the following specification to Eg.Core.Data.Queries:
public class MoviesDirectedBy : Specification<Movie>

{

  private readonly string _director;

  public MoviesDirectedBy(string director)

  {

    _director = director;

  }

  public override 

     Expression<Func<Movie, bool>> IsSatisfiedBy()

  {

    return m => m.Director == _director;

  }

}

5. Add another specification to Eg.Core.Data.Queries, using the following code:
public class MoviesStarring : Specification<Movie>

{

  private readonly string _actor;

  public MoviesStarring(string actor)

  {
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    _actor = actor;

  }

  public override 

     Expression<Func<Movie, bool>> IsSatisfiedBy()

  {

    return m => m.Actors.Any(a => a.Actor == _actor);

  }

}

How it works...
The specification pattern allows us to separate the process of selecting objects from the 
concern of which objects to select. The repository handles selecting objects, while the 
specification objects are concerned only with the objects that satisfy their requirements.

In our specification objects, the IsSatisfiedBy method of the specification objects  
returns a LINQ expression to determine which objects to select.

In the repository, we get an IQueryable from the session, pass this LINQ expression  
to the Where method, and execute the LINQ query. Only the objects that satisfy the 
specification will be returned.

For a detailed explanation of the specification pattern, check out http://martinfowler.
com/apsupp/spec.pdf.

There's more...
To use our new specifications with the repository, use the following code:

var movies = repository.FindAll(
    new MoviesDirectedBy("Stephen Spielberg"));

Specification composition
We can also combine specifications to build more complex queries. For example,  
the following code will find all movies directed by Steven Speilberg starring Harrison Ford:

var movies = repository.FindAll(
               new MoviesDirectedBy("Steven Spielberg")
               & new MoviesStarring("Harrison Ford"));

This may result in expression trees that NHibernate is unable to parse. Be sure to test  
each combination.

http://martinfowler.com/apsupp/spec.pdf
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See also
 f Transaction Auto-wrapping for the data access layer

 f Setting up an NHibernate repository

 f Using Named Queries in the data access layer

 f Using ICriteria in the data access layer

 f Using Paged Queries in the data access layer





7
Extending NHibernate

In this chapter, we will cover the following topics:

 f Creating an encrypted string type

 f Using well-known instance types

 f Using dependency injection with entities

 f Creating an audit-event listener

 f Creating and changing stamping entities

 f Generating trigger-based auditing

 f Setting Microsoft SQL's CONTEXT_INFO

 f Using dynamic connection strings

Introduction
NHibernate is incredibly extensible. The recipes in this chapter demonstrate ways to extend 
NHibernate to accomplish common tasks such as data encryption and auditing.

Creating an encrypted string type
In this age of identity theft, data security is more important than ever. Sensitive data such 
as credit card numbers should always be encrypted. In this recipe, I'll show you how to use 
NHibernate to encrypt a single property.
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How to do it...
1. Create a new class library project named EncryptedStringExample.

2. Add references to NHibernate.dll, log4net.dll, and NHibernate.Castle.
ByteCode.dll.

3. Add a new public interface named IEncryptor with the following three  
method definitions:
public interface IEncryptor

{

  string Encrypt(string plainText);

  string Decrypt(string encryptedText);

  string EncryptionKey { get; set; }

}

4 Create an implementation of IEncryptor named SymmetricEncryptorBase 
using the following code:
public abstract class SymmetricEncryptorBase : IEncryptor

{

  private readonly SymmetricAlgorithm _cryptoProvider;

  private byte[] _myBytes;

  protected SymmetricEncryptorBase(

    SymmetricAlgorithm cryptoProvider)

  {

    _cryptoProvider = cryptoProvider;

  }

  public string EncryptionKey { get; set; }

  public string Encrypt(string plainText)

  {

    var bytes = GetEncryptionKeyBytes();

    using (var memoryStream = new MemoryStream())

    {

      ICryptoTransform encryptor = _cryptoProvider

        .CreateEncryptor(bytes, bytes);

      using (var cryptoStream = new CryptoStream(

        memoryStream, encryptor, CryptoStreamMode.Write))

      {

        using (var writer = new StreamWriter(cryptoStream))

        {

          writer.Write(plainText);
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          writer.Flush();

          cryptoStream.FlushFinalBlock();

          return Convert.ToBase64String(

            memoryStream.GetBuffer(),

            0,

            (int) memoryStream.Length);

        }

      }

    }

  }

  private byte[] GetEncryptionKeyBytes()

  {

    if (_myBytes == null)

      _myBytes = Encoding.ASCII.GetBytes(EncryptionKey);

    return _myBytes;

  }

  public string Decrypt(string encryptedText)

  {

    var bytes = GetEncryptionKeyBytes();

    using (var memoryStream = new MemoryStream(

      Convert.FromBase64String(encryptedText)))

    {

      ICryptoTransform decryptor = _cryptoProvider

        .CreateDecryptor(bytes, bytes);

      using (var cryptoStream = new CryptoStream(

        memoryStream, decryptor, CryptoStreamMode.Read))

      {

        using (var reader = new StreamReader(cryptoStream))

        {

          return reader.ReadToEnd();

        }

      }

    }

  }

}

5. Create a concrete implementation named DESEncryptor with the following code:
public class DESEncryptor : SymmetricEncryptorBase 

{

  public DESEncryptor()



Extending NHibernate

220

    : base(new DESCryptoServiceProvider())

  { }

}

6. Add an implementation of IUserType named EncryptedString using  
the following code:
public class EncryptedString : IUserType, IParameterizedType 

{

  private IEncryptor _encryptor;

  public object NullSafeGet(

    IDataReader rs,

    string[] names,

    object owner)

  {

    //treat for the posibility of null values

    object passwordString =

      NHibernateUtil.String.NullSafeGet(rs, names[0]);

    if (passwordString != null)

    {

      return _encryptor.Decrypt((string)passwordString);

    }

    return null;

  }

  public void NullSafeSet(

    IDbCommand cmd,

    object value,

    int index)

  {

    if (value == null)

    {

      NHibernateUtil.String.NullSafeSet(cmd, null, index);

      return;

    }

    string encryptedValue = _encryptor.Encrypt((string)value);

    NHibernateUtil.String.NullSafeSet(

      cmd, encryptedValue, index);

  }

  public object DeepCopy(object value)

  {
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    return value == null ? null :

      string.Copy((string)value);

  }

  public object Replace(object original,

    object target, object owner)

  {

    return original;

  }

  public object Assemble(object cached, object owner)

  {

    return DeepCopy(cached);

  }

  public object Disassemble(object value)

  {

    return DeepCopy(value);

  }

  public SqlType[] SqlTypes

  {

    get

    {

      return new[] { new SqlType(DbType.String) };

    }

  }

  public Type ReturnedType

  {

    get { return typeof(string); }

  }

  public bool IsMutable

  {

    get { return false; }

  }

  public new bool Equals(object x, object y)

  {

    if (ReferenceEquals(x, y))

    {

      return true;

    }

    if (x == null || y == null)
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    {

      return false;

    }

    return x.Equals(y);

  }

  public int GetHashCode(object x)

  {

    if (x == null)

    {

      throw new ArgumentNullException("x");

    }

    return x.GetHashCode();

  }

  public void SetParameterValues(

    IDictionary<string, string> parameters)

  {

    if (parameters != null)

    {

      var encryptorTypeName = parameters["encryptor"];

      _encryptor = !string.IsNullOrEmpty(encryptorTypeName)

                ? (IEncryptor) Instantiate(encryptorTypeName)

                : new DESEncryptor();

      var encryptionKey = parameters["encryptionKey"];

      if (!string.IsNullOrEmpty(encryptionKey))

        _encryptor.EncryptionKey = encryptionKey;

    }

    else

    {

      _encryptor = new DESEncryptor();

    }

  }

  private static object Instantiate(string typeName)

  {

    var type = Type.GetType(typeName);

    return Activator.CreateInstance(type);

  }

}
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7. Add an entity class named Account with the following properties:
public virtual Guid Id { get; set; }

public virtual string EMail { get; set; }

public virtual string Name { get; set; }

public virtual string CardNumber { get;  set; }

public virtual int ExpirationMonth { get; set; }

public virtual int ExpirationYear { get; set; }

public virtual string ZipCode { get; set; }

8. Add a mapping document with the following XML. Don't forget to set  
the Build Action to Embedded Resource:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="EncryptedStringExample"

    namespace="EncryptedStringExample">

  <typedef 

    name="encrypted"

    class="EncryptedStringExample.EncryptedString, 
EncryptedStringExample">

    <param name="encryptor">

      EncryptedStringExample.DESEncryptor, 

      EncryptedStringExample

    </param>

    <param name="encryptionKey">12345678</param>

  </typedef>

  <class name="Account">

    <id name="Id">

      <generator class="guid.comb" />

    </id>

    <property name="Name" not-null="true" />

    <property name="EMail" not-null="true" />

    <property name="CardNumber" not-null="true" type="encrypted" 
/>

    <property name="ExpirationMonth" not-null="true" />

    <property name="ExpirationYear" not-null="true" />

    <property name="ZipCode" not-null="true" />

  </class>

</hibernate-mapping>
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How it works...

As we saw in the Mapping Enumerations recipe in Chapter 1, we can set the type attribute 
on a property to specify a class used for converting data between our application and the 
database. We'll use this to encrypt and decrypt our credit card number.

Our Account class mapping defined a type using the <typedef> element. The name 
attribute defines a nickname for our encryption type. This nickname matches the 
type attribute on our CardNumber property's mapping. The class attribute specifies 
the .NET class that will be used to convert our data in standard namespace.typeName, 
assemblyName format.

Our EncryptedString type happens to use two parameters—encryptor and 
encryptionKey. These are set in the mapping as well.

DESEncryptor, our implementation of IEncryptor, uses DESCryptoServiceProvider 
to encrypt and decrypt our data. This is one of the symmetric encryption algorithms available 
in the .NET framework.

Our EncryptedString type implements IUserType, NHibernate's interface for defining 
custom types. When implementing IUserType, NullSafeGet is responsible for reading 
data from the ADO.NET data reader and returning an appropriate object, in this case, a string. 
In our EncryptedString, we read the encrypted data, use IEncryptor to decrypt it, and 
return the unencrypted string, which is used to set the CardNumber property. NullSafeSet 
takes some value, in this case, our unencrypted CardNumber, and sets a parameter on the 
ADO.NET command. In EncryptedString, we encrypt the card number before setting it 
on the command. The SqlTypes property returns an array representing the types of each 
database field used to store this user type. In our case, we have a single string field. The 
ReturnedType property returns the .NET type. Since our CardNumber is a string, we return 
the string type.

EncryptedString also implements IParameterizedType. The SetParameterValues 
method provides a dictionary of parameters from the mapping document. From that 
dictionary, we get the IEncryptor implementation to use, as well as the encryption key.

The class mapping is not the best place to store 
encryption keys. This recipe can easily be adapted to read 
the encryption keys from a properly secured location.

There's more...
There are three categories of encryption algorithms. A symmetric algorithm uses the same  
key to encrypt and decrypt the data. Because our application is responsible for the encryption 
and decryption, this type of algorithm makes the most sense.
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An asymmetric algorithm encrypts data using a pair of keys—one public and one private. The 
key pairs are generated in such a way that the public key used to encrypt the data gives no 
hint as to the private key required to decrypt that data. It's not necessary to keep the public 
key a secret. This type of algorithm is typically used when the data is encrypted in one location 
and decrypted in another. System A generates the keys, holds onto the private key, and shares 
the public key with the System B. System B encrypts data with the public key. Only System  
A has the private key necessary to decrypt the data.

Finally, a hash algorithm is used when the data doesn't need to be decrypted. With a hash 
algorithm, the original data can't be calculated from the hash value, the chance of finding 
different data with the same hash value is extremely small, and even a slight change in 
the data produces a wildly different hash value. This type of algorithm is typically used for 
passwords. We store the hash of the real password. When a user logs in, we don't need 
to know what the real password is, only that the attempted password matches the real 
password. We hash the attempted password. If the hash of the attempted password matches 
the previously stored hash of the real password, we know that the passwords match.

See also
 f Using well-known instance type

 f Using dependency injection with entities

Using well-known instance type
Most applications contain some set of static relational data, such as a list of countries, states, 
credit card types, and others. The application doesn't need to waste time retrieving this static 
data from the database. It never changes. In this recipe, I'll show you how we can use the  
well-known instance type from the Unofficial NHibernate AddIns project to avoid this 
unnecessary work.

How to do it...
1. Create a new class library project named WKITExample and add a reference  

to NHibernate.dll.

2. Add the following GenericWellKnownInstanceType class:

[Serializable]

public abstract class GenericWellKnownInstanceType<T, TId> : 

  IUserType where T : class

{

  private Func<T, TId, bool> findPredicate;

  private Func<T, TId> idGetter;

  private IEnumerable<T> repository;
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  protected GenericWellKnownInstanceType(

    IEnumerable<T> repository, 

    Func<T, TId, bool> findPredicate, 

    Func<T, TId> idGetter)

  {

    this.repository = repository;

    this.findPredicate = findPredicate;

    this.idGetter = idGetter;

  }

  public Type ReturnedType

  {

    get { return typeof(T); }

  }

  public bool IsMutable

  {

    get { return false; }

  }

  public new bool Equals(object x, object y)

  {

    if (ReferenceEquals(x, y))

    {

      return true;

    }

    if (ReferenceEquals(null, x) || 

      ReferenceEquals(null, y))

    {

      return false;

    }

    return x.Equals(y);

  }

  public int GetHashCode(object x)

  {

    return (x == null) ? 0 : x.GetHashCode();

  }

  public object NullSafeGet(IDataReader rs, 

    string[] names, object owner)

  {

    int index0 = rs.GetOrdinal(names[0]);
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    if (rs.IsDBNull(index0))

    {

      return null;

    }

    var value = (TId)rs.GetValue(index0);

    return repository.FirstOrDefault(x => 

      findPredicate(x, value));

  }

  public void NullSafeSet(IDbCommand cmd, 

    object value, int index)

  {

    if (value == null)

    {

      ((IDbDataParameter)cmd.Parameters[index])

        .Value = DBNull.Value;

    }

    else

    {

      ((IDbDataParameter)cmd.Parameters[index])

        .Value = idGetter((T)value);

    }

  }

  public object DeepCopy(object value)

  {

    return value;

  }

  public object Replace(object original, 

    object target, object owner)

  {

    return original;

  }

  public object Assemble(object cached, object owner)

  {

    return cached;

  }

  public object Disassemble(object value)

  {

    return value;

  }
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  /// <summary>

  /// The SQL types for the columns 

  /// mapped by this type. 

  /// </summary>

  public abstract SqlType[] SqlTypes { get; }

}

3. Add the following StateType class:
public class StateType 

  : GenericWellKnownInstanceType<State, string>

{

  private static readonly SqlType[] sqlTypes = 

    new[] { SqlTypeFactory.GetString(2)};

  public StateType()

    : base(new States(), 

    (entity, id) => entity.PostalCode == id,

    entity => entity.PostalCode)

  { }

  public override SqlType[] SqlTypes

  {

    get { return sqlTypes; }

  }

}

4. Add the following State class:
[Serializable]

public class State

{

  public virtual string PostalCode { get; private set; }

  public virtual string Name { get; private set; }

  internal State(string postalCode, string name)

  {

    PostalCode = postalCode;

    Name = name;

  }

}



Chapter 7

229

5. Add the following States collection class:
public class States : ReadOnlyCollection<State>

{

  public static State Arizona = new State("AZ", "Arizona");

  public static State California = 

    new State("CA", "California");

  public static State Colorado = new State("CO", "Colorado");

  public static State Oklahoma = new State("OK", "Oklahoma");

  public static State NewMexico = 

    new State("NM", "New Mexico");

  public static State Nevada = new State("NV", "Nevada");

  public static State Texas = new State("TX", "Texas");

  public static State Utah = new State("UT", "Utah");

  public States()

    : base(new State[] { Arizona, California, Colorado, 

      Oklahoma, NewMexico, Nevada, Texas, Utah })

  { }

}

6. Add an Address class using the following properties:
public virtual Guid Id { get; set; }

public virtual string Line1 { get; set; }

public virtual string Line2 { get; set; }

public virtual string City { get; set; }

public virtual State State { get; set; }

public virtual string Zip { get; set; }

7. Add the following mapping document:

<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="WKITExample"

    namespace="WKITExample">

  <typedef 

    class="WKITExample.StateType, WKITExample" 

    name="State"/>

  <class name="Address">

    <id name="Id">

      <generator class="guid.comb" />

    </id>

    <property name="Line1" not-null="true" />
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    <property name="Line2" />

    <property name="City" not-null="true" />

    <property name="State" type="State" not-null="true" />

    <property name ="Zip" not-null="true" />

  </class>

</hibernate-mapping>

How it works...
In this recipe, we have an Address entity with a State property. Suppose we have a 
requirement to print the state's postal abbreviation on shipping labels, but we need to  
display the full state name when the user completes an order. It would be a waste of 
resources to fetch these State entities from the database each time.

GenericWellKnownInstanceType allows us to create a static list of States in our 
application, and use them with our Address entity. We use the PostalCode property to 
uniquely identify it in the list. In the database, this postal code value is stored in the State 
field of Address. When NHibernate loads an Address from the database, it attaches the 
appropriate State instance to the State property. In this way, State works just like an 
entity. This is handled by the StateType class, which implements IUserType. When loading 
an Address, the StateType class is responsible for reading the abbreviation from the  
raw data and returning the correct State instance. Similarly, when we save an address,  
it translates the State instance to the abbreviation stored in the Address table.

When inheriting from GenericWellKnownInstanceType, we must provide  
the following four items: 

1. A collection of all the well-known instances. This is our states collection.

2. A predicate to locate the correct well-known instance given a database value.

3. A delegate that returns the database value from a well-known instance.

4. The type of database field used to store this database value, in this case,  
a two-character string field.

The Unofficial NHibernate AddIns project also includes a WellKnownInstanceType,  
which specifies a 32-bit integer database value.

See also
 f Creating an encrypted string type

 f Mapping enumerations
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Using dependency injection with entities
In this recipe, I'll show you how we can inject services into our entities to separate 
implementation details from our real business logic.

Getting ready
Download uNHAddIns.CommonServiceLocatorAdapters.dll from the Unofficial 
NHibernate AddIns project at http://code.google.com/p/unhaddins/.

Download Ninject.dll and CommonServiceLocator.NinjectAdapter.dll from  
the Ninject project at http://ninject.org.

Download Microsoft.Practices.ServiceLocation.dll from the Microsoft Patterns 
and Practices team available at http://commonservicelocator.codeplex.com/.

Put these three assemblies in your solution's Lib folder.

How to do it...
1. Create a new console application project named IoCByteCode.

2. Add a reference to NHibernate.dll, NHibernate.ByteCode.Castle.dll, 
Ninject.dll, CommonServiceLocator.NinjectAdapter.dll, uNHAddIns.
CommonServiceLocatorAdapters.dll, and Microsoft.Practices.
ServiceLocation.dll.

3. Add an interface named IPasswordHasher with the following method definition:
string HashPassword(string email, string password);

4. Add an implementation named PasswordHasher using the following code:
public class PasswordHasher : IPasswordHasher 

{

  private readonly HashAlgorithm _algorithm;

  public PasswordHasher(HashAlgorithm algorithm)

  {

    _algorithm = algorithm;

  }

  public string HashPassword(string email, string password)

  {

    var plainText = email + password;

    var plainTextData = Encoding.Default.GetBytes(plainText);

    var hash = _algorithm.ComputeHash(plainTextData);

http://code.google.com/p/unhaddins/
http://code.google.com/p/unhaddins/
http://commonservicelocator.codeplex.com/
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    return Convert.ToBase64String(hash);

  }

}

5. Add a UserAccount entity class using the following code:
public class UserAccount

{

  private readonly IPasswordHasher _passwordHasher;

  public UserAccount(IPasswordHasher passwordHasher)

  {

    _passwordHasher = passwordHasher;

  }

  public virtual Guid Id { get; protected set; }

  public virtual string EMail { get; protected set; }

  public virtual string HashedPassword { get; protected set; }

  public virtual void SetCredentials(

    string email, string plainTextPassword)

  {

    EMail = email;

    SetPassword(plainTextPassword);

  }

  public virtual void SetPassword(string plainTextPassword)

  {

    HashedPassword = _passwordHasher.HashPassword(

      EMail, plainTextPassword);

  }

}

6. Add the following mapping document:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="IoCByteCode"

    namespace="IoCByteCode">

  <class name="UserAccount">

    <id name="Id">

      <generator class="guid.comb" />

    </id>

    <natural-id>

      <property name="EMail" not-null="true" />
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    </natural-id>

    <property name="HashedPassword" not-null="true" />

  </class>

</hibernate-mapping>

7. Add an App.config with the standard NHibernate and log4net configurations.

8. Set the proxyfactory.factory_class property to uNHAddIns.
CommonServiceLocatorAdapters.ProxyFactoryFactory,  
uNHAddIns.CommonServiceLocatorAdapters

9. In Program.cs, add the following methods:
private static void ConfigureServiceLocator()

{

  var kernel = BuildKernel();

  var sl = new NinjectServiceLocator(kernel);

  ServiceLocator.SetLocatorProvider(() => sl);

}

private static IKernel BuildKernel()

{

  var kernel = new StandardKernel();

  kernel.Bind<NHibernate.Proxy.IProxyFactory>()

    .To<NHibernate.ByteCode.Castle.ProxyFactory>()

    .InSingletonScope();

  kernel.Bind<IPasswordHasher>()

    .To<PasswordHasherImpl>()

    .InSingletonScope();

  kernel.Bind<HashAlgorithm>()

    .To<MD5CryptoServiceProvider>()

    .InSingletonScope();

  return kernel;

}

10. In Program.cs, add the following code to the Main method:

ConfigureServiceLocator();

NHibernate.Cfg.Environment.BytecodeProvider =

  new BytecodeProvider();

var cfg = new Configuration().Configure();

var sessionFactory = cfg.BuildSessionFactory();
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How it works...
An NHibernate bytecode provider is responsible for building several factories, including  
the reflection optimizer, which NHibernate uses to instantiate entity classes. The particular 
reflection optimizer included with this bytecode provider uses Microsoft's common service 
locator to instantiate our entity classes. This allows us to use dependency injection to inject 
services into our entities. It also disables NHibernate's checks for a default constructor.  
Because we're using dependency injection, we'll need constructor parameters.

A typical bytecode provider also provides a factory for creating proxies. Because common 
service locator isn't a proxy framework, we need to get this functionality from somewhere  
else. To fill this requirement, the ProxyFactoryFactory included with this bytecode 
provider fetches an IProxyFactory instance from the service locator. We register Castle 
Dynamic Proxy factory as the implementation for the IProxyFactory service.

Additionally, we must register implementations for the services required for our entities, and 
all of their dependencies. In this case, we register PasswordHasher for IPasswordHasher, 
and register .NET's implementation of MD5 as our hash algorithm.

There's more...
uNHAddIns also includes inversion of control bytecode providers specifically for Ninject,  
Castle Windsor, and Spring IoC, though any of these may also be used through the  
common service locator.

Bland passwords need salt
As we learned in the Creating an encrypted string type recipe, a hashing algorithm is used to 
generate a hash value from the data. The hash value can't be reverse-engineered to calculate 
the original data, but a hash of the same data with the same key will always result in the same 
hash value. Also, any change in the original data results in a wildly different hash value. Finally, 
there is a near zero chance of two different strings of data resulting in the same hash value.

If your database is compromised, the passwords are hashed. It's a one-way algorithm, so it's 
safe, right? Wrong. This is not as secure as you may think. Let's say 14 of your accounts have 
the same password hash value. You don't know what their password is, but you know it's the 
same across all 14 accounts. Two of those accounts have Twilight-related e-mail addresses: 
sparklyVampire32@yahoo.com and JealousBella1974@gmail.com. Could you guess 
the password in 42 attempts or less? Easily. That's three chances for each of the 14 accounts. 
Congratulations. You now know the password for e-mail accounts, FaceBook, Twitter, and 
countless other websites for nearly all of those 14 people. Only two of them used a password 
that was easy to guess, but they led to the downfall of the others.

mailto:sparklyVampire32@yahoo.com
mailto:sparklyVampire32@yahoo.com
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When hashing data for storage in the database, you should always salt the data. Append 
some non-secret data to the secret data before hashing. In this recipe, we prepend the  
e-mail address to the password. The e-mail is the salt. Now, those 14 accounts will each  
have a different hash value. A hacker won't know which passwords are the same, which 
makes it much more difficult. When a user attempts to log in, prepend the e-mail and 
calculate the hash value in exactly the same way. If the hashes match, log them in. In a  
real application, you'll most likely want to clean up the e-mail address and convert it to 
lowercase. The slightest difference will change the hash value.

See also
 f Creating an encrypted string type

 f Creating an audit-event listener

Creating an audit-event listener
Auditing is another common security-related task. An audit log is an append-only record of 
changes in a system that allows you to trace a particular action back to its source. In this 
recipe, I'll show you how we can easily create an audit log to track changes to our entities.

How to do it...
1. Create a new console application project named AuditEventListener.

2. Add a reference to our Eg.Core model from Chapter 1, along with NHibernate.
dll and log4net.dll.

3. Add an App.config with a standard NHibernate and log4net configuration.

4. Just before the end of the sessionfactory element, add the following three  
event elements:
<event type="pre-insert">

  <listener class="AuditEventListener.EventListener, 

            AuditEventListener" />

</event>

<event type="pre-update">

  <listener class="AuditEventListener.EventListener, 

            AuditEventListener" />

</event>

<event type="pre-delete">

  <listener class="AuditEventListener.EventListener, 

            AuditEventListener" />

</event>
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5. Add the following IAuditLogger interface:
public class AuditLogger : IAuditLogger 

{

  private readonly ILog log = 

    LogManager.GetLogger(typeof(AuditLogger));

  public void Insert(Entity entity)

  {

    log.DebugFormat("{0} #{1} inserted.", 

      entity.GetType(), entity.Id);

  }

  public void Update(Entity entity)

  {

    log.DebugFormat("{0} #{1} updated.", 

      entity.GetType(), entity.Id);

  }

  public void Delete(Entity entity)

  {

    log.DebugFormat("{0} #{1} deleted.", 

      entity.GetType(), entity.Id);

  }

}

6. Add the following event listener class:
public class EventListener :

  IPreInsertEventListener,

  IPreUpdateEventListener,

  IPreDeleteEventListener 

{

  private readonly IAuditLogger _logger;

  public EventListener()

    : this(new AuditLogger())

  { }

  public EventListener(IAuditLogger logger)

  {

    _logger = logger;

  }

  public bool OnPreInsert(PreInsertEvent e)

  {
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    _logger.Insert(e.Entity as Entity);

    return false;

  }

  public bool OnPreUpdate(PreUpdateEvent e)

  {

    _logger.Update(e.Entity as Entity);

    return false;

  }

  public bool OnPreDelete(PreDeleteEvent e)

  {

    _logger.Delete(e.Entity as Entity);

    return false;

  }

}

7. In Program.cs, configure NHibernate and log4net, and build a session factory  
just like we did in Chapter 2 and Chapter 3.

8. Finally, in Main, add code to save a new entity, update it, and then delete it.

9. Build and run your application.

How it works...
NHibernate uses an event model to allow applications to hook into the NHibernate pipeline 
and change behavior. In this case, we simply write a message to the log4net log whenever  
an entity is inserted, updated, or deleted. The pre-insert, pre-update, and pre-delete 
event listeners are called just before each change. We set these events with the event 
element in our NHibernate configuration. They can also be set programmatically through  
the Configuration object.

Log4net includes appenders capable of writing to different types 
of permanent storage, such as files and databases. We can use 
active context properties to record additional information such 
as the user who caused the change. More information, about 
these advanced log4net configurations is available in the log4net 
manual at http://logging.apache.org/log4net.
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There's more...
NHibernate provides the following events:

 f auto-flush

 f merge

 f create

 f create-onflush

 f delete

 f dirty-check

 f evict

 f flush

 f flush-entity

 f load

 f load-collection

 f lock

 f refresh

 f replicate

 f save

 f save-update

 f pre-update

 f update

 f pre-load

 f pre-delete

 f pre-insert

 f post-load

 f post-insert

 f post-update

 f post-delete

 f post-commit update

 f post-commit insert

 f post-commit delete

 f pre-collection recreate

 f pre-collection remove
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 f pre-collection delete

 f post-collection recreate

 f post-collection remove

 f post-collection update

See also
 f Creating and changing stamping entities

 f Generating trigger-based auditing

Creating and changing stamping entities
Although it doesn't track the full history of an entity, another option for auditing is to record 
information about the entity's creation and the most recent change directly in the entity. In 
this recipe, I'll show you how to use NHibernate's events to create and change stamp entities.

How to do it...
1. Create a new class library project named Changestamp.

2. Add a reference to NHibernate.dll.

3. Create an interface named IStampedEntity with the following code:
public interface IStampedEntity

{

  string CreatedBy { get; set; }

  DateTime CreatedTS { get; set; }

  string ChangedBy { get; set; }

  DateTime ChangedTS { get; set; }

}

4. Create an interface named IStamper with the following code:
public interface IStamper

{

  void Insert(IStampedEntity entity, object[] state, 

    IEntityPersister persister);

  void Update(IStampedEntity entity, object[] oldState,

    object[] state, IEntityPersister persister);

}
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5. Create a new EventListener class as follows:
public class EventListener :

  IPreInsertEventListener,

  IPreUpdateEventListener

{

  private readonly IStamper _stamper;

  public EventListener()

    : this(new Stamper())

  { }

  public EventListener(IStamper stamper)

  {

    _stamper = stamper;

  }

  public bool OnPreInsert(PreInsertEvent e)

  {

    _stamper.Insert(e.Entity as IStampedEntity,

      e.State, e.Persister);

    return false;

  }

  public bool OnPreUpdate(PreUpdateEvent e)

  {

    _stamper.Update(e.Entity as IStampedEntity,

      e.OldState, e.State, e.Persister);

    return false;

  }

}

6. Create a base Entity class with the following code:
public abstract class Entity : IStampedEntity 

{

  public virtual Guid Id { get; protected set; }

  public virtual string CreatedBy { get; set; }

  public virtual DateTime CreatedTS { get; set; }

  public virtual string ChangedBy { get; set; }

  public virtual DateTime ChangedTS { get; set; }

}
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7. Create a Product class with the following code:
public class Product : Entity

{

  public virtual string Name { get; set; }

  public virtual string Description { get; set; }

  public virtual Decimal UnitPrice { get; set; }

}

8. Create a mapping with the following XML:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="Changestamp"

    namespace="Changestamp">

  <class name="Product">

    <id name="Id">

      <generator class="guid.comb" />

    </id>

    <discriminator column="ProductType" />

    <natural-id>

      <property name="Name" not-null="true" />

    </natural-id>

    <property name="Description" />

    <property name="UnitPrice" not-null="true" />

    <property name="CreatedBy" />

    <property name="CreatedTS" />

    <property name="ChangedBy" />

    <property name="ChangedTS" />

  </class>

</hibernate-mapping>

9. Create an implementation of IStamper with the following code:
public class Stamper : IStamper 

{

  private const string CREATED_BY = "CreatedBy";

  private const string CREATED_TS = "CreatedTS";

  private const string CHANGED_BY = "ChangedBy";

  private const string CHANGED_TS = "ChangedTS";

  public void Insert(IStampedEntity entity, object[] state, 

    IEntityPersister persister)

  {
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    if (entity == null)

      return;

    SetCreate(entity, state, persister);

    SetChange(entity, state, persister);

  }

  public void Update(IStampedEntity entity, object[] oldState, 

    object[] state, IEntityPersister persister)

  {

    if (entity == null)

      return;

    SetChange(entity, state, persister);

  }

  private void SetCreate(IStampedEntity entity, 

    object[] state,

    IEntityPersister persister)

  {

    entity.CreatedBy = GetUserName();

    SetState(persister, state, CREATED_BY, entity.CreatedBy);

    entity.CreatedTS = DateTime.Now;

    SetState(persister, state, CREATED_TS, entity.CreatedTS);

  }

  private void SetChange(IStampedEntity entity, 

    object[] state, IEntityPersister persister)

  {

    entity.ChangedBy = GetUserName();

    SetState(persister, state, CHANGED_BY, 

      entity.ChangedBy);

    entity.ChangedTS = DateTime.Now;

    SetState(persister, state, CHANGED_TS, 

      entity.ChangedTS);

  }

  private void SetState(IEntityPersister persister, 

    object[] state, string propertyName, object value)

  {

    var index = GetIndex(persister, propertyName);

    if (index == -1)

      return;

    state[index] = value;

  }
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  private int GetIndex(IEntityPersister persister, 

    string propertyName)

  {

    return Array.IndexOf(persister.PropertyNames, 

      propertyName);

  }

  private string GetUserName()

  {

    return WindowsIdentity.GetCurrent().Name; 

  }

}

10. Set the pre-insert and pre-update event listeners in the App.config,  
just like we did in the previous recipe.

How it works...
In this recipe, we've added four additional properties to our standard entity. Our pre-insert 
and pre-update event listener is responsible for setting the values of these properties.  
The task of setting these properties is handed over to our IStamper implementation. The 
pre- entity listeners happen fairly late in the process of updating the database. NHibernate 
has already read our entity's property values into the object array state. This object array 
provides the actual values written to the database. However, failing to keep the object in sync 
with the state array can lead to a number of strange and unexpected behaviors later, so we 
must update both the state array and the object properties.

When an object is inserted, we set the create and change properties to the current user and 
date / time. When an object is updated, we update these change properties with the current 
user and date / time.

The GetUserName method of Stamper uses WindowsIdentity.GetCurrent().  
This may not return a meaningful user identity, but rather the identity of some service 
account. The correct implementation of the GetUserName method depends on your 
application's architecture.

See also
 f Creating an audit-event listener

 f Generating trigger-based auditing
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Generating trigger-based auditing
Another approach to auditing involves tracking each change to an entity in a separate audit 
table. In this recipe, I'll show you how to use NHibernate to generate audit triggers for our 
entity tables.

Getting ready
Download uNHAddIns.dll from the Unofficial NHibernate AddIns project at  
http://code.google.com/p/unhaddins/. Save the file to your solution's Lib folder.

How to do it...
1. Create a new console application project with all standard NHibernate references, 

the standard NHibernate and log4net configuration, and the Eg.Core model from 
Chapter 1.

2. Add a reference to uNHAddIns.dll.
3. Set the dialect to uNHAddIns.Audit.TriggerGenerator.

ExtendedMsSql2008Dialect, uNHAddIns

4. Add the following code to the Main method of Program.cs:
var cfg = new Configuration().Configure();

var namingStrategy = new NamingStrategy();

var auditColumnSource = new AuditColumnSource();

new TriggerAuditing(cfg, namingStrategy,

  auditColumnSource).Configure();

var sessionFaculty = cfg.BuildSessionFactory();

var se = new NHibernate.Tool.hbm2ddl.SchemaExport(cfg);

se.Execute(true, true, false);

5. Build and run your application.

How it works...
NHibernate has three distinct levels of mapping. First, NHibernate simply deserializes the 
mapping documents into their equivalent .NET objects. Second, NHibernate transforms these 
mapping objects into a second, more detailed set of classes named mapping metadata. Finally, 
NHibernate transforms these detailed classes into the final persisters. We have an opportunity 
to manipulate this second-level mapping up to the point where we build the session factory.

The uNHAddIns trigger generator code reads the structure of each table from the mapping 
metadata and constructs a matching audit table and set of triggers.

http://code.google.com/p/unhaddins/
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We can use the standard NamingStrategy or provide our own. When naming the audit 
tables, the default naming strategy simply appends Audit to the name of data table. For 
trigger names, it appends _onInsert, _onUpdate, or _onDelete to the data table name.

An implementation of IAuditColumnSource should return a list of AuditColumns to be 
added to each audit table. For example, to record the current date and time when an entity  
is changed, we would use this AuditColumn:

new AuditColumn()
{
  Name = "AuditTimestamp",
  Value = new SimpleValue()
  {
    TypeName = NHibernateUtil.DateTime.Name
  },
  IsNullable = false,
  IncludeInPrimaryKey = true,
  ValueFunction = delegate(TriggerActions action)
  {
    return "getdate()";
  }
};

The default implementation returns three audit columns: AuditUser, AuditTimestamp, 
and AuditOperation. This is sufficient to answer "what changed", "who changed it", 
and "when". Unfortunately, SQL doesn't have a handy function to answer "why". The 
trigger generator also defines an interface IExtendedDialect, which adds some 
additional trigger-related SQL dialect functions to the standard dialects. A Microsoft 
SQL Server 2008 and SQLite implementation are both included. This recipe uses the 
ExtendedMsSql2008Dialect.
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The TriggerAuditing Configure() method adds the appropriate objects to our  
second-level mapping to be included in our database schema output from hbm2ddl.  
This diagram shows the resulting schema.

The objects added to our mapping all implement IAuxiliaryDatabaseObject. This 
interface is used by hbm2ddl to include drop and create SQL statements for database 
objects outside the scope of NHibernate, such as triggers and non-entity tables. As we will  
see in the next recipe, these can also be defined using xml mappings.

Because we get the current username from SQL's system_user to get meaningful audit  
logs using this method, you must use one SQL or Windows account per user when logging into 
the SQL server. This effectively disables connection pooling, because most connections  
use different credentials.

In the next recipe, I'll show you how we can use SQL's CONTEXT_INFO as our username source, 
avoiding the account maintenance overhead and relieve the stress on the connection pool.

See also
 f Creating an audit-event listener

 f Setting MS Sql's Context Info
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Setting MS Sql's Context Info
In this recipe, I'll show you how to use Microsoft SQL Server's Context_Info to provide  
the current username to our audit triggers.

Getting ready
Complete the previous recipe, Generating trigger-based auditing.

Download Ninject.dll and CommonServiceLocator.NinjectAdapter.dll from  
the Ninject project at http://ninject.org.

Download Microsoft.Practices.ServiceLocation.dll from the Microsoft Patterns 
and Practices team available at http://commonservicelocator.codeplex.com/.

How to do it...
1. Add a reference to Ninject.dll, CommonServiceLocator.NinjectAdapter.

dll, and Microsoft.Practices.ServiceLocation.dll.

2. Add the following IAuditColumnSource implementation:
public class CtxAuditColumnSource : IAuditColumnSource 

{

  public IEnumerable<AuditColumn> 

    GetAuditColumns(Table dataTable)

  {

    var userStamp = new AuditColumn()

    {

      Name = "AuditUser",

      Value = new SimpleValue()

      {

        TypeName = NHibernateUtil.String.Name

      },

      Length = 127,

      IsNullable = false,

      IncludeInPrimaryKey = true,

      ValueFunction = delegate(TriggerActions action)

      {

        return "dbo.fnGetContextData()";

      }

    };

http://commonservicelocator.codeplex.com/
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    var timeStamp = new AuditColumn()

    {

      Name = "AuditTimestamp",

      Value = new SimpleValue()

      {

        TypeName = NHibernateUtil.DateTime.Name

      },

      IsNullable = false,

      IncludeInPrimaryKey = true,

      ValueFunction = delegate(TriggerActions action)

      {

        return "getdate()";

      }

    };

    var operation = new AuditColumn()

    {

      Name = "AuditOperation",

      Value = new SimpleValue()

      {

        TypeName = NHibernateUtil.AnsiChar.Name

      },

      Length = 1,

      IsNullable = false,

      IncludeInPrimaryKey = false,

      ValueFunction = delegate(TriggerActions action)

      {

        switch (action)

        {

          case TriggerActions.INSERT:

            return "'I'";

          case TriggerActions.UPDATE:

            return "'U'";

          case TriggerActions.DELETE:

            return "'D'";

          default:

            throw new ArgumentOutOfRangeException("action");

        }

      }

    };
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    return new AuditColumn[] {

      userStamp, timeStamp, operation 

    };

  }

}

3. Add the following IContextDataProvider interface:
public interface IContextDataProvider

{

  string GetData();

  string GetEmptyData();

}

4. Add the following implementation: 
public class UsernameContextDataProvider : 

  IContextDataProvider 

{

  public string GetData()

  {

    return WindowsIdentity.GetCurrent().Name;

  }

  public string GetEmptyData()

  {

    return string.Empty;

  }

}

5. Add the following ContextConnectionDriver:
public class ContextInfoConnectionDriver : 

  DriverConnectionProvider 

{

  private const string COMMAND_TEXT = 

    "declare @length tinyint\n" +

    "declare @ctx varbinary(128)\n" +

    "select @length = len(@data)\n" +

    "select @ctx = convert(binary(1), @length) + " +

    "convert(binary(127), @data)\n" +

    "set context_info @ctx";

  public override IDbConnection GetConnection()
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  {

    var conn = base.GetConnection();

    SetContext(conn);

    return conn;

  }

  public override void CloseConnection(IDbConnection conn)

  {

    EraseContext(conn);

    base.CloseConnection(conn);

  }

  private void SetContext(IDbConnection conn)

  {

    var sl = ServiceLocator.Current;

    var dataProvider = sl.GetInstance<IContextDataProvider>();

    var data = dataProvider.GetData();

    SetContext(conn, data);

  }

  private void EraseContext(IDbConnection conn)

  {

    var sl = ServiceLocator.Current;

    var dataProvider = sl.GetInstance<IContextDataProvider>();

    var data = dataProvider.GetEmptyData();

    SetContext(conn, data);

  }

  private void SetContext(IDbConnection conn, string data)

  {

    var cmd = conn.CreateCommand();

    cmd.CommandType = CommandType.Text;

    cmd.CommandText = COMMAND_TEXT;

    var param = cmd.CreateParameter();

    param.ParameterName = "@data";

    param.DbType = DbType.AnsiString;

    param.Size = 127;

    param.Value = data;

    cmd.Parameters.Add(param);

    cmd.ExecuteNonQuery();

  }

}
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6. Add the following mapping document:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">

  <database-object>

    <create>

      CREATE FUNCTION dbo.fnGetContextData()

      RETURNS varchar(127)

      AS

      BEGIN

        declare @data varchar(127)

        declare @length tinyint

        declare @ctx varbinary(128)

        select @ctx = CONTEXT_INFO()

        select @length = convert(tinyint, 

            substring(@ctx, 1, 1))

        select @data = convert(varchar(127), 

            substring(@ctx, 2, 1 + @length))

        return @data

      END

    </create>

    <drop>DROP FUNCTION dbo.fnGetContextData</drop>

  </database-object>

</hibernate-mapping>

7. In the Main method of Program.cs, use the following code:
var kernel = new StandardKernel();

kernel.Bind<IContextDataProvider>()

  .To<UsernameContextDataProvider>();

var sl = new NinjectServiceLocator(kernel);

ServiceLocator.SetLocatorProvider(() => sl);

var namingStrategy = new NamingStrategy();

var auditColumnSource = new CtxAuditColumnSource();

var cfg = new Configuration().Configure();

new TriggerAuditing(cfg, namingStrategy,

  auditColumnSource).Configure();

var sessionFaculty = cfg.BuildSessionFactory();

var se = new NHibernate.Tool.hbm2ddl.SchemaExport(cfg);

se.Execute(true, true, false);



Extending NHibernate

252

8. Set the NHibernate property connection.provider to <namespace>.
ContextInfoConnectionDriver, <assembly>, to set the namespace  
and assembly according to the name of your project.

9. Add a mapping element for this assembly so that the fnGetContextData  
mapping document is loaded.

10. Build and run the program.

How it works...
Starting with Microsoft SQL Server 2000, SQL Server provides 128 bytes of context data for 
each database connection. This data is set using the SQL statement SET CONTEXT_INFO @
ContextData where @ContextData may be a binary(128) variable or constant. It can  
be read using the CONTEXT_INFO() SQL function, which returns binary(128) data.

In this recipe, we store the current username in the CONTEXT_INFO. It's important to note 
that the CONTEXT_INFO is a fixed-length binary array, not a variable-length varbinary. 
When placing data into CONTEXT_INFO, any leftover bytes may contain trash.

Similar to storing strings in memory, when storing variable-length data in this fixed-length field, 
we must have some way to determine where the real data ends. The two possible ways to do 
this are as follows:

1. Taking the Pascal strings approach, we can use the first byte to determine the length 
of the data. This limits the amount of data that can be stored to 255 characters. This 
is fine, because SQL Server only allows half that amount.

2. Using the C string approach, we place a null terminator (zero byte) at the end of the 
string. The data can be any length, but we have to search for the null terminator to 
find the end.

In this recipe, we use the Pascal string approach. The fnGetContextData SQL function 
uses the first byte to determine the correct substring parameters to get our username 
string from the CONTEXT_INFO().

Because the Context Info is tied to the database connection, we need to set it every time 
we open a database connection. Additionally, because our application will most likely use 
connection pooling, we should also clear the Context Info when the application releases 
the connection back to the pool.

NHibernate's DriverConnectionProvider is responsible for providing a database 
connection as needed, and for closing those connections when they're no longer needed.  
This is the perfect place to set our Context Info. The custom connection provider will 
set the Context Info after the connection is opened, but before it's passed back to 
NHibernate. It also clears the Context Info just before calling conn.Close() to return 
the connection to the connection pool.
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The AuditUser column has been changed from our previous recipe so that our triggers call 
fnGetContextData() instead of using system_user.

Finally, we've added fnGetContextData as an auxiliary database object with our 
database-object mapping. This mapping provides the drop and create scripts  
used by hbm2ddl.

All of this allows us to use the application's current username in our audit logs. We can 
use any SQL credentials we like, including plain old SQL accounts. Of course, just as 
with the Creating and changing stamping entities recipe, you will likely need to replace 
WindowsIdentity.GetCurrent() with the correct implementation for your application.

See also
 f Generating trigger-based auditing

 f Using dynamic connection strings

 f Creating and changing stamping entities

Using dynamic connection strings
There are cases where an application may need to change connection strings depending 
on some condition. This can be in the context of a multi-tenant application, or perhaps a 
database failover scenario. In this recipe, I'll show you how to switch NHibernate connection 
strings at runtime.

How to do it...
1. Start a new console application project named DynamicConnectionString.

2. Add references to NHibernate.dll, NHibernate.ByteCode.Castle.dll, 
log4net.dll, and the Eg.Core model from Chapter 1.

3. Add a reference to System.Configuration from the .NET framework.

4. Set up the App.config with a standard NHibernate and log4net configuration.

5. Add the following DynamicConnectionProvider class:
public class DynamicConnectionProvider : 

  DriverConnectionProvider

{

  private const string ANON_CONN_NAME = "db";

  private const string AUTH_CONN_NAME = "auth_db";

  protected override string ConnectionString

  {

    get
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    {

      var connstrs = ConfigurationManager.ConnectionStrings;

      var connstr = connstrs[ANON_CONN_NAME];

      if (IsAuthenticated())

        connstr = connstrs[AUTH_CONN_NAME];

      return connstr.ConnectionString;

    }

  }

  private bool IsAuthenticated()

  {

    var identity = WindowsIdentity.GetCurrent();

    return identity != null && identity.IsAuthenticated;

  }

}

6. Add the following two connection strings to the App.config:
<add name="db" connectionString=

"Server=.\SQLExpress; Database=NHCookbook; 

User Id=AnonymousUser; Password=p455w0rd"/>

<add name="auth_db" connectionString=

"Server=.\SQLExpress; Database=NHCookbook; 

Trusted_Connection=SSPI"/>

7. Set the NHibernate property connection.provider to 
DynamicConnectionString.DynamicConnectionProvider, 
DynamicConnectionString

8. Build and run the program.

How it works...
Just like we did in our previous recipe, we are using a custom connection provider. However, 
this time, we only override the ConnectionString property to return different connection 
strings for anonymous and authenticated users. We set the NHibernate configuration property 
connection.provider to the assembly qualified name of our custom connection provider, 
and NHibernate handles the rest.

See also
 f Setting Microsoft SQL's CONTEXT_INFO
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Contribution Projects

In this chapter, we will cover the following topics:

 f Configuring the cache

 f Property validation with attributes

 f Creating validator classes

 f Using the Burrows framework

 f Setting up full-text search

 f Sharing databases for performance

 f Using NHibernate Spatial

Introduction
The NHibernate Contribution projects, available at http://sourceforge.net/ 
projects/nhcontrib/, provide a number of very useful extensions to NHibernate.  
The recipes in this chapter introduce some of these extremely powerful add-ons to projects.

Configuring the cache
Caching frequently used, rarely updated data can greatly improve the performance of 
websites and other high traffic applications. In this recipe, we'll configure NHibernate's  
cache, just as we would for a typical public facing website.

http://sourceforge.net/projects/nhcontrib/
http://sourceforge.net/projects/nhcontrib/


NHibernate Contribution Projects

256

Getting ready

1. Complete the Configuring NHibernate with App.config recipe from Chapter 1.

2. Download the NHibernate Caches binary files from SourceForge at http://
sourceforge.net/projects/nhcontrib/files/.

3. Extract NHibernate.Caches.SysCache.dll to your solution's Lib folder.

How to do it...
1. Add a reference to NHibernate.Caches.SysCache.dll.

2. Open the App.config file.

3. In the configSections element, declare a section for the cache configuration:
<section name="syscache"

    type="NHibernate.Caches.SysCache.SysCacheSectionHandler, 

          NHibernate.Caches.SysCache" />

4. Add the following three properties to the hibernate-configuration section.
<property name="cache.provider_class">

  NHibernate.Caches.SysCache.SysCacheProvider, 

  NHibernate.Caches.SysCache

</property>

<property name="cache.use_second_level_cache">

  true

</property>

<property name="cache.use_query_cache">

  true

</property>

5. After the mapping element, add the following cache elements:
<class-cache class="Eg.Core.Product, Eg.Core" 

     region="hourly" usage="read-only"/>

<class-cache class="Eg.Core.ActorRole, Eg.Core" 

     region="hourly" usage="read-only"/>

<collection-cache collection="Eg.Core.Movie.Actors" 

     region="hourly" usage="read-only "/>

http://sourceforge.net/projects/nhcontrib/files/
http://sourceforge.net/projects/nhcontrib/files/
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6. After the hibernate configuration section, add the syscache section  
declared in the first step:
<syscache>

  <cache region="hourly" expiration="60" priority="3" />

</syscache>

7. Build and run your application.

How it works...
The cache.provider_class configuration property defines the cache provider to use. 
In this case, we're using syscache, NHibernate's wrapper for ASP.NET's System.Web.
Caching.Cache.

The cache.use_second_level_cache enables the second-level cache. If the second-level 
cache is enabled, setting cache.use_query_cache will allow query results to be cached.

Caching must still be set up on a per-class hierarchy, per-collection, and per-query basis. That 
is, you must also set up caching for each specific item to be cached. In this recipe, we've set 
up caching for the Product entity class, which, because they're in the same class hierarchy, 
implicitly sets up caching for Book and Movie with the same settings. In addition, we've 
set up caching for our ActorRole entity class. Finally, because caching for collections is 
configured separately from entities, we set up caching for the Movie's Actors collection.

We've set up each of these to use a region of the cache named hourly. A cache region 
separates the cached data and defines a set of rules governing when that data will expire. In 
this case, our hourly region is set to remove an item from the cache after 60 minutes or under 
stress, such as low memory. priority can be set to a value from 1 to 5, with 1 being the 
lowest priority, and thus the first to be removed from the cache.

The cache concurrency strategy for each item, set with the usage attribute, defines how  
an object's cache entry may be updated. In this recipe, we've set all of our product data to 
read-only. Our public-facing website only displays our products. It doesn't change them. 
In other scenarios, it may be appropriate to use read-write or, when concurrency isn't a 
concern, nonstrict-read-write.

Caching is only meant to improve the performance of a properly designed 
NHibernate application. Your application shouldn't depend on the cache to 
function properly. Before adding caching, you should correct poorly performing 
queries and issues like SELECT N+1. This will usually give a significant 
performance boost, eliminating the need for caching and its added complexity.
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There's more...
NHibernate allows us to configure a cache with the same scope as the session factory. 
Logically, this cache is divided into three parts.

Entity cache
The entity cache stores persistent objects or the values of persistent objects. These objects 
are stored as a dictionary of POIDs to arrays of values, as shown in the following diagram:

Notice in the previous image that the Movie.Actors collection has a cache entry of its own. 
Also notice that in this entry, we're storing the POIDs of the ActorRole objects, not the 
ActorRole data. There is no data duplication in the cache. From the cached data shown  
in the diagram, we can easily rehydrate the entire object graph for the movie without the 
chance of any inconsistent results.

Query cache
In addition to caching entities, NHibernate can also cache query results. In the cache, each 
query is associated with an array of POIDs for the entities of the query returns, similar to the 
way our movie actor collection is stored in the previous image. The entity data is stored in the 
entity cache. Again, this eliminates the chance of inconsistent results.

Update timestamp cache
The third part of the cache stores a last-updated timestamp for each table. When data is first 
placed in the cache, the timestamp is set to a value in the future, ensuring the cache will never 
return uncommitted data from a pending transaction. Once the transaction is committed, the 
timestamp is set back to the present, allowing that data to be read from the cache.
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The rules
There are some basic requirements when using the cache:

 f Always explicitly begin a transaction before any database interaction, even when 
reading data from the database. This is a required practice with NHibernate in 
general, but it is especially important for interacting with the cache. Without an 
explicit transaction, caching is bypassed.

 f When opening a session, don't provide your own database connection. This also 
affects caching. Instead, implement your own IConnectionProvider, and set the 
connection.provider configuration property as in the Using dynamic  
connection strings recipe in Chapter 7.

See also
 f Configuring NHibernate with App.config
 f Using dynamic connection strings
 f Configuring the cache with code

Configuring the cache with code
NHibernate also provides an option for cache configuration with the NHibernate.Cfg.
Loquacious namespace. In this recipe, I'll show you how to configure the second level  
cache with code. 

Getting ready

1. Complete the Configuring NHibernate with App.config recipe from Chapter 1.

2. Download the NHibernate Caches binary files from SourceForge at  
http://sourceforge.net/projects/nhcontrib/files/.

3. Extract NHibernate.Caches.SysCache.dll to your solution's Lib folder.

How to do it...
1. In the configSections element of App.config, declare a section for our cache  

provider's configuration:
<section name="syscache"

    type="NHibernate.Caches.SysCache.SysCacheSectionHandler, 

          NHibernate.Caches.SysCache" />

2. After the hibernate-configuration section, add the syscache section we just declared:
<syscache>

  <cache region="hourly" expiration="60" priority="3" />

</syscache>
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3. In Program.cs, add the following using statements:
using System;

using Eg.Core;

using NHibernate.Caches.SysCache;

using NHibernate.Cfg;

using NHibernate.Cfg.Loquacious;

using Environment = NHibernate.Cfg.Environment;

4. In Program.cs, add the following method:
static void ConfigureCaching(Configuration nhConfig)

{

  nhConfig

    .SetProperty(Environment.UseSecondLevelCache, "true")

    .SetProperty(Environment.UseQueryCache, "true")

    .Cache(c => c.Provider<SysCacheProvider>())

    .EntityCache<Product>(c =>

        {

          c.Strategy = EntityCacheUsage.Readonly;

          c.RegionName = "hourly";

        })

    .EntityCache<ActorRole>(c =>

        {

          c.Strategy = EntityCacheUsage.Readonly;

          c.RegionName = "hourly";

        })

    .EntityCache<Movie>(c => c.Collection(

        movie => movie.Actors,

        coll =>

        {

          coll.Strategy = EntityCacheUsage.Readonly;

          coll.RegionName = "hourly";

        }));

}

5. Use the following code in Main:
var nhConfig = new Configuration().Configure();

ConfigureCaching(nhConfig);

var sessionFactory = nhConfig.BuildSessionFactory();

Console.WriteLine("NHibernate cache configured!");

Console.ReadKey();

6. Build and run your application. You will see NHibernate cache configured!
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How it works...
In this recipe, we use the NHibernate.Cfg.Loquacious namespace to configure the 
second level cache. Our configuration is identical to the one used in the previous recipe, 
Configuring the cache. The relevant items from the XML configuration are as follows:

<property name="cache.use_second_level_cache">
  true
</property>

<property name="cache.use_query_cache">
  true
</property>

<property name="cache.provider_class">
  NHibernate.Caches.SysCache.SysCacheProvider, 
  NHibernate.Caches.SysCache
</property>

<class-cache class="Eg.Core.Product, Eg.Core" 
             region="hourly" usage="read-only"/>

<class-cache class="Eg.Core.ActorRole, Eg.Core" 
             region="hourly" usage="read-only"/>

<collection-cache collection="Eg.Core.Movie.Actors" 
                  region="hourly" usage="read-only"/>

We begin by setting cache.use_second_level_cache and cache.use_query_
cache to true with the following code:

nhConfig
  .SetProperty(Environment.UseSecondLevelCache, "true")
  .SetProperty(Environment.UseQueryCache, "true")

We set cache.provider_class with the following code:

nhConfig
  .Cache(c => c.Provider<SysCacheProvider>())

We configure the class cache for our Product hierarchy and ActorRole entities with the 
following code:

nhConfig
  .EntityCache<Product>(c =>
      {
        c.Strategy = EntityCacheUsage.Readonly;
        c.RegionName = "hourly";
      })
  .EntityCache<ActorRole>(c =>
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      {
        c.Strategy = EntityCacheUsage.Readonly;
        c.RegionName = "hourly";
      })

Finally, we configure the collection cache for our Actors collection with the following code:

nhConfig
  .EntityCache<Movie>(c => c.Collection(
      movie => movie.Actors,
      coll =>
      {
        coll.Strategy = EntityCacheUsage.Readonly;
        coll.RegionName = "hourly";
      }));

Notice how we call Collection(), passing an expression for our Actors collection, as well  
as the settings for our collection cache. 

See also
 f Configuring the cache

Property validation with attributes
Another NHibernate Contribution project, NHibernate Validator, provides data validation for 
classes. In this recipe, I'll show you how to use NHibernate Validator attributes to validate  
your entities.

Getting ready
1. Download the NHibernate Validator binary files from SourceForge at http://

sourceforge.net/projects/nhcontrib/files/.

2. Extract NHibernate.Validator.dll, nhv-configuration.xsd, and nhv-
mapping.xsd from the downloaded ZIP file to your solution's Lib folder.

3. Add both xsd files to the Schema folder of your solution, just as we did with the 
NHibernate xml schema files in the Mapping a class with XML recipe in Chapter 1.

4. Complete the Eg.Core model and mappings from Chapter 1.

How to do it...
1. Create a new class library project named Eg.AttributeValidation.

2. Copy the Eg.Core model and mappings from Chapter 1 to this new project.

http://sourceforge.net/projects/nhcontrib/files/
http://sourceforge.net/projects/nhcontrib/files/
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3. Change the namespace and assembly references in the mappings to 
Eg.AttributeValidation.

4. Change the namespaces for the entity classes to Eg.AttributeValidation.

5. In your Eg.AttributeValidation project, add a reference to NHibernate.
Validator.

6. Create a new attribute class named NotNegativeDecimalAttribute  
with the following code:
[AttributeUsage(AttributeTargets.Field | 

  AttributeTargets.Property)]

[Serializable]

public class NotNegativeDecimalAttribute 

  : DecimalMinAttribute

{

  public NotNegativeDecimalAttribute()

    : base(0M)

  {

  }

}

7. Open Product.cs and add the following attributes:
public class Product : Entity

{

  [NotNull, Length(Min=1, Max=255)]

  public virtual string Name { get; set; }

  [NotNullNotEmpty]

  public virtual string Description { get; set; }

  [NotNull, NotNegativeDecimal]

  public virtual Decimal UnitPrice { get; set; }

}

8. Create a new console project named Eg.AttributeValidation.Runner.

9. Add references to the Eg.AttributeValidation model project, log4net.dll, 
NHibernate.dll, NHibernate.ByteCode.Castle.dll, and NHibernate.
Validator.dll.

10. Set up an App.config with the standard log4net and hibernate-
configuration sections, just as we did in the Configuring NHibernate  
with App.config and Configuring NHibernate Logging recipes of Chapter 2.
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11. In the <configSections> element, add an additional section declaration named 
nhv-configuration with the following xml:
<section name="nhv-configuration" type="NHibernate.Validator.Cfg.
ConfigurationSectionHandler, NHibernate.Validator" />

12. Add the <nhv-configuration> section with the following xml:
<nhv-configuration xmlns="urn:nhv-configuration-1.0">

  <property name='apply_to_ddl'>true</property>

  <property name='autoregister_listeners'>true</property>

  <property name='default_validator_mode'> 
OverrideExternalWithAttribute</property>

  <mapping assembly='Eg.AttributeValidation'/>

</nhv-configuration>

13. Add a new class named BasicSharedEngineProvider using the following code:
public class BasicSharedEngineProvider : 

  ISharedEngineProvider

{

     

  private readonly ValidatorEngine ve;

  public BasicSharedEngineProvider(ValidatorEngine ve)

  {

    this.ve = ve;

  }

  public ValidatorEngine GetEngine()

  {

    return ve;

  }

  public void UseMe()

  {

    Environment.SharedEngineProvider = this;

  }

}

14. In Program.cs, use the following code:
class Program

{

  static void Main(string[] args)

  {

    XmlConfigurator.Configure();

    var log = LogManager.GetLogger(typeof(Program));
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    SetupNHibernateValidator();

    var cfg = new Configuration().Configure();

    cfg.Initialize();

    var sessionFactory = cfg.BuildSessionFactory();

    var schemaExport = new SchemaExport(cfg);

    schemaExport.Execute(true, true, false);

    var junk = new Product

                 {

                   Name = "Spiffy Junk",

                   Description = "Stuff we can't sell.",

                   UnitPrice = -1M

                 };

    using (var session = sessionFactory.OpenSession())

    {

      using (var tx = session.BeginTransaction())

      {

        try

        {

          session.Save(junk);

          tx.Commit();

        }

        catch (InvalidStateException validationException)

        {

          var errors = validationException.GetInvalidValues();

          foreach (var error in errors)

            log.ErrorFormat("Error with property {0}: {1}",

              error.PropertyName, error.Message);

          tx.Rollback();

        }

      }

    }

  }

  private static ValidatorEngine GetValidatorEngine()

  {

    var validatorEngine = new ValidatorEngine();

    validatorEngine.Configure();

    return validatorEngine;

  }
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  private static void SetupNHibernateValidator()

  {

    var validatorEngine = GetValidatorEngine();

    new BasicSharedEngineProvider(validatorEngine).UseMe();

  }

}

15. Build and run your program.

How it works...
NHibernate Validator, or NHV, has a few major components. ValidatorEngine is the 
main class used to interact with NHV. Like the session factory, applications typically 
have only one instance. NHV uses an implementation of ISharedEngineProvider to 
find the singleton instance of the ValidatorEngine. NHV may be used independently 
from NHibernate to validate any class. When integrated with NHibernate, it validates 
each entity before inserting or updating data. This integration is accomplished through 
ValidatePreInsertEventListener and ValidatePreUpdateEventListener  
event listeners.

To integrate NHV with NHibernate, we begin by creating a ValidatorEngine. The call 
to ValidatorEngine.Configure() loads our NHV configuration from the App.
config. Next, we create an ISharedEngineProvider to return our ValidatorEngine. 
We configure NHV to use this shared engine provider by setting the static property 
Environment.SharedEngineProvider. Finally, after configuring NHibernate, but before 
creating the session factory, we call Initialize(), an NHV extension method for the 
NHibernate configuration object.

Our NHV configuration in App.config contains the following four configuration settings:

 f apply_to_ddl: When this property is set to true, hbm2ddl will generate database 
constraints to enforce many of our validation attributes. For example, the script to 
create our UnitPrice column, shown next, now has a check constraint to enforce 
our NotNegativeDecimal rule.
UnitPrice DECIMAL(19,5) not null check( UnitPrice>=0)

 f autoregister_listeners: This property determines if the Initialize 
extension method will add the pre-insert and pre-update event listeners  
to the NHibernate configuration.

 f default_validator_mode: This property determines the priority of validation 
rules when using a mix of XML validation definitions, validation classes, or attributes.

 f The NHV mapping element behaves similar to the NHibernate mapping element.  
It defines an assembly containing our entities decorated with attributes.
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In this recipe, we attempt to save a new product with a negative UnitPrice. This violates our 
NotNegativeDecimal validation rule. Without NHibernate Validator, our application would 
silently accept the invalid data, leading to potentially larger problems later. If we had simply 
added a constraint in the database, our application would attempt to insert the bad data, then 
throw an unwieldy SQLException that gives us no information about which property is invalid 
and why. With NHibernate Validator, the event listeners validate each entity before any data is 
written to the database. If they find invalid data, they throw an InvalidStateException that 
tells us exactly which properties of the entity are invalid and why.

When a validation event listener throws an InvalidStateException, the 
session is in an undefined state. Once this happens, the only operation that 
can be safely performed on the session is Dispose.

You may be wondering why we created a separate NotNegativeDecimalAttribute class. 
Couldn't we just decorate our UnitPrice property with [DecimalMin(0M)]? As it turns 
out, we can't do this. In C#, we can't use decimal parameters in this way. To work around 
this limitation, we subclass the DecimalMinAttribute and hardcode the zero inside 
NotNegativeDecimalAttribute class.

In our assemblies, attribute decorations are not stored as Intermediate Language (IL) 
instructions, but as metadata. This limits the types we can use as parameters. The C# 
specification at http://msdn.microsoft.com/en-us/library/aa664615(v=VS.71).
aspx defines the types we can use as bool, byte, char, double, float, int, long, short, 
string, object, System.Type, enum, or any one-dimensional array of these types. decimal 
is not on the list.

There's more...
If you check your entities for invalid data prior to saving them, you don't run the risk of blowing 
up the NHibernate session. To validate an object explicitly, your code might look like this:

var ve = Environment.SharedEngineProvider.GetEngine();
var invalidValues = ve.Validate(someObject);

invalidValues is an array of InvalidValue objects describing each failed validation rule. 
If it's empty, the object is valid. If not, you can easily display the validation messages to the 
user without risking the session.

NHibernate Validator can be used to validate any class, not just NHibernate entities. You can 
easily adapt this sort of explicit validation to integrate with ASP.NET MVC's model validation.

http://msdn.microsoft.com/en-us/library/aa664615(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/aa664615(v=VS.71).aspx
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See also
 f Creating validator classes

Creating validator classes
In the previous recipe, we saw how to decorate our entity classes with NHibernate Validator. 
A better practice is to extract your validation rules to separate classes and avoid this 
dependency. In this recipe, I'll show you how to create validator classes, as well as  
an alternative method for configuring NHibernate Validator.

Getting ready
1. Download the NHibernate Validator binary files from SourceForge at  

http://sourceforge.net/projects/nhcontrib/files/.

2. Extract NHibernate.Validator.dll from the downloaded ZIP file to your 
solution's Lib folder.

3. Complete the Eg.Core model and mappings from Chapter 1.

How to do it...
1. Create a new class library project named Eg.ClassValidation.

2. Add a reference to the Eg.Core model and NHibernate.Validator.dll.

3. Add the following ProductValidation class:
public class ProductValidator : 

  ValidationDef<Product>

{

  

  public ProductValidator()

  {

    Define(p => p.Name)

      .NotNullableAndNotEmpty()

      .And.MaxLength(255);

    Define(p => p.Description)

      .NotNullableAndNotEmpty();

    Define(p => p.UnitPrice)

      .GreaterThanOrEqualTo(0M)

      .WithMessage("Unit price can't be negative."); 

  }

}

http://sourceforge.net/projects/nhcontrib/files/
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4. Create a new console application named Eg.ClassValidation.Runner.

5. Add references to log4net.dll, NHibernate.dll, NHibernate.ByteCode.
Castle.dll, and NHibernate.Validator.dll.

6. Set up an App.config with the standard log4net and hibernate-
configuration sections, following the Configuring NHibernate with  
App.config and Configuring NHibernate Logging recipes from Chapter 2.

7. Add a new class named BasicSharedEngineProvider using the following code:
public class BasicSharedEngineProvider : 

  ISharedEngineProvider

{

     

  private readonly ValidatorEngine ve;

  public BasicSharedEngineProvider(ValidatorEngine ve)

  {

    this.ve = ve;

  }

  public ValidatorEngine GetEngine()

  {

    return ve;

  }

  public void UseMe()

  {

    Environment.SharedEngineProvider = this;

  }

}

8. In Program.cs, use the following code:
private static void Main(string[] args)

{

  XmlConfigurator.Configure();

  var log = LogManager.GetLogger(typeof (Program));

  SetupNHibernateValidator();

  var nhibernateConfig = new Configuration().Configure();

  nhibernateConfig.Initialize(); 

  ISessionFactory sessionFactory = nhibernateConfig.
BuildSessionFactory();

  var schemaExport = new SchemaExport(nhibernateConfig);

  schemaExport.Execute(false, true, false);
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  var junk = new Product

                {

                Name = "Spiffy Junk",

                Description = string.Empty,

                UnitPrice = -1M

               };

  var ve = Environment.SharedEngineProvider.GetEngine();

  var invalidValues = ve.Validate(junk);

  foreach (var invalidValue in invalidValues)

    log.InfoFormat("{0} {1}",

      invalidValue.PropertyName,

      invalidValue.Message);

}

private static FluentConfiguration GetNhvConfiguration()

{

  var nhvConfiguration = new FluentConfiguration();

  nhvConfiguration

    .SetDefaultValidatorMode(ValidatorMode.UseExternal)

    .Register(Assembly.Load("Eg.ClassValidation")

                .ValidationDefinitions())

    .IntegrateWithNHibernate

    .ApplyingDDLConstraints()

    .And

    .RegisteringListeners();

  return nhvConfiguration;

}

private static ValidatorEngine GetValidatorEngine()

{

  var cfg = GetNhvConfiguration();

  var validatorEngine = new ValidatorEngine();

  validatorEngine.Configure(cfg);

  return validatorEngine;

}

private static void SetupNHibernateValidator()

{

  var validatorEngine = GetValidatorEngine();

  new BasicSharedEngineProvider(validatorEngine).UseMe();

}
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9. Build and run your application.

How it works...
In this recipe, we've separated our validation rules into a separate class named 
ProductValidation. Just as we did in our previous recipe, we've decided that 
 each valid Product must have a non-null, non-empty Name and Description  
no more than 255 characters long and must have a non-negative UnitPrice.

As we learned in the previous recipe, we use an ISharedEngineProvider to locate  
our validation engine.

Unlike the previous recipe, we use the loquacious, or fluent, syntax to configure  
NHibernate Validator.

We validate our junk Product. It fails two validation rules. First, the Description can't be 
empty. Second, the UnitPrice can't be negative. As we see in the log4net output, we get the 
following validation error messages:

Description may not be null or empty

UnitPrice must be greater than or equal to 0

There's more...
We can also use NHibernate Validator to validate an entire object graph. Let's take our Movie 
entity as an example. Suppose we want to ensure that the movie entity is valid, as well as all 
of its ActorRole children. Our validation class would appear as shown:

Define(m => m.Director)
  .NotNullableAndNotEmpty()
  .And.MaxLength(255);

Define(m => m.Actors)
  .HasValidElements();

The HasValidElements runs the ActorRole validation rules on each object in the  
Actors collection.

See also
 f Property validation with attributes
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Using the Burrows framework
The NHibernate Burrows framework works especially well for ASP.NET Web Forms 
applications. In this recipe, I'll show you how we can use Burrows to build an  
ASP.NET Web Forms application quickly.

Getting ready
1. Download the latest NHibernate Burrows binaries from SourceForge at  

http://sourceforge.net/projects/nhcontrib/files/.

2. Extract NHibernate.Burrow.dll, NHibernate.Burrow.AppBlock.dll,  
and NHibernate.Burrow.WebUtil.dll to your solution's Lib folder.

3. Complete the Eg.Core model and mappings from Chapter 1.

4. In the NHCookbook database, create at least 12 Product rows either by hand  
or by running the following SQL script at least 12 times:
DECLARE @Count int;

SELECT @Count = COUNT(*)+1 FROM Product 

INSERT INTO Product 

VALUES (

NEWID(), 'Eg.Core.Product',

'Product #' + CAST(@Count as VarChar(255)),

'Description of Product #' + CAST(@Count as VarChar(255)),

CAST(@Count AS Decimal) * 0.99,

null, null, null);

How to do it...
1. Create a new ASP.NET Web Forms project named Eg.Burrows.

2. Add a reference to the Eg.Core model, log4net.dll, NHibernate.
dll, NHibernate.ByteCode.Castle.dll, NHibernate.Burrows.dll, 
NHIbernate.Burrows.AppBlock.dll, and NHibernate.Burrows.WebKit.
dll.

3. In the Web.Config, add the standard log4net and hibernate-configuration 
sections as done in Chapter 2.

4. In the <configSections> element, add the following section declaration:
<section name="NHibernate.Burrow" type= "NHibernate.Burrow.
Configuration.NHibernateBurrowCfgSection, NHibernate.Burrow"/>

http://sourceforge.net/projects/nhcontrib/files/
http://sourceforge.net/projects/nhcontrib/files/
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5. Add the NHibernate.Burrow section to Web.Config:
<NHibernate.Burrow customConfigurator= "Eg.Burrows.
BurrowsConfigurator, Eg.Burrows" />

6. Inside <system.web>, find the <httpModules> element and add the following 
Burrows http module:
<add name= "NHibernate.Burrow.WebUtil.HttpModule" type= 
"NHibernate.Burrow.WebUtil.WebUtilHTTPModule, NHibernate.Burrow.
WebUtil"/>

7. Create a new class named BurrowsConfigurator using the following code:
public class BurrowsConfigurator : IConfigurator

{

  public void Config(IPersistenceUnitCfg puCfg, 

    Configuration nhCfg)

  {

    nhCfg.Configure();

  }

  public void Config(IBurrowConfig val)

  {

    var unit = new PersistenceUnitElement

                 {

                   Name = "persistenceUnit1",

                   NHConfigFile = null

                 };

    val.PersistenceUnitCfgs.Add(unit);

  }

}

8. Create a new class named ProductDAO with the following code:
public class ProductDAO : GenericDAO<Product>

{

}

9. Open the design view of Default.aspx, and drag in a GridView control.

10. In the Properties pane, change the ID to ProductGridView.

11. Drag an ObjectDataSource control onto the page.

12. Name it ProductDataSource.
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13. From ObjectDataSource Tasks, choose Configure Data Sourc as shown  
in the next screenshot:

14. Choose Eg.Burrows.ProductDAO from the drop-down, and click on Next.

15. On the SELECT tab, choose FindAll(Int32 startRow, Int32 pageSize,  
String sortExpression), returns IList<Product>, and click on Finish.

16. On the Properties pane, set MaximumRowsParameterName to pageSize.

17. Set SelectCountMethod to CountAll.

18. Set StartRowIndexParameterName to startRow.

19. Set SortParameterName to sortExpression.

20. From GridView Tasks for ProductGridView shown in the next screenshot,  
Choose ProductDataSource and check Enable Paging and Enable Selection. 
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21. Click on Edit Columns to bring up the Fields window as shown  
in the next screenshot:

22. Delete the Id field.

23. On the UnitPrice field, set the DataFormatString to {0:c} and click on OK.

24. From DataGrid task, click on Auto-Format and choose the Colorful scheme.  
The result should look like the next screenshot:
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25. On the Properties tab, set AllowSorting to true.

26. Double-click on ProductGridView, and add this code to the SelectIndexChanged 
event:
var productId = (Guid) ProductGridView

  .SelectedDataKey.Value;

var url = string.Format(

  "~/ViewProduct.aspx?ProductId={0}",

  productId.ToString());

Response.Redirect(url);

27. Add a new ASP.NET Web Forms page named ViewProduct.aspx.

28. Add an ASP.NET UserControl named EditProduct.aspx.

29. Add the following markup to the control:
<fieldset>

    <legend>Edit Product</legend>

    <table border="0">

        <tr>

            <td>

                <asp:Label 

                ID="lblProductName" runat="server" 

                Text="Name:" 

                AssociatedControlID="txtProductName">

                </asp:Label>

            </td>

        </tr>

        <tr>

            <td>

                <asp:TextBox ID="txtProductName" 

                runat="server"></asp:TextBox>

            </td>

        </tr>

        <tr>

            <td>

                <asp:Label ID="lblDescription" runat="server" 

                Text="Description:" 

                    AssociatedControlID="txtDescription">

                    </asp:Label>

            </td>

        </tr>

        <tr>

            <td>
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                <asp:TextBox ID="txtDescription" 

                runat="server" TextMode="MultiLine">

                </asp:TextBox>

            </td>

        </tr>

        <tr>

            <td>

                <asp:Label ID="Label1" runat="server" 

                Text="Unit Price:" 

                    AssociatedControlID="txtUnitPrice">

                    </asp:Label>

            </td>

        </tr>

        <tr>

            <td>

                <asp:TextBox ID="txtUnitPrice" 

                runat="server"></asp:TextBox>

            </td>

        </tr>

    </table>

    <asp:Button ID="btnSave" 

    runat="server" Text="Save" 

    onclick="btnSave_Click" />

    <asp:Button ID="btnCancel"

        runat="server" Text="Cancel" 

        onclick="btnCancel_Click" />

</fieldset>

30. The design view should look like the following screenshot:
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31. In the code-behind for EditProduct, add the following code:
public partial class EditProduct 

  : UserControl

{

  [EntityField]

  protected Product product;

  public event EventHandler Updated;

  public event EventHandler Cancelled;

  public void Bind(Product product)

  {

    this.product = product;

    if (product == null) return;

    txtProductName.Text = product.Name;

    txtDescription.Text = product.Description;

    txtUnitPrice.Text = product.UnitPrice.ToString();

  }

  protected void btnSave_Click(object sender, 

    EventArgs e)

  {

    product.Name = txtProductName.Text;

    product.Description = txtDescription.Text;

    product.UnitPrice = decimal.Parse(txtUnitPrice.Text);

    if (Updated != null)

      Updated(this, new EventArgs());

  }

  protected void btnCancel_Click(object sender, 

    EventArgs e)

  {

    product = null;

    if (Cancelled != null)

      Cancelled(this, new EventArgs());

  }

}

32. On the second line of ViewProduct.aspx, register the EditProduct control  
with the following markup:
<%@ Register Src="EditProduct.ascx" 

TagName="EditProduct" TagPrefix="uc1" %>
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33. In the <form> tag, add the EditProduct control with the following markup:
<uc1:EditProduct ID="editProduct" runat="server" 

OnUpdated="editProduct_Updated"

OnCancelled="editProduct_Cancelled">

</uc1:EditProduct>    

34. In the code-behind for ViewProduct, use the following code:
public partial class ViewProduct : System.Web.UI.Page

{

  protected void Page_Load(object sender, EventArgs e)

  {

    if (!IsPostBack)

    {

      Guid Id = new Guid(Request

        .QueryString["ProductId"]);

      editProduct.Bind(new ProductDAO().Get(Id));

    }

  }

  protected void editProduct_Updated(

    object sender, EventArgs e)

  {

    Response.Redirect("~/");

  }

  protected void editProduct_Cancelled(

    object sender, EventArgs e)

  {

    Response.Redirect("~/");

  }

}

35. Build and run your web application.

How it works...
In this recipe, we've built a small web application to display and edit Product data. Thanks 
to the Burrows http module, Burrows will automatically handle session-per-request and 
transaction management.

In our web.config, we told the Burrows framework that the BurrowsConfigurator class 
would supply the Burrows configuration. Burrows supports multiple NHibernate configurations 
in the same application. Each of these is named a persistence unit. In this recipe, we only 
need one database. We load the Web.Config NHibernate configuration into our one and only 
persistence unit.
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Burrows also provides a base class for data access objects that follow the common patterns of 
ASP.NET Web Forms data access controls. Our ProductDAO class uses this GenericDAO class.

The Default.aspx page wires an instance of ProductDAO to an ObjectDataSource, 
which is used to data-bind the GridView. When a user clicks on a column header, the data 
source calls ProductDAO.FindAll with sortExpression set to the field name. Burrows 
adds this as sort to the query. Similarly, paging through the GridView sets the startRow  
to the page number times the page size, minus one.

When a user clicks on the Select link, the SelectedIndexChanged event fires and redirects 
the user to ViewProduct.aspx, passing the Product Id on the query string of the URL.

The first time we load the ViewProduct page, we get the Product Id from the query string, 
get the Product instance from the database, and bind it to our EditProduct control.

In EditProduct, our Product field is decorated with the Burrows 
EntityFieldAttribute. This attribute tells Burrows that this field contains an entity 
and the ID of that entity should be remembered from one postback to the next. Burrows 
automatically loads the Product instance from the database and sets this field with each 
postback request. Any changes to the entity are automatically persisted at the end of each 
request. We can code our user control almost as if the entity was held in memory from one 
request to the next.

When a user clicks on the Save button, we copy the field data back to the entity instance  
and redirect to the Default.aspx page. When a user clicks on the Cancel button, we  
simply redirect without writing any data.

There's more...
Burrows also provides a method for providing long-running conversations, essentially stateful 
business transactions using NHibernate sessions that can span several web requests. For 
more information on this feature, check out the conversation explained in the article at 
http://nhforge.org/wikis/burrow/conversation-explained.aspx.

See also
 f Setting up session per web request

Setting up full-text search
While most relational databases provide some mechanism for full-text search, these 
databases are optimized for online transaction processing (OLTP) type workloads. Document 
databases, on the other hand, are designed specifically for full-text search queries, and excel 
at them. In this recipe, I'll show you how to use NHibernate Search and Lucene.Net to provide 
full-text search capabilities for your entities.

http://nhforge.org/wikis/burrow/conversation-explained.aspx
http://nhforge.org/wikis/burrow/conversation-explained.aspx
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Getting ready
1. Download the NHibernate Search binary files from SourceForge at http://

sourceforge.net/projects/nhcontrib/files/.

2. Extract NHibernate.Search.dll and Lucene.Net.dll from the downloaded ZIP 
file to your solution's Lib folder.

3. Complete the Eg.Core model and mappings from Chapter 1.

How to do it...
1. In Eg.Core, add a reference to NHibernate.Search.dll.

2. On the Entity base class, decorate the Id property with the DocumentId attribute 
from NHibernate.Search.Attributes.

3. On the Product class, add the following attributes:
[Indexed]

public class Product : Entity

{

  [Field]

  public virtual string Name { get; set; }

  [Field]

  public virtual string Description { get; set; }

  public virtual Decimal UnitPrice { get; set; }

}

4. On the book class, add the following attributes:
[Indexed]

public class Book : Product

{

  [Field(Index = Index.UnTokenized)]

  public virtual string ISBN { get; set; }

  [Field]

  public virtual string Author { get; set; }

}

5. Create a new console project named Eg.Search.Runner.

6. Add references to the Eg.Core model, log4net.dll, Lucene.Net.dll, 
NHibernate.dll, and NHibernate.ByteCode.dll.

7. Add an App.config file with the standard log4net and  
hibernate-configuration sections.

http://sourceforge.net/projects/nhcontrib/files/
http://sourceforge.net/projects/nhcontrib/files/
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8. Add a new class named SearchConfiguration using the following code:
public class SearchConfiguration

{

  public ISessionFactory BuildSessionFactory()

  {

    var cfg = new Configuration().Configure();

    SetSearchPropscfg);

    AddSearchListeners(cfg);

    var sessionFactory = cfg.BuildSessionFactory();

    return new SessionFactorySearchWrapper(

      sessionFactory);

  }

  private void SetSearchProps(Configuration cfg)

  {

    cfg.SetProperty(

      "hibernate.search.default.directory_provider", 

      typeof(FSDirectoryProvider)

      .AssemblyQualifiedName);

    cfg.SetProperty(

      "hibernate.search.default.indexBase",

      "~/Index");

  }

  private void AddSearchListeners(Configuration cfg)

  {

    cfg.SetListener(ListenerType.PostUpdate, 

      new FullTextIndexEventListener());

    cfg.SetListener(ListenerType.PostInsert, 

      new FullTextIndexEventListener());

    cfg.SetListener(ListenerType.PostDelete, 

      new FullTextIndexEventListener());

    cfg.SetListener(ListenerType.PostCollectionRecreate, 

      new FullTextIndexCollectionEventListener());

    cfg.SetListener(ListenerType.PostCollectionRemove, 

      new FullTextIndexCollectionEventListener());

    cfg.SetListener(ListenerType.PostCollectionUpdate, 

      new FullTextIndexCollectionEventListener());

  }

}
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9. Create a new class named SessionFactorySearchWrapper using the  
following code:
public class SessionFactorySearchWrapper 

: ISessionFactory

{

  private readonly ISessionFactory _sessionFactory;

  public SessionFactorySearchWrapper(

    ISessionFactory sessionFactory)

  {

    _sessionFactory = sessionFactory;

  }

  public ISession OpenSession()

  {

    var session = _sessionFactory.OpenSession();

    return WrapSession(session);

  }

  public ISession OpenSession(

    IDbConnection conn, 

    IInterceptor sessionLocalInterceptor)

  {

    var session = _sessionFactory

      .OpenSession(conn, sessionLocalInterceptor);

    return WrapSession(session);

  }

  public ISession OpenSession(

    IInterceptor sessionLocalInterceptor)

  {

    var session = _sessionFactory

      .OpenSession(sessionLocalInterceptor);

    return WrapSession(session);

  }

  public ISession OpenSession(

    IDbConnection conn)

  {

    var session = _sessionFactory.OpenSession(conn);

    return WrapSession(session);

  }

  private static ISession WrapSession(
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    ISession session)

  {

    return NHibernate.Search

      .Search.CreateFullTextSession(session);

  }

}

10. Implement the remaining ISessionFactory methods and properties in 
SessionFactorySearchWrapper by passing the call to the _sessionFactory 
field, as shown in the following code:
public IClassMetadata GetClassMetadata(string entityName)

{

  return _sessionFactory.GetClassMetadata(entityName);

}

11. In Program.cs, use the following code:
class Program

{

  static void Main(string[] args)

  {

    

    XmlConfigurator.Configure();

    var log = LogManager.GetLogger(typeof(Program));

    var cfg = new SearchConfiguration();

    var sessionFactory = cfg.BuildSessionFactory();

    var theBook = new Book()

                    {

                      Name = @"Gödel, Escher, Bach: An Eternal 
Golden Braid",

                      Author = "Douglas Hofstadter",

                      Description =

                        @"This groundbreaking Pulitzer Prize-
winning book sets the standard for interdisciplinary writing, 
exploring the patterns and symbols in the thinking of 
mathematician Kurt Godel, artist M.C. Escher, and composer Johann 
Sebastian Bach.",

                      ISBN = "978-0465026562",

                      UnitPrice = 22.95M

                    };

    var theOtherBook = new Book()

                         {
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                           Name = "Technical Writing",

                           Author = "Joe Professor",

                           Description = "College text",

                           ISBN = "123-1231231234",

                           UnitPrice = 143.73M

                         };

    var thePoster = new Product()

                      {

                        Name = "Ascending and Descending",

                        Description = "Poster of famous Escher 
print",

                        UnitPrice = 7.95M

                      };

    using (var session = sessionFactory.OpenSession())

    {

      using (var tx = session.BeginTransaction())

      {

        session.Delete(«from Product»);

        tx.Commit();

      }

    }

    using (var session = sessionFactory.OpenSession())

    {

      using (var tx = session.BeginTransaction())

      {

        session.Save(theBook);

        session.Save(theOtherBook);

        session.Save(thePoster);

        tx.Commit();

      }

    }

    var products = GetEscherProducts(sessionFactory);

    OutputProducts(products, log);

    var books = GetEscherBooks(sessionFactory);

    OutputProducts(books.Cast<Product>(), log);

  }

  private static void OutputProducts(

    IEnumerable<Product> products,
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    ILog log)

  {

    foreach (var product in products)

    {

      log.InfoFormat("Found {0} with price {1:C}",

                     product.Name, product.UnitPrice);

    }

  }

  private static IEnumerable<Product> 

    GetEscherProducts(

    ISessionFactory sessionFactory)

  {

    IEnumerable<Product> results;

    using (var session = sessionFactory.OpenSession()

                         as IFullTextSession)

    {

      using (var tx = session.BeginTransaction())

      {

        var queryString = "Description:Escher";

        var query = session

          .CreateFullTextQuery<Product>(queryString);

        results = query.List<Product>();

        tx.Commit();

      }

    }

    return results;

  }

  private static IEnumerable<Book> GetEscherBooks(

    ISessionFactory sessionFactory)

  {

    IEnumerable<Book> results;

    using (var session = sessionFactory.OpenSession()

                         as IFullTextSession)

    {

      using (var tx = session.BeginTransaction())

      {

        var queryString = "Description:Escher";

        var query = session

          .CreateFullTextQuery<Book>(queryString);



Chapter 8

287

        results = query.List<Book>();

        tx.Commit();

      }

    }

    return results;

  }

}

12. Build and run your application

How it works...
In this recipe, we've offloaded our full-text queries to a Lucene index in the bin/Debug/
Index folder.

First, let's quickly discuss some Lucene terminology. The Lucene database is referred to as 
an Index. Each record in the Index is referred to as a Document. In the case of NHibernate 
Search, each Document in the Index has a corresponding entity in the relational database. 
Each Document has Fields, and each field comprises a name and value. By default, fields 
are tokenized or broken up into terms. A term can best be described as a single, significant, 
lower-case word from some string of words. For example, the string "Bag of Cats" would be 
tokenized into the terms "bag" and "cat". Additionally, Lucene maintains a map of terms in a 
field, which documents contain a given term, and the frequency of that term in the document. 
This makes keyword searches extremely fast.

Entity classes with the Indexed attribute will be included as documents in the Lucene 
index. The remaining attributes are used to determine what properties from these entities 
should be included in the document, and how that data will be stored. Automatically, the 
_hibernate_class field stores the entity type. Each searchable entity must have a field or 
property decorated with the DocumentId attribute. This is stored in the ID field, and is used 
to maintain the relationship between entities and documents. In our case, the ID property on 
Entity will be used.

To be useful, we should include additional data in our documents using the Field attribute. 
For keyword searches, we've included the tokenized name and description of every product, 
and the author of every book. We've also included the ISBN of every book, but have chosen 
not to tokenize it because a partial ISBN match is useless.

The SearchConfiguration class is responsible for building an NHibernate configuration, 
adding the necessary NHibernate Search settings to the configuration, building an NHibernate 
session factory, and wrapping the session factory in our search wrapper.
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The SessionFactorySearchWrapper wraps the standard NHibernate session factory 
and returns IFullTextSearchSession from calls to OpenSession. These sessions 
behave as normal NHibernate sessions, and provide additional methods for creating full-
text search queries against the Lucene index. The CreateFullTextQuery method of the 
session takes a Lucene query in string or query object form and returns a familiar NHibernate 
IQuery interface, the same interface used for HQL and SQL queries. When we call List 
or UniqueResult, the query is executed against our Lucene index. For example, the query 
in our GetEscherProduct query will search Lucene for documents with a Description 
containing the term escher. This query returns two results: the GEB book and the M. C. 
Escher poster. The IDs of each of those search results are gathered up and used to build a 
SQL database query similar to the next query.

SELECT this_.Id          as Id0_0_,
       this_.Name        as Name0_0_,
       this_.Description as Descript4_0_0_,
       this_.UnitPrice   as UnitPrice0_0_,
       this_.Director    as Director0_0_,
       this_.Author      as Author0_0_,
       this_.ISBN        as ISBN0_0_,
       this_.ProductType as ProductT2_0_0_
FROM   Product this_
WHERE  (this_.Id in ('5933e3ba-3092-4db7-8d19-9daf014b8ce4' /* @p0 
*/,'05058886-8436-4a1d-8412-9db1010561b5' /* @p1 */))

Because this database query is performed on the primary key, it is amazingly fast.  
The Lucene query is fast because the database was specially designed for that purpose.  
This has the potential for huge performance and functionality gains over the weak full-text 
search capabilities in most relational databases.

There's more...
This is just the most basic example of what we can do with NHibernate Search. We can also 
choose to store the original value of a field in the document. This is useful when we want to 
display Lucene query results without querying the SQL database. Additionally, Lucene has 
many more features, like search-term highlighting and spell-checking. Although Lucene is a 
very capable document database, remember that it is not relational. There is no support for 
relationships or references between documents stored in a Lucene index.

Sharding databases for performance
There are a few scenarios where it may be appropriate to partition data horizontally across 
several servers, with performance being the most obvious. In this recipe, I'll show you how  
we can use NHibernate Shards to split our data set across three databases.
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Getting ready
1. Download the latest NHibernate Shards binary from SourceForge at http://

sourceforge.net/projects/nhcontrib/files/.

2. Extract NHibernate.Shards.dll from the downloaded ZIP file to your  
solution's Lib folder.

3. Complete the Eg.Core model and mappings from Chapter 1.

4. In SQL Server, create three new, blank databases named Shard1, Shard2,  
and Shard3.

How to do it...
1. In the Entity base class, change the type of the Id property from Guid to String.

2. In Product.hbm.xml, change the Id generator from guid.comb to NHibernate.
Shards.Id.ShardedUUIDGenerator, NHibernate.Shards.

3. Follow the same procedure for ActorRole.hbm.xml.

4. Use the NHibernate Schema Tool explained in Chapter 2 to build the database 
schema for each of the three databases.

5. Create a new class library project named Eg.Shards.Runner.

6. Add a reference to the Eg.Core model, log4net.dll, NHibernate.dll, 
NHibernate.ByteCode.dll, and NHibernate.Shards.dll.

7. Add an App.config file with the following connection strings:
<?xml version="1.0" encoding="utf-8" ?>

<configuration>

  <connectionStrings>

    <add name="Shard1" connectionString="Server=.\SQLExpress; 
Database=Shard1; Trusted_Connection=SSPI"/>

    <add name="Shard2" connectionString="Server=.\SQLExpress; 
Database=Shard2; Trusted_Connection=SSPI"/>

    <add name="Shard3" connectionString="Server=.\SQLExpress; 
Database=Shard3; Trusted_Connection=SSPI"/>

  </connectionStrings>

</configuration>

8. Add a new class named ShardConfiguration with the following code:
public class ShardConfiguration

{

  private Configuration GetConfiguration(

    string connStrName, 

    int shardId)

http://sourceforge.net/projects/nhcontrib/files/
http://sourceforge.net/projects/nhcontrib/files/
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  {

    var cfg = new Configuration()

      .SessionFactoryName("SessionFactory" 

          + shardId.ToString())

      .Proxy(p => 

        p.ProxyFactoryFactory<ProxyFactoryFactory>())

      .DataBaseIntegration(db =>

           {

             db.Dialect<MsSql2008Dialect>();

             db.ConnectionStringName = connStrName;

           })

      .AddAssembly("Eg.Core")

      .SetProperty(

        ShardedEnvironment.ShardIdProperty,

        shardId.ToString());

    return cfg;

  }

  private IShardConfiguration GetShardCfg(

    string connStrName,

    int shardId)

  {

    var cfg = GetConfiguration(connStrName, shardId);

    return new ConfigurationToShardConfigurationAdapter(

      cfg);

  }

  private IList<IShardConfiguration> GetShardCfg(

    IEnumerable<string> connStrNames)

  {

    var cfg = new List<IShardConfiguration>();

    int shardId = 1;

    foreach (var connStrName in connStrNames)

      cfg.Add(GetShardCfg(connStrName, shardId++));

    return cfg;

  }

  public IShardedSessionFactory GetSessionFactory(

    IEnumerable<string> connStrNames,

    IShardStrategyFactory shardStrategyFactory)

  {

    var prototypeCfg = GetConfiguration(

      connStrNames.First(), 1);
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    var cfg = new ShardedConfiguration(

      prototypeCfg,

      GetShardCfg(connStrNames),

      shardStrategyFactory);

    return cfg.BuildShardedSessionFactory();

  }

}

9. Add a new class named ShardStrategyFactory with the following code:
public class ShardStrategyFactory : IShardStrategyFactory

{

  public IShardStrategy NewShardStrategy(

    ICollection<ShardId> shardIds)

  {

    return new ShardStrategyImpl(

      GetSelectionStrategy(shardIds),

      GetResolutionStrategy(shardIds),

      GetAccessStrategy(shardIds));

  }

  private static IShardSelectionStrategy 

    GetSelectionStrategy(

      ICollection<ShardId> shardIds)

  {

    var loadBalancer =

      new RoundRobinShardLoadBalancer(shardIds);

    return new RoundRobinShardSelectionStrategy(

      loadBalancer);

  }

  private static IShardResolutionStrategy 

    GetResolutionStrategy(

      ICollection<ShardId> shardIds)

  {

    return new AllShardsShardResolutionStrategy(

      shardIds);

  }

  private static IShardAccessStrategy 

    GetAccessStrategy(

      ICollection<ShardId> shardIds)
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  {

    return new SequentialShardAccessStrategy();

  }

}

10. In Program.cs, use the following code:
static void Main(string[] args)

{

  NHibernateProfiler.Initialize();

  var connStrNames = new List<string>();

  connStrNames.Add("Shard1");

  connStrNames.Add("Shard2");

  connStrNames.Add("Shard3");

  var shardStrategy = new ShardStrategy();

  var sessionFactory = new ShardConfiguration()

    .GetSessionFactory(connStrNames, shardStrategy);

  ClearDB(sessionFactory);

  var p1 = new Product()

             {

               Name = "Water Hose",

               Description = "50 ft.",

               UnitPrice = 17.46M

             };

  var p2 = new Product()

             {

               Name = "Water Sprinkler",

               Description = "Rust resistant plastic",

               UnitPrice = 4.95M

             };

  var p3 = new Product()

             {

               Name = "Beach Ball",

               Description = "Hours of fun",

               UnitPrice = 3.45M

             };

  using (var session = sessionFactory.OpenSession())

  {
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    using (var tx = session.BeginTransaction())

    {

      session.Save(p1);

      session.Save(p2);

      session.Save(p3);

      tx.Commit();

    }

    session.Close();

  }

  using (var session = sessionFactory.OpenSession())

  {

    using (var tx = session.BeginTransaction())

    {

      var query = 

        "from Product p where upper(p.Name) " +

        "like '%WATER%'";

      var products = session.CreateQuery(query)

        .List();

      foreach (Product p in products)

        Console.WriteLine(p.Name);

      tx.Commit();

    }

    session.Close();

  }

  Console.ReadKey();

}

private static void ClearDB(ISessionFactory sessionFactory)

{

  using (var s = sessionFactory.OpenSession())

  {

    using (var tx = s.BeginTransaction())

    {

      var products = s.CreateQuery("from Product")

        .List();

      foreach (Product product in products)

        s.Delete(product);

      tx.Commit();

    }

    s.Close();
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  }

}

11. Build and run the application.

12. Inspect the product table in each of the three databases. You should find one  
product in each.

How it works...
NHibernate Shards allows you to split your data across several databases, named  
shards, while hiding this additional complexity behind the familiar NHibernate APIs.  
In this recipe, we use the sharded UUID POID generator, which generates UUIDs with  
a four-digit shard ID, followed by a 28 hexadecimal digit unique ID. A typical ID looks like  
this: 0001000069334c47a07afd3f6f46d587. You can provide your own POID generator, 
provided the shard ID is somehow encoded in the persistent object's IDs.

The ShardConfiguration class configures a session factory for each shard. These session 
factories are grouped together with an implementation of IShardStrategyFactory to 
build an IShardedSessionFactory. A sharded session factory implements the familiar 
ISessionFactory interface, so the impact on your larger application is minimal.

An implementation of IShardStrategyFactory must return three strategies to control the 
operation of NHibernate Shards. First, the IShardSelectionStrategy assigns each new 
entity to a shard. In this recipe, we use a simple round-robin technique that spreads the data 
across each shard equally. The first entity is assigned to shard 1, the second to shard 2, the 
third to shard 3, the fourth to shard 1, and so on. Next, the IShardResolutionStrategy 
is used to determine the correct shard given an entity name and entity ID. In this example, 
we use the AllShardsShardResolutionStrategy, which doesn't attempt to determine 
the correct shard. Instead, all shards are queried for an entity. We could provide our own 
implementation to get the shard ID from the first 4 characters of the entity ID. This would allow 
us to determine which shard contains the entity we want and query only that shard, reducing 
the load on each database. Finally, the IShardAccessStrategy determines how the shards 
will be accessed. In this example, we use the SequentialShardAccessStrategy, so 
the first shard will be queried, then the next, and so on. NHibernate Shards also includes a 
parallel strategy.

Once we've built a sharded session factory, the application code looks like any other 
NHibernate application. However, there are a few caveats. NHibernate Shards doesn't support 
many of the lesser-used features of NHibernate. For example, session.Delete("from 
Products"); throws a NotImplementedException. Additionally, sharded sessions  
expect to be explicitly Closed before being Disposed. Finally, NHibernate Shards doesn't 
support object graphs spread across shard boundaries. The idea of well-defined boundaries 
between object graphs fits well with the Domain-Driven Design pattern of aggregate roots  
and is generally considered a good NHibernate practice even without sharding.
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Using NHibernate Spatial
NHibernate Spatial brings the spatial capabilities of several relational databases to the 
NHibernate API. In this recipe, I'll show you how to use NHibernate Spatial with Microsoft  
SQL Server 2008 to query for a geographic region containing a point.

Getting ready
In SQL Server 2008 Express, create a new, blank database named Spatial.

Download the State shapes from the US Census website by following these steps:

1. Inside the solution directory, create a directory named SpatialData.

2. Download the Shapefile containing all 50 states, D.C. and Puerto Rico from the 
United States Census website at http://www.census.gov/geo/www/cob/
st2000.html or from the code download for this book. The file is named st99_
d00_shp.zip.

3. Extract all three files in ZIP to the SpatialData folder. The files are named st99_
d00.shp, st99_d00.dbf, and st99_d00.shx.

Import the data from the Shapefile into the Spatial database using the following steps:

1. Inside the solution directory, create a directory named SpatialTools.

2. Download the SQL Spatial Tools from the SharpGIS website at  
http://www.sharpgis.net/page/SQL-Server-2008-Spatial-Tools.aspx.

3. Extract the files in ZIP to the SpatialTools folder.

4. Run Shape2SQL.exe from the SpatialTools folder.

http://www.census.gov/geo/www/cob/st2000.html
http://www.census.gov/geo/www/cob/st2000.html
http://www.sharpgis.net/page/SQL-Server-2008-Spatial-Tools.aspx
http://www.sharpgis.net/page/SQL-Server-2008-Spatial-Tools.aspx
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5. When prompted, enter your database information as shown in the next screenshot, 
and click OK.

6. Click on the ellipsis next to the Shapefile textbox to browse for the Shapefile. Select the 
st99_d00.shp Shapefile we downloaded and extracted in the SpatialData folder.

7. Check the Set SRID checkbox, and enter 4269 as the SRID.

8. Change the table name to StatePart, as shown in the next screenshot:
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9. Click on Upload to Database.

10. When the upload process is complete, close the Shape2SQL tool.

Test your imported data using the following steps:

1. Open the Spatial database in Microsoft SQL Server Management Studio 2008.

2. Run the following query:
SELECT * FROM StatePart WHERE Name LIKE 'Texas'

3. The Results tab should contain two rows.

4. The Spatial results tab should display the following image:

Download the NHibernate Spatial assemblies using the following steps:

1. Create a folder named Lib in your solution directory.

2. Download the latest NHibernate Spatial binary files from SourceForge at http://
sourceforge.net/projects/nhcontrib/files/.

3. Extract the assemblies in ZIP format to the Lib folder.

How to do it...
1. Create a new, empty class library project named Eg.Spatial.

2. Add a reference to GeoAPI.dll in the Lib folder.

http://sourceforge.net/projects/nhcontrib/files/
http://sourceforge.net/projects/nhcontrib/files/
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3. Create a class named StatePart with the following code:
public class StatePart

{

  public virtual int Id { get; protected set; }

  public virtual string Name { get; protected set; }

  public virtual float Area { get; protected set; }

  public virtual float Perimeter { get; protected set; }

  public virtual IGeometry Geometry { get; protected set; }

}

4. Create an embedded resource mapping file for StatePart with the following XML:
<?xml version="1.0" encoding="utf-8" ?>

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

    assembly="Eg.Spatial"

    namespace="Eg.Spatial">

  <typedef name="Geometry"

           class="NHibernate.Spatial.Type.GeometryType, 

           NHibernate.Spatial">

    <param name="srid">4269</param>

    <param name="subtype">GEOMETRY</param>

  </typedef>

  <class name="StatePart" 

         table="StatePart"

         mutable="false"

         schema-action="none">

    <id name="Id" column="ID">

      <generator class="assigned" />

    </id>

    <property name="Name" column="NAME"/>

    <property name="Area" column="AREA"/>

    <property name="Perimeter" column="PERIMETER"/>

    <property name="Geometry" type="Geometry" 

              column="geom" />

  </class>

</hibernate-mapping>

4. Create a new console project named Eg.Spatial.Runner.
5. Add references to the Eg.Spatial model, GeoAPI.dll, log4net.dll, 

NetTopologySuite.dll, NHibernate.dll, NHibernate.ByteCode.Castle.
dll, NHibernate.Spatial.dll, and NHibernate.Spatial.MsSql2008.dll.
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6. Add an App.config file with standard log4net and hibernate-configuration 
sections as done in Chapter 2.

7. Change the connection string to point to the Spatial database, as shown  
in the following code:
<connectionStrings>

  <add name="db" connectionString="Server=.\SQLExpress; 
Database=Spatial; Trusted_Connection=SSPI"/>

</connectionStrings>

8. Change the NHibernate dialect property to the MsSql2008GeometryDialect:
<property name="dialect">

  NHibernate.Spatial.Dialect.MsSql2008GeometryDialect, NHibernate.
Spatial.MsSql2008

</property>

9. Use the following code in the Main method of Program.cs:
static void Main(string[] args)

{

  

  XmlConfigurator.Configure();

  var log = LogManager.GetLogger(typeof (Program));

  NHibernateProfiler.Initialize();

  var cfg = new Configuration().Configure();

  

  cfg.AddAuxiliaryDatabaseObject(

    new SpatialAuxiliaryDatabaseObject(cfg));

  var sessionFactory = cfg.BuildSessionFactory();

  //Houston, TX 

  var houstonTX = new Point(-95.383056, 29.762778);

  using (var session = sessionFactory.OpenSession())

  {

    using (var tx = session.BeginTransaction())

    {

      var query = session.CreateCriteria(

        typeof (StatePart))

        .Add(SpatialExpression.Contains(

          "Geometry", houstonTX));

      var part = query.UniqueResult<StatePart>();

      if (part == null)

      {



NHibernate Contribution Projects

300

        log.InfoFormat("Houston, we have a problem.");

      }

      else

      {

        log.InfoFormat("Houston is in {0}", 

          part.Name);

      }

      tx.Commit();

    }

  }

}

10. Build and run the program.

11. Check the log output for the line Houston is in Texas.

How it works...
In this recipe, we have simply created a Point with the latitude and longitude of Houston, 
Texas. Then we created an NHibernate criteria query to find the geometries containing that 
point. The geom field in each row of our StateParts table has a single polygon representing 
some distinct landmass. For example, Texas has two rows. The first polygon defines the border 
of mainland Texas while the other represents Padre Island, the large barrier island that runs 
along the South Texas shore. When our query returns the StatePart entity that contains our 
point, we output the Name field.

To allow for the additional spatial-related SQL keywords and syntax, we use the 
MsSql2008GeometryDialect.

The Geometry property on our StatePart entity is an IGeometry. This is mapped using 
the user type GeometryType. We also provide the spatial reference identifier, or SRID, for 
our datum and a subtype as parameters for this user type. Datums and SRIDs are explained 
later in this recipe.

There's more...
This recipe barely scratches the surface of what is possible with NHibernate Spatial. With just 
the basic spatial data, it's possible to query for any number and combination of criteria from 
the availability of valuable natural resources to the standard "Find the nearest retail location" 
feature on a website.
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Geography or geometry?
To phrase this question differently, should you use a globe or map? Geography corresponds  
to the round-earth model, much like a globe. It works well for making measurements over 
great distances, accounting for the curvature of the earth.

Geometry, on the other hand, corresponds with the planar system or flat-earth model, like a 
map. As with a map, some distortion is tolerated, and this system is best-suited for smaller 
regions. However, standards for full-featured geometry data types are well established,  
while standards for geography data types are generally lacking. NHibernate Spatial  
has full support for geometry, as well as limited support for geography.

What's this SRID?
A datum is a model of the shape of the earth, combined with defined points on the surface used 
to measure accurate latitude and longitude. It's a sort of calibration where an exact location is 
defined in the datum as being at a precise latitude and longitude, and then everything else is 
measured from that point. For example, the North American Datum of 1927 (NAD 27) defines a 
marker on Meades Ranch in Kansas as 39° 13' 26.71218" N, 98° 32' 31.74604" W. Using NAD 
27, every other point in North America was measured from this one point.

Each datum has a corresponding spatial reference identifier or SRID. The census Shapefile 
we used was built with the North American Datum of 1983, or NAD 83, an update to NAD 
27. A query of SQL Server's sys.spatial_reference_systems table reveals that the 
corresponding SRID for NAD 83 is 4269.

Incidentally, most GPS devices use the World Geodetic System of 1984 (WGS 84), which 
corresponds with SQL Server's default SRID of 4326. NAD 83 and WGS 84 are essentially 
interchangeable for all but the most accurate applications. Given a set of coordinates, the 
location measured with NAD 83 will be at most, about one meter away from the location 
measured with WGS 84. That is, the two systems differ by about one meter at most.

Spatial data types
Spatial data can be broken down into three essential data types. First, a point consists of a 
simple X and Y coordinate. It has no length or area. A Linestring is simply two or more points 
in sequence, and the shortest possible line from each point to the next, as shown in the 
following diagrams. It has length, but no area. There are two special cases of linestring.  
A simple Linestring is one that doesn't cross itself. A ring is a Linestring whose first point  
is the same as its last.
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In its most basic form, a polygon is a simple ring. It has length (or rather perimeter), as well as 
area. As shown in the second diagram, the line string forming the perimeter of the polygon must 
be simple; it can't cross over itself to form a bow-tie. A polygon may have inner negative areas 
defined with inner rings. The Linestrings forming these rings may touch, but they can never cross 
each other or the outside ring. This can best be explained with the following diagrams:
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The recipes presented in this book can be combined to build the following types  
of applications:

 f ASP.NET MVC Web applications

 f ASP.NET Web Forms applications

 f Windows Presentation Foundation (WPF) and WinForms applications

ASP.NET MVC web applications
To build a complete web application using ASP.NET MVC or MVC 2, first choose a mapping 
method from the following recipes:

1.1  Mapping a class with XML

1.7  Creating mappings fluently

1.8  Mapping with ConfORM

Choose a configuration method from the following recipes:

2.1  Configuring NHibernate with App.Config

2.2  Configuring NHibernate with hibernate.cfg.xml

2.3  Configuring NHibernate with code

2.4  Configuring NHibernate with Fluent NHibernate

Create your database from the following recipes:

2.8  Generating the database

2.9  Scripting the database

2.10  Using NHibernate Schema Tool
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Choose a session management method from the following recipes:

3.1  Setting up session-per-web request

3.3  Creating a session ASP.NET MVC action filter

3.5  Using the Conversation-per-Business transaction pattern

Choose a query method from the following recipes:

4.1  Using Criteria Queries

4.2  Using QueryOver

4.5  Using the Hibernate Query Language

4.7  Using Named Queries

4.10  Using LINQ to NHibernate

Choose a data access layer style from the following recipes:

6.1  Transaction Auto-wrapping for the data access layer (Data Access Objects)

6.2  Setting up an NHibernate repository

Finally, build your ASP.NET MVC application on top of this fully functional data access layer.

ASP.NET Web Forms applications
To build a complete web application using ASP.NET Web Forms, first choose a mapping 
method from the following list of recipes:

1.1  Mapping a class with XML

1.7  Creating mappings fluently

1.8  Mapping with ConfORM

Choose a configuration method from the following recipes:

2.1  Configuring NHibernate with App.config

2.2  Configuring NHibernate with hibernate.cfg.xml

2.3  Configuring NHibernate with code

2.4  Configuring NHibernate with Fluent NHibernate
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Create your database from the following list of recipes:

2.8  Generating the database

2.9  Scripting the database

2.10  Using NHibernate Schema Tool

Choose a session management method from the following recipes:

3.1  Setting up session-per-web request

3.5  Using the Conversation-per-Business transaction pattern

8.4  Using the Burrows framework

Choose a query method from the following recipies:

4.1  Using Criteria Queries

4.2  Using QueryOver

4.5  Using the Hibernate Query Language

4.7  Using Named Queries

4.10  Using LINQ to NHibernate

Choose a data access layer style from the following recipes:

6.1  Transaction Auto-wrapping for the data access layer (Data Access Objects)

6.2  Setting up an NHibernate repository

8.3  Using the Burrows framework

Finally, build your Web Forms application on top of this complete data access layer.

WPF and WinForms applications
To build a complete desktop application using Windows Presentation Foundation or 
WinForms, first choose a mapping method from the following list of recipes:

1.1  Mapping a class with XML

1.7  Creating mappings fluently

1.8  Mapping with ConfORM 
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Choose a configuration method from the following recipes:

2.1  Configuring NHibernate with App.config

2.2  Configuring NHibernate with hibernate.cfg.xml

2.3  Configuring NHibernate with code

2.4  Configuring NHibernate with Fluent NHibernate

Create your database from the following recipes:

2.8  Generating the database

2.9  Scripting the database

2.10  Using NHibernate Schema Tool 

Choose a session management method from the following two recipes:

3.2  Setting up session-per-presenter

3.5  Using the Conversation-per-Business transaction pattern

Choose a query method from the following recipes:

4.1  Using Criteria Queries

4.2  Using QueryOver

4.5  Using the Hibernate Query Language

4.7  Using Named Queries

4.10  Using LINQ to NHibernate

Choose a data access layer style from the following recipes:

6.1  Transaction Auto-wrapping for the data access layer (Data Access Objects)

6.2  Setting up an NHibernate repository

Finally, build your application on top of this data access layer.
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using  153
using, with session cache  155-157
working  154

G
generate_statistics property  53
generator element  9
geography  301
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Geometry property  300
geom field  300
Ghostbusters test

GhostInterceptor  190
ghost update, issues  189, 190
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GhostInterceptor  190
guid.comb generator  12
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guid.native generator  12

H
hash algorithm  225
hashing algorithm  234
hbm2ddl tool  70
hibernate.cfg.xml

NHibernate, configuring  54-56
hibernate mapping to data definition lan-

guage tool. See  hbm2ddl tool
Hibernate Query Language. See  HQL
Hibernating Rhinos  167
hilo generator  12
HQL

class property  146
ID property  147
using  140-143
using, for bulk data changes  163, 164
working  144, 146

HQL AddIn tool
about  152
URL  152

HQL query
example  164

http module  279

I
ICollection<T> interface  197
ICriteria queries

using, in data access layer  205-207
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identity generator  12
Id property  8
increment generator  12
index  287
Index() controller  90
Indexed attribute  287
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IQueryFactory interface   204
IQuery interface  204
IQuery<TResult> interface  204

IRepository<T> interface  197
IsConfigurationFileValid method  68
IsSatisfiedBy method  214

J
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K
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natural key  10
surrogate keys  10

L
LazyInitializationException exception  91
lazy loading collections  20
lazy loading proxies  21
linestring  301
LINQ

working  162
LINQ queries

executing, with NHibernate  159-161
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using, in data access layer  212-214
LinqSpecs library

URL  212
list collection  23
log4net

about  63
configuring  63, 64
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using, in application  64
working  64

loggers  64
using, to troubleshoot NHibernate  66

Lucene
about  288
features  288
using  287, 288

M
magic strings problem  130
map  24
mappings  182
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about  8
creating  8
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URL  78

MultiCriteria
using  138, 139
working  140

MultiQuery
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using  147, 148
working  149

N
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using  149, 151
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working  203, 204

NamedQueryBase class  204
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cache, configuring  255-257
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component class  45, 46
configuring, with App.config  47-50
configuring, with code  56-58
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CpBT pattern  94-98
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detached queries  162, 163
dialects  53, 54
drivers  53, 54
dynamic connection strings  253, 254
encrypted string type, creating  217-224
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events  238
Fluent NHibernate project  31
full-text search, setting up  280-286
futures feature  152-154
Ghostbusters test  184-190
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HQL  140-146
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lazy loading collections  20
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MultiQuery  147-149
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QueryOver  130-132
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session ASP.NET MVC action filter,  
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session management  75
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Transaction ASP.NET MVC Action Filter,  
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transaction management  75
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NHibernate application
components  50, 51
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startup time, reducing  66-69

NHibernate application, components
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connection provider  52
dialect  51
driver  51
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session factory  51
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lists  22, 23
map  22, 24
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NHibernate, configuring
App.config, used  47-50
code, used  56-58
ConfORM Mappings, used  60-62
Fluent NHibernate, used  58-60
hibernate.cfg.xml, used  54-56

NHibernate Contribution projects
URL  255

NHibernate Contributions. See  NHContrib
nhibernate-mapping.xsd schema  9
NHibernate profiler

NHibernate, misuses  171
NHibernate Profiler
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using  167, 168-170
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format_sql  53
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show_sql  52
sql_exception_converter  52

NHibernate repository
setting up  194-196

NHibernate Schema Tool (NST)
about  73
command-line options  74
downloading  72
installing  72
using  72, 73

NHibernate Search
using  287, 288

NHibernate Shards
data, splitting into databases  288-293
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NHibernate Spatial
using, with Microsoft SQL Server  

2008  295-299
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NHibernate transactions
data access  191-194

NHibernate Validator project (NHV)
attributes, validating entities  262
configuiration settings  266
integrating, with NHibernate  266, 267
object graph, validating  271
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NHibernate Validator project (NHV),  
configuration settings

apply_to_ddl  266
autoregister_listeners  266
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default_validator_mode  266
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guid.native  12
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increment  12
seqhilo  12
sequence  12
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uuid.string  12
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object graph

validating  271
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mapping  17-19
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online transaction processing (OLTP)  280
optimistic concurrency
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Order keyword  43
Order property  90
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working  42

P
paged queries
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pre-delete event  237
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prepare_sql property  52
pre-update event  237
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QueryOver queries, writing  133-137
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Q
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function  77
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transient object  26
TriggerAuditing Configure() method  246
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