Command Manager
Diagram provides support to map/bind command execution with desired combination of key gestures.
[bookmark: _GoBack]By default, diagram maps some commands with a set of key gestures and they are illustrated in the following table.
Table 30: In built commands
	Shortcut Key
	Command
	Description

	Ctrl + A
	selectAll
	Select all nodes/connectors in diagram

	Ctrl + C
	copy
	Copy the diagram selected elements

	Ctrl + V
	paste
	Paste the copied elements

	Ctrl + X
	cut
	Cut the selected elements

	Ctrl + Z
	undo
	Undo(Reverse the last editing action performed on diagram)

	Ctrl + Y
	redo
	Redo(Restores the last editing action if no other actions have occurred since the last undo on diagram)

	Delete
	delete
	Delete the selected elements

	Ctrl /Shift+ Click on object
	
	Multiple selection(Selector binds all selected nodes/connectors)

	Up Arrow
	nudge(“up”)
	nudgeUp(move the selected elements towards up by one pixel)

	Down Arrow
	nudge(“down”)
	nudgeDown(move the selected elements towards down by one pixel)

	Left Arrow
	nudge(“left”)
	nudgeLeft(move the selected elements towards left by one pixel)

	Right Arrow
	nudge(“right”)
	nudgeRight(move the selected elements towards right by one pixel)

	Ctrl+MouseScroll
	zoom
	Zoom(Zoom in/Zoom out the diagram)

Command Manager provides support to map custom commands with the set of desired key combinations. The defined custom commands will be executed when the specified key gesture is recognized.

Custom Command
A custom command has to be defined with a set of predefined fields as follows.
Table 31: Custom Command
	Property
	Type
	Default
	Description

	Gesture
	 Gesture
	Instance of gesture
	Combination of keys and key modifiers to recognize when to execute the command

	CanExecute
	string
	Empty string
	The name of the method that defines whether the command is executable at the current moment or not.
It will be called when the specified key gesture is recognized.

	Execute
	string
	Empty string
	Name of the execute method.
The execute method acts as the command handler and will be called when the canExecute method returns true.

	Parameter
	Object
	Null
	Parameter is an object. If specified, the parameter will be passed to the handler on command execution.

The following code snippet illustrates how to define a custom command.

	[EJMVC]
[Controller]
 DiagramProperties model=new DiagramProperties();
 //Initialize custom commands
 Dictionary<string, object> Commands = new Dictionary<string, object>()
 {
 //clone command
 {
 //command name
 "clone",
 //command definition
 new Command()
 {
 //Name of the method/command handler that is defined in scripts
 Execute = "executeClone",
 //Gesture to define when the command is to be executed
 Gesture = new Gesture()
 {
 //Combination of keys and modifier keys
 Key = Keys.C, KeyModifiers = KeyModifiers.Shift
 }
 }
 }
 };

	[CSHTML]
 //Method to clone the selected item
 function executeClone(args) {
 var diagram = $("#Diagram1").ejDiagram("instance");
 if (diagram) {
 diagram.copy();
 diagram.paste();
 }
 }

Disable existing command

By default, diagram maps certain commands with relevant key combination. If those commands are not desired for the specified keys, they can be disabled.
Following code snippet illustrates how to disable a command.

	[Controller]
DiagramProperties model=new DiagramProperties();
Dictionary<string, object> Commands = new Dictionary<string, object>()
{
 //canExecute – Name of the CanExecute method that is defined in aspx
 {"nudgeLeft", new Command() { CanExecute = "canExecute" }},
 {"nudgeRight", new Command() { CanExecute = "canExecute" }},
 {"nudgeUp", new Command() { CanExecute = "canExecute" }},
 {"nudgeDown", new Command() { CanExecute = "canExecute" }}
};
model.CommandManager.Commands = Commands;

	[CSHTML]
//definition of canExecute method
function canExecute(args) {
 return false;
}

