[bookmark: _Ref360712995]SfDiagram
Overview
Essential Diagram WPF is used to create rich Visio-like applications. This framework comprises many controls to help you put an application together easily. SfDiagram control has many internal controls such as Node, Connector, Port, Annotations, Groups and Selector.
Node: Visual element that represents an object.
Connector: Visual element that is used to make a connection between a node and group.
Port: Visual element that acts as the reference point for making connections to nodes.
Annotation: Visual element that is used to annotate a node, group or connector.
Group: Visual element that is used to represent a collection of nodes or connectors; the collection can be manipulated.
Selector: Visual element to represent selected items.

[image:]

Figure 1: SfDiagram - Internal Controls

Adding SfDiagram control to your Application
The following steps illustrate how to add SfDiagram control to your application.
On the Project menu, select Add Reference.
In the Reference Manager window that opens, click Windows, Extensions, and then click Syncfusion controls for WPF XAML.
Select the namespace, "http://schemas.syncfusion.com/wpf", and click OK. This will add the namespace to your application.
	[XAML]

xmlns:syncfusion="http://schemas.syncfusion.com/wpf"

Initialize the SfDiagram control by using the following code.

	[XAML]

<syncfusion:SfDiagram>
</syncfusion:SfDiagram>

Initialize the Nodes and Connectors collection as shown in the following code.
	[XAML]

<syncfusion:SfDiagram.Nodes>
<syncfusion:DiagramCollection>
</syncfusion:DiagramCollection>
</syncfusion:SfDiagram.Nodes>
<syncfusion:SfDiagram.Connectors>
<syncfusion:DiagramCollection>
</syncfusion:DiagramCollection>
</syncfusion:SfDiagram.Connectors>

Finally, add Nodes and Connectors to the SfDiagram control as shown in the following code.
	[XAML]

<syncfusion:SfDiagram.Nodes>
<syncfusion:DiagramCollection>
<syncfusion:Node Name="node1" Width="100" Height="50" OffsetX="100"
OffsetY="100">
<syncfusion:Node.ContentTemplate>
<DataTemplate>
<Border BorderBrush="Black" Background="DeepSkyBlue" CornerRadius="5">
<TextBlock Width="100" Height="50" Text="Source">
</TextBlock>
</Border>
</DataTemplate>
</syncfusion:Node.ContentTemplate>
</syncfusion:Node>
<syncfusion:Node Name="node2" Width="100" Height="50" OffsetX="200"
OffsetY="200">
<syncfusion:Node.ContentTemplate>
<DataTemplate>
<Border BorderBrush="Black" Background="DeepSkyBlue" CornerRadius="5">
<TextBlock Width="100" Height="50" Text="Source">
</TextBlock>
</Border>
</DataTemplate>
</syncfusion:Node.ContentTemplate>
</syncfusion:Node>
</syncfusion:DiagramCollection>
</syncfusion:SfDiagram.Nodes>
<syncfusion:SfDiagram.Connectors>
<syncfusion:DiagramCollection>
<syncfusion:Connector SourceNode="{Binding ElementName=node1}"
TargetNode="{Binding ElementName=node2}”
</syncfusion:Connector>
</syncfusion:DiagramCollection>
</syncfusion:SfDiagram.Connectors>

The following illustration shows SfDiagram control with two Nodes (Source and Target) and a Connector.
[image:]
Figure 2: Nodes and Connector added to SfDiagram Control
Features
The previous section (Getting Started) elaborates how to create a basic diagram with nodes and connections. In this section, you will learn about the various features of the SfDiagram control.
Nodes
Nodes are graphical objects used to represent data in the SfDiagram.
Creating a Node
A node can be created and added to the Diagram by using the following methods:
Through Stencil
Through Code
[bookmark: _Adding_Through_SymbolPalette]Adding Nodes through Stencil
Drag the desired Symbol from the Stencil to the drawing area and release the pointer. The desired node is now added to the diagram.
[image:]
Figure 3: Adding Node Through Stencil
Adding Nodes through Code
The NodeViewModel is implemented with the INode interface. The NodeViewModel does not have any default Shape.
	[C#]

ObservableCollection<NodeViewModel> nodes = new ObservableCollection<NodeViewModel>();
NodeViewModel node = new NodeViewModel()
{
// Unique Guid for NodeViewModel
ID=Guid.NewGuid()
};
nodes.Add(node);
diagramcontrol.Nodes = nodes;

Setting the Node Shape and Shape Style
Shape is a type of geometry that can be customized by using ShapeStyle property. A node shape visually lies between the content and background of the node.
	[XAML]

<Style TargetType="Path" x:Key="shapestyle">
 <Setter Property="Fill" Value="DeepSkyBlue"></Setter>
 <Setter Property="StrokeThickness" Value="1"></Setter>
 <Setter Property="Stretch" Value="Fill"></Setter>
</Style>

	[C#]
ObservableCollection<NodeViewModel> nodes = new ObservableCollection<NodeViewModel>();
NodeViewModel node = new NodeViewModel()
{
 UnitWidth = 75,
 UnitHeight = 50,
 //Unique Guid for NodeViewModel
 ID = Guid.NewGuid(),
 //Shape for NodeViewModel
 Shape = new RectangleGeometry() { Rect = new Rect(0, 0, 10, 10) },
 //ShapeStyle
 ShapeStyle = this.Resources["shapestyle"] as Style
};
nodes.Add(node);
diagramcontrol.Nodes = nodes;

[image:]
Figure 4: Shape and ShapeStyle
Node Content
A node is used to visually represent UI elements by using the Content property. You can host any content inside a node through the content template of the node which provides support for all types of content.
[image:]Note: Nodes can include both Content and Shape at the same time. In such a case, the Content will be placed over the Shape.
	[C#]

<!--<NodeViewModel>-->
<SynDiagram:NodeViewModel Width="110" Height="50" OffsetX="100" OffsetY="100">

<!--<Content-RatingControl>-->
<SynDiagram:NodeViewModel.Content>
<rating:SfRating ItemsCount="5" Margin="0,10,0,0">
<rating:SfRating.Resources>
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]<Style TargetType="rating:SfRatingItem">
<Setter Property="Width" Value="20"></Setter>
<Setter Property="Height" Value="23"></Setter>
<Setter Property="RatedFill" Value="Green"></Setter>
</Style>
</rating:SfRating.Resources>
</rating:SfRating>
</SynDiagram:NodeViewModel.Content>

<!--<Shape-Ellipse>-->
<SynDiagram:NodeViewModel.Shape>
<EllipseGeometry RadiusX="10" RadiusY="10">
</EllipseGeometry>
</SynDiagram:NodeViewModel.Shape>

<!--<Shape-Style>-->
<SynDiagram:NodeViewModel.ShapeStyle>
<Style TargetType="Path">
<Setter Property="Fill" Value="DeepSkyBlue"></Setter>
<Setter Property="Stretch" Value="Fill"></Setter>
</Style>
</SynDiagram:NodeViewModel.ShapeStyle>
</SynDiagram:NodeViewModel>

[image:]
Figure 5: NodeContent
Using Business Objects as Node Content
Business objects can also be used as node content. In such cases, the content template will determine the representation of the business objects.
The following example illustrates how to add business objects to Node Content:
1. Create an Employee class.
	[C#]

public class Employee
{
public string Name
{
get;
set;
}
public int ID
{
get;
set;
}
}

Create the Content Template.
	[XAML]

<DataTemplate x:Key="contenttemplate">
<Border BorderBrush="Black" BorderThickness="2" Background="DeepSkyBlue">
<StackPanel Orientation="Vertical">
<TextBlock Text="{Binding Name}" Foreground="White" FontSize="12">
</TextBlock>
<TextBlock Text="{Binding ID}" Foreground="White"
FontSize="12">
</TextBlock>
</StackPanel>
</Border>
</DataTemplate>

Add the Node Content and Content Template to the INode interface.
	[C#]
ObservableCollection<NodeViewModel> nodes = new ObservableCollection<NodeViewModel>();
NodeViewModel node = new NodeViewModel()
{
 UnitWidth = 100,
 UnitHeight = 50,
 OffsetX = 200,
 OffsetY = 200,
 // Unique Guid for NodeViewModel
 ID = Guid.NewGuid(),
 Content = new Employee() { Name = "Kevin", ID = 3567 }, ContentTemplate = this.Resources["contenttemplate"] as DataTemplate
};
nodes.Add(node);
diagramcontrol.Nodes = nodes;

[image:]
Figure 6: Node with Business Object
Node Constraints
NodeConstraints property is used to enable or disable certain behaviors of Nodes. This property is applicable only to the Node of SfDiagram control.
Table 1: Constraints Table
	Constraints
	Description

	None
	Disables all behaviors of the control.

	Selectable
	Enables a node to be selected.

	Draggable
	Enables the node to be dragged.

	Resizable
	Enables a node to be resized.

	Rotatable
	Enables a node to be rotated.

	InConnect
	Enables connecting to the incoming connector.

	OutConnect
	Enables connecting the outgoing connector.

	SnapToHorizontalLines
	Enables nodes to snap to horizontal gridlines.

	SnapToVerticalLines
	Enables nodes to snap to vertical gridlines.

	SnapAngle
	Enables snap while rotating.

	SnapToLines
	Enables nodes to snap to gridlines.

	Connectable
	Enables a node to connect to the connector.

	AllowPan
	Enables panning on the node.

	InheritSnapping
	Enables to inherit the value of SnapToLines and SnapAngle from SfDiagram by SnapConstraints in SnapSettings.

	InheritSnapToObject
	Enables to inherit the value to SnapToObject from SfDiagram by SnapConstraints in SnapSettings.

	InheritPortVisibility
	Enables to inherit the value for PortVisibility from SfDiagram.

	Inherit
	Enables to inherit all the Snapping, SnapToObject, and PortVisibility from SfDiagram.

	AspectRatio
	Enables node to be Resized all the direction

	Default
	Enables all behaviors of the control.

	ResizeNorthEast
	Enables or disables resizing nodes in the north east.

	ResizeEast
	Enables or disables resizing nodes in the east.

	ResizeSouthEast
	Enables or disables resizing nodes in the south east.

	ResizeSouth
	Enables or disables resizing nodes in the south.

	ResizeSouthWest
	Enables or disables resizing nodes in the south west.

	ResizeWest
	Enables or disables resizing nodes in the west.

	ResizeNorthWest
	Enables or disables resizing nodes in the north west.

	ResizeNorth
	Enables or disables resizing nodes in the north.

The default value for NodeConstraints property is Default.
Example 1
The following code example illustrates how to disable Dragging in a Node in SfDiagram:
	[C#]

node.Constraints = node.Constraints &~ NodeConstraints.Selectable &~ NodeConstraints.Draggable;

Example 2
The following code example illustrates how to disable the resizing node in a particular direction.
	[C#]
//Disable Selector Thumb Resize in Particular direction
node.Constraints = node.Constraints & ~(NodeConstraints.ResizeNorthWest | NodeConstraints.ResizeNorthEast | NodeConstraints.ResizeSouthWest | NodeConstraints.ResizeSouthEast);

Here, node is instance of a Node.
[image:]
Figure 4: Disable particular node Resize direction
[image:]Note: NodeConstraints property is manipulated using bitwise operations. For more information about bitwise operations, see Bitwise Operations.
Aspect Ratio
Aspect Ratio is used to enable/disable proportional resizing of Nodes. When the width of a node is resized to double its value, its height also automatically doubles to maintain its Aspect Ratio.
The following code example illustrates how to enable Aspect Ratio.
	[C#]

//Enables AspectRatio.

node.Constraints = node.Constraints | NodeConstraints.AspectRatio;

Connectors
Connectors are objects used to create a link between two nodes. A connector is a line that has connection points (Source Point and Target Point) at the ends of the line and stays connected to the objects that you attach it to.
[image:]
Figure 7: Connector
Creating a Connector
Like nodes, connectors can also be added in two ways:
Adding a Connector at Run Time
Adding a Connector Through Code
Adding a Connector at Run Time
1. Set the Tool property of SfDiagram to DrawOnce or ContinuesDraw.
1. Place the Source Point of the connector on the Source Node, and the corresponding node will be treated as the source for the new connection.
1. Finally, drag the Target Point of the connector to the Target Node to create a connection between the Source Node and the Target Node.
Adding a Connector through Code
The following code illustrates how to create a connection between a Source Node and Target Node through code:
	[C#]

// Creating NodeViewModel-SourceNode
ObservableCollection<NodeViewModel> nodes = new ObservableCollection<NodeViewModel>();
NodeViewModel source = new NodeViewModel()
{
Width = 75,
Height = 50,
OffsetX = 200,
OffsetY = 200,
Shape = new RectangleGeometry() { Rect = new Rect(0, 0, 10, 10) },
ShapeStyle = GetStyle()
};
// Adding Nodes to SfDiagram
nodes.Add(source);

// Creating NodeViewModel-TargetNode
NodeViewModel target = new NodeViewModel()
{
Width = 75,
Height = 50,
OffsetX = 200,
OffsetY = 330,
Shape = new RectangleGeometry() { Rect = new Rect(0, 0, 10, 10) },
ShapeStyle = GetStyle()
};
// Adding Nodes to SfDiagram
nodes.Add(target);
diagramcontrol.Nodes = nodes;

ObservableCollection<ConnectorViewModel> lines = new ObservableCollection<ConnectorViewModel>();
ConnectorViewModel con = new ConnectorViewModel()
{
SourceNode = source,
TargetNode = target,
ConnectorGeometryStyle = GetConStyle()
};
// Adding Connection to SfDiagram
lines.Add(con);
diagramcontrol.Connectors = lines;

Setting the Connector Style
ConnectorGeometryStyle property is used to customize the style of the Connectors. The following code example illustrates how to do this:
	[XAML]

<Style TargetType="Path" x:Key="connectorstyle">
<Setter Property="Stroke" Value="Red"></Setter>
<Setter Property="StrokeThickness" Value="2"></Setter>
</Style>

	[C#]

// Creating Connection
ObservableCollection<ConnectorViewModel> lines = new ObservableCollection<ConnectorViewModel>();
ConnectorViewModel con = new ConnectorViewModel()
{
SourceNode = source,
TargetNode = target,
 ConnectorGeometryStyle =this.Resources["connectorstyle"] as Style
};

// Adding Connection to SfDiagram
lines.Add(con);
diagramcontrol.Connectors = lines;

Customizing the Appearance of the Source and Target Points
SourceDecorator and TargetDecorator properties provide support to customize the appearance of the Source Point and Target Point of Connectors. The following code example illustrates this:
	[C#]

// Creating Connection
ObservableCollection<ConnectorViewModel> lines = new ObservableCollection<ConnectorViewModel>();
ConnectorViewModel con = new ConnectorViewModel()
{
SourceNode = source,
TargetNode = target,
ConnectorGeometryStyle = this.Resources["connectorstyle"] as Style,
// Specifying DecoratorShape
TargetDecorator = new PathGeometry()
{
Figures = new PathFigureCollection()
{
new PathFigure()
{
StartPoint = new Point(0, 0),
Segments = new PathSegmentCollection()
{
new PolyLineSegment()
{
Points = new PointCollection()
{
new Point(10, 5),
new Point(0, 10),
new Point(0,0)
}
}
}
}
}
},
};
// Adding Connection to SfDiagram
lines.Add(con);
diagramcontrol.Connectors = lines;

Customizing the Appearance of the Decorator Shapes
SourceDecoratorStyle and TargetDecoratorStyle shape properties provide support to customize the appearance of the Source and Target Decorator Shapes.
The following code example illustrates how to customize the Decorator Shape:
	[XAML]

<Style x:Key="decoratorstyle1" TargetType="Path">
<Setter Property="Stroke" Value="Green" />
<Setter Property="Fill" Value="Yellow" />
<Setter Property="StrokeThickness" Value="1" />
<Setter Property="Width" Value="10" />
<Setter Property="Height" Value="10" />
<Setter Property="Stretch" Value="Fill" />
</Style>

	[XAML]

<Style x:Key="decoratorstyle" TargetType="Path">
<Setter Property="Fill" Value="Black" />
<Setter Property="Stroke" Value="Black" />
<Setter Property="StrokeThickness" Value="2" />
<Setter Property="Width" Value="10" />
<Setter Property="Height" Value="10" />
<Setter Property="Stretch" Value="Fill" />
</Style>

	[C#]

ConnectorViewModel cvm = new ConnectorViewModel()
{
SourceNode = node1,
TargetNode = node2,
ConnectorGeometryStyle = this.Resources["connectorstyle"] as Style,
TargetDecorator = new PathGeometry()
{
Figures = new PathFigureCollection()
{
new PathFigure()
{
StartPoint = new Point(0, 0),
Segments = new PathSegmentCollection()
{
new PolyLineSegment()
{
Points = new PointCollection()
{
new Point(10, 5),
new Point(0, 10),
new Point(0,0)
}
}
}
}
}
},
SourceDecorator = new EllipseGeometry() { RadiusX = 10, RadiusY = 10 },
SourceDecoratorStyle = this.Resources["decoratorstyle1"] as Style,
TargetDecoratorStyle = this.Resources["decoratorstyle"] as Style
};
(sfdiagram.Connectors as DiagramCollection).Add(cvm);

[image:]
Figure 8: Decorator Customization
Segments
Segments are used to define the path connecting a source point and a target point, which can be a point, node, or connection port. Any number of segments can be added to this collection. When a connector is being rendered, each segment will be iterated and the corresponding segments will be drawn. If necessary, additional segments will be added for the path to meet the specified target.
The following segments are available:
ILineSegment
ILineSegmentLength
IOrthogonalSegment
QuadraticCurveSegment
CubicCurveSegment
ILineSegment
ILineSegment is used to create straight segments by defining the end point of the line segment.
	 [C#]

ConnectorViewModel con = new ConnectorViewModel()
{
 SourcePoint = new Point(100, 200),
 TargetPoint = new Point(200, 200),

 // Customizing the ConnectorGeometryStyle.
 ConnectorGeometryStyle = this.Resources["connectorstyle"] as Style
};

//Adding Line Segment to Segments.
con.Segments = new ObservableCollection<IConnectorSegment>()
{
 new LineSegment() { Point = new Point(150,100) }
};

[image:]
Figure 9: Line Segment
[image: C:\Users\ApoorvahR\Desktop\Note.png]Note: A terminate segment is added to meet the given target point if the given segment is invalid. The terminate segment will be a type that is added previously.
ILineSegmentLength
ILineSegmentLength is used to create a straight segment by defining the length and angle of the line segment.
	[C#]

ConnectorViewModel con = new ConnectorViewModel()
{
 SourcePoint = new Point(100, 200),
TargetPoint = new Point(200, 200),

// Customizing the ConnectorGeometryStyle.
ConnectorGeometryStyle = this.Resources["connectorstyle"] as Style
};

//Adding Line Segment to Segments.
con.Segments = new ObservableCollection<IConnectorSegment>()
{
 //Invalid Line Segment.
 new LineSegmentLength(){Length=50,Angle=-45}
};

[image:]
Figure 10: Line Segment Length
IOrthogonalSegment
IOrthogonalSegment is used to create an orthogonal segment by defining the length and direction of the segment.
	[C#]

ConnectorViewModel con = new ConnectorViewModel()
{
 SourcePoint = new Point(100, 100),
TargetPoint = new Point(200, 200),

// Customizing the ConnectorGeometryStyle.
ConnectorGeometryStyle = this.Resources["connectorstyle"] as Style
};

//Adding Orthogonal Segment to Segments.
con.Segments = new ObservableCollection<IConnectorSegment>()
{
 //Invalid Orthogonal Segment.
	new OrthogonalSegment()
};

[image:]
Figure 11: Orthogonal Segment
IQuadraticCurveSegment
IQuadraticCurveSegment is used to create a curved segment by defining one control point and the end point of the segment.
	[C#]

ConnectorViewModel con = new ConnectorViewModel()
{
 SourcePoint = new Point(100, 100),
TargetPoint = new Point(300, 100),

// Customizing the ConnectorGeometryStyle.
ConnectorGeometryStyle = this.Resources["connectorstyle"] as Style
};

//Adding Quadratic Curve Segment to Segments.
con.Segments = new ObservableCollection<IConnectorSegment>()
{
 //Adding Quadratic Curve Segment to Segments.
	new QuadraticCurveSegment()
{
Point1 = new Point(200,50)
}
};

[image:]
Figure 12: Quadratic Curve Segment
ICubicCurveSegment
ICubicCurveSegment is used to create a curved segment by defining two control points and the end point of the segment.
	[C#]

ConnectorViewModel con = new ConnectorViewModel()
{
 SourcePoint = new Point(100, 100),
TargetPoint = new Point(400, 100),

// Customizing the ConnectorGeometryStyle.
ConnectorGeometryStyle = this.Resources["connectorstyle"] as Style
};

//Adding Cubic Curve Segment to Segments.
con.Segments = new ObservableCollection<IConnectorSegment>()
{
 //Invalid Cubic Curve Segment.
new CubicCurveSegment()
{
Point1 = new Point(200,50),
Point2 = new Point(300,150)
}
}
};

[image:]
Figure 13: Cubic Curve Segment
Segment Editing
Segment editing provides a way to dynamically edit segments of a line connector through the use of segment start points, end points, and control points.
Connector Constraints
Table 2: Constraints Table
	Constraint
	Description

	None
	Disables all behaviors of control.

	Selectable
	Enables to connectors to be selected.

	SourceDraggable
	Enables the source end to be dragged.

	TargetDraggable
	Enables the target end of a connector to be dragged.

	EndDraggable
	Enables both the source and target ends of a connector to be dragged.

	EndThumbs
	Enables end points on line connectors for editing, such as source points and target points.

	SegmentThumbs
	Enables control points and end points of every segment in a line connector for editing.

	Thumbs
	Enables both EndThumbs and SegmentThumbs.

	Bridging
	Enables line bridging.

	Routing
	Enables line routing.

	SnapToHorizontalLines
	Enables connectors to be snapped to horizontal gridlines.

	SnapToVerticalLines
	Enables connectors to be snapped vertical gridlines.

	SnapToLines
	Enables connectors to be snapped to gridlines.

	InheritBridging
	Enables to inherit the Bridging behavior from node

	InheritRouting
	Enables to inherit the Routing behavior from node

	InheritSnapping
	Enables to inherit the Snapping behavior from node

	InheritSnapToObject
	Enables to inherit the SnapToObject behavior from node

	InheritSmoothness
	Enables to inherit the Smoothness behavior from node

	Inherit
	Enables to inherit the connecting behavior from node

	Default
	Enables all behaviors of the control.

End Thumbs Editing
	[C#]

line.Constraints = ConnectorConstraints.Default | ConnectorConstraints.EndThumbs;

End thumbs editing allows only the source point and target point of a line connector to be edited.
[image:]
Figure 14: End Thumbs on a Line Connector
Segment Thumbs Editing
	[C#]

line.Constraints = ConnectorConstraints.Default | ConnectorConstraints.SegmentThumbs;

Segment thumbs allow each segment of a line connector to be edited.
[image:]
Figure 15: Segment Thumbs
Orthogonal Segment Editing
Orthogonal segments can be edited at runtime by dragging control points, called thumbs. While dragging control points, some segments can be added or removed to maintain perpendicularity.
Segments can be edited by dragging the segment thumbs. Segments will be updated as neighboring segments are adjusted.
[image:]
Figure 17: Editing Segment
While dragging the end thumbs, new segments may be added.
[image: AddSegments]
Figure 18: End Dragging
When one segment overlaps another segment, unwanted segments will be deleted.
[image:]
Figure 19: Segment Overlapping
[image:]
Figure 20: Segment edited after overlapping
Line Routing
When drawing a connector between two nodes, if any other nodes are in the path of the connector, it will be redrawn around the interfering nodes.
[image:]
Figure 23: Diagram with Line Routing
Enabling Line Routing
Line routing is disabled by default, but can be enabled in two ways:
Through GraphConstraints
	[C#]

SfDiagram diagramControl = new SfDiagram();
diagramControl.Constraints = diagramControl.Constraints |GraphConstraints.Routing;

Through ConnectorConstraints
	[C#]
 Connector conn = new Connector();
 connector.Constraints = conn.Constraints | ConnectorConstraints.Routing;

[image:]Note: When ConnectorConstraints is set to Inherit, GraphConstraints will be considered to enable or disable routing. Otherwise, ConnectorConstraints will be considered.
Line Bridging
Line bridging provides a visual bridge at the intersection of two or more line connectors. By default, an arc is used as a line bridge, but this shape can be overridden.
[image:]
Figure 24: Line Bridging
Line Bridging Direction
Direction of the Line Bridge is customized using BridgeDirection property. This property decides which intersecting segment shows a bridge based path on the preferred direction. The Default value is BridgeDirection.Top.
Table 3: Property Table
	Properties
	Description
	Value

	BridgeDirection
	Gets or Sets the BridgeDirection for Horizontal and vertical lines.
	Enum
BridgeDirection.Left
BridgeDirection.Right
BridgeDirection.Top
BridgeDirection.Bottom

Example 1: Bridge for Horizontal Connector (with BridgeDirection.Top)
The following code example explains how to enable the Bridging and set Bridge Direction.
	[C#]
//Initializing Bridging and setting Bridge Direction
diagram.Constraints = diagram.Constraints | GraphConstraints.Bridging;
diagram.BridgeDirection = BridgeDirection.Top;

[image:]
Figure 25: BridgeDirection.Top
Example 2: Bridge for Vertical Connector (with BridgeDirection.Left)
	[C#]
// setting Bridge Direction
diagramControl.BridgeDirection = BridgeDirection.Left;

[image:]
Figure 26: BridgeDirection.Left
Enable Bridging
Line bridging is disabled by default. It can be enabled in two ways:
Graph Constraints
Connector Constraints
Graph Constraints
Enabling line bridging through graph constraints applies line bridging to all connectors.
	[XAML]

 <sync:SfDiagram x:Name="diagramcontrol" Constraints="Default, Bridging">
 </sync:SfDiagram>

	[C#]

//Initialize the Diagram control.
SfDiagram diagramcontrol = new SfDiagram();

//Enable line bridging.
diagramcontrol.Constraints |= GraphConstraints.Bridging;

Connector Constraints
Enabling line bridging through connector constraints applies line bridging only to corresponding connectors.
	[XAML]

<sync:SfDiagram x:Name="diagramcontrol">
<sync:SfDiagram.Connectors>
<sync:DiagramCollection>
<sync:Connector SourcePoint="100,200"
		 TargetPoint="400,200"
 Constraints="Bridging"/>
<sync:Connector SourcePoint="100,300"
		 TargetPoint="300,100"
 Constraints="Bridging"/>
</sync:DiagramCollection>
</sync:SfDiagram.Connectors>
</sync:SfDiagram>

	[C#]
//Creating lines.
ObservableCollection<ConnectorViewModel> lines = new
ObservableCollection<ConnectorViewModel>();

//Initialize line connectors.
ConnectorViewModel line1 = new ConnectorViewModel()
{
 SourcePoint = new Point(100, 200),
 TargetPoint = new Point(400, 200),
 Constraints = ConnectorConstraints.Default | ConnectorConstraints.Bridging
};

//Initialize line connectors.
ConnectorViewModel line2 = new ConnectorViewModel()
{
 SourcePoint = new Point(100, 300),
 TargetPoint = new Point(300, 100),
 Constraints = ConnectorConstraints.Default | ConnectorConstraints.Bridging
};

// Adding connection to SfDiagram.
lines.Add(line1);
lines.Add(line2);
diagramcontrol.Connectors = lines;

Inherit
When ConnectorConstraints is set to Inherit, GraphConstraints will be considered to enable or disable line bridging. Otherwise, ConnectorConstraints will be considered.
Custom Bridging Segment
Bridge segments can be customized by overriding the connector’s virtual method CreateSegments as shown in the following code sample:
	
[C#]

public class CustomLine : Connector
{
 //Override function to define custom segments.
 protected override IEnumerable<PathSegment>
			CreateSegments(Point start, Point end, double angle)
 {
 List<PathSegment> seg = new List<PathSegment>();
 seg.Add(new LineSegment() { Point = new Point(start.X, start.Y - 10) });
 seg.Add(new LineSegment() { Point = new Point(end.X, start.Y - 10) });
 seg.Add(new LineSegment() { Point = new Point(end.X, end.Y) });
 return seg;
 }
}

[image:]
Figure 27: Custom Bridging Segments
Freehand Drawing
Users can draw freehand lines in the Diagram control. The control then converts the drawing into a series of Bezier curves to smooth the appearance and allow users to adjust the drawing.
[image: FreeHand1]
Figure 28: Freehand Drawing
[image: FreeHand2]
Figure 29: Drawing with Bezier curve applied
The following code sample illustrates how to enable freehand drawing:
	[C#]
//Enables DrawingTool
diagramControl.Tool = diagramControl.Tool | Tool.DrawOnce;
//Enables FreeHandDrawing
diagramControl.DefaultConnectorType = ConnectorType.PolyCubicBezier;

Runtime Connection Indicator
Description
When a connector is dragged toward a port or node for connection, the node will be highlighted with an animated visualization.
Visualization
[image:]
Figure 30: Before Connection with Node
[image:]
Figure 31: While Connecting with Node
The node or port toward which the connector is dragged is highlighted with a red border and the mouse position on the node is indicated by an animated circle.
Customization of Visualization
The data template of the connection indicator can be customized by the protected virtual method GetConnectionIndicator.
Table 4: Property Table
	Property
	Description
	Arguments

	SfDiagram.GetConnectionIndicator
	Returns the DataTemplate of the runtime connection indicator.
	 Target(object): Node or port towards which the connector is moved.

Corner Radius

Corner Radius support enables you to create connectors with rounded corners.
Table 5: Property Table
	Properties
	Description
	Value

	CornerRadius
	Gets or sets the CornerRadius of the LineConnector.
	 Double

The following code example illustrates how to set corner radius for connectors.
	[C#]
//Adding corner radius for connector
ConnectorViewModel con = new ConnectorViewModel()
{
CornerRadius = 10,
};

[image:]
Figure 5: CornerRadius

Connector Padding

Connector Padding allows you to adjust the space between the connector’s end point and the object that it is connected (Node, Group, or Port).
Endpoint adjustment with specific to Connector ends
You can adjust the padding distance between source or target end with its connected end (Node, Group, or Port) by using sourcePadding and targetPadding respectively.
The following code example illustrate how to adjust the distance by using padding property.
	[C#]
//Adding ConnectorPadding for connector
ConnectorViewModel con = new ConnectorViewModel()
{
SourcePadding = 15,
TargetPadding = 10,
};

[image:]
Figure 6: Endpoint’s adjustment with specific to connector ends
Endpoint adjustment with specific to Nodes
ConnectorPadding property of a Node is used to specify, how much space in pixels is to be left between a Node and all its connected Edges.
The following code example illustrates how to pad Edges connected to a Node.
	[C#]
//Adding ConnectorPadding for Node
NodeViewModel node = new NodeViewModel()
{
ConnectorPadding = 10,
};

[image: C:\Users\labuser\Documents\Images\Nodepadding.png]
Figure 7: Endpoint’s adjustment with specific to nodes
Endpoint adjustment with specific to Ports
ConnectorPadding property of a port is used to specify, the amount of space needed in pixels between a port and all its connected edges.
The following code example illustrates how to pad Edges connected to a Port.
	[C#]
//Adding ConnectorPadding for port
NodePort port = new NodePort()
{
ConnectorPadding = 10,
};

[image: C:\Users\labuser\Documents\Images\Port.png]
Figure 8: Endpoint’s adjustment with specific to ports
Annotations
The Annotations property of SfDiagram provides support to add annotations to the Diagraming objects (Node and Connector).
Customizing the Appearance of Annotations
Template for Editing Annotations
You can specify a template for editing an annotation by using the DataTemplate property. The default template for editing an annotation is TextBox.
	[XAML]

<DataTemplate x:Key="edittemplate">
<TextBox Text="{Binding Path=Content, Mode=TwoWay}"
ManipulationMode="None" AcceptsReturn="True">
</TextBox>
</DataTemplate>

Template for Viewing Annotations
You can specify a template for viewing an annotation by using the DataTemplate property. The default template for viewing an annotation is TextBlock.
	[XAML]

<DataTemplate x:Key="viewtemplate">
<Border Padding="10">
<TextBlock Text="{Binding Path=Content, Mode=TwoWay}" FontWeight="ExtraBold" FontSize="15" FontFamily="Times New Roman">
 </TextBlock>
</Border>
</DataTemplate>

The following code example shows how to create an annotation.
	[C#]

new AnnotationEditorViewModel()
{
Content="Label1",
Alignment=ConnectorAnnotationAlignment.Center ,
HorizontalAlignment=HorizontalAlignment.Center,
VerticalAlignment=VerticalAlignment.Center,
EditTemplate=this.Resources["edittemplate"] as DataTemplate,
ViewTemplate=this.Resources["viewtemplate"] as DataTemplate
}

Editing Annotations
You can edit an annotation by double-clicking it. When a node is double-clicked, the first annotation displayed will enter the Edit mode.
[image:]
Figure 32: Editing Node Annotation
Adding Annotations to Nodes
The following code example shows how to add annotations to a Node:
	[C#]

// Creating Node
ObservableCollection<NodeViewModel> nodes = new ObservableCollection<NodeViewModel>();
NodeViewModel n = new NodeViewModel();
n.OffsetX = 800;
n.OffsetY = 200;
n.Width = 100;
n.Height = 100;
n.Foreground = new SolidColorBrush(Colors.Black);
n.ContentTemplate = this.Resources["NodeTemplate"] as DataTemplate;

// Creating Annotation Collection
n.Annotations = new ObservableCollection<IAnnotation>()
{
new AnnotationEditorViewModel()
{
Content="Label1",
Alignment=ConnectorAnnotationAlignment.Center ,
HorizontalAlignment=HorizontalAlignment.Center,
VerticalAlignment=VerticalAlignment.Center
},

new AnnotationEditorViewModel()
{
Content="Label2",
HorizontalAlignment=HorizontalAlignment.Left,
VerticalAlignment=VerticalAlignment.Top
},
new AnnotationEditorViewModel()
{
Content="Label3",
HorizontalAlignment=HorizontalAlignment.Right,
VerticalAlignment=VerticalAlignment.Top
},
new AnnotationEditorViewModel()
{
Content="Label4",
HorizontalAlignment=HorizontalAlignment.Left,
VerticalAlignment=VerticalAlignment.Bottom
},
new AnnotationEditorViewModel()
{
Content="Label5",
HorizontalAlignment=HorizontalAlignment.Right,
VerticalAlignment=VerticalAlignment.Bottom
}
};

// Adding Nodes to SfDiagram
nodes.Add(n);
diagramcontrol.Nodes = nodes;

[image:]
Figure 33: Node with Annotation
Adding Annotations to Connectors
The following code example shows how to add annotations to a Connector:
	[C#]

// Create Connector
ObservableCollection<ConnectorViewModel> lines = new ObservableCollection<ConnectorViewModel>();
ConnectorViewModel c = new ConnectorViewModel();
c.TargetPoint = new Point(300, 300);
c.SourcePoint = new Point(100, 100);
c.Foreground = new SolidColorBrush(Colors.Black);

// Create Annotator Collection
c.Annotations = new ObservableCollection<IAnnotation>()
{
new AnnotationEditorViewModel()
{
Content="Label1",
Alignment=ConnectorAnnotationAlignment.Center
},
new AnnotationEditorViewModel()
{
Content="Label2",
Alignment=ConnectorAnnotationAlignment.Source
},
new AnnotationEditorViewModel()
{
Content="Label3",
Alignment=ConnectorAnnotationAlignment.Target
}
};
// Add connector to SfDiagram
lines.Add(c);
diagramcontrol.Connectors = lines;

[image:]
Figure 34: Connector with Annotation
Ports
Essential Diagram for WinRT provides support to define custom ports for making connections. The ConnectionPort class is used for defining custom ports on nodes. Any number of ports can be defined on a node. Ports in SfDiagram support absolute and relative positioning.
Adding Ports to a Node
To add a port to the node, you must specify the position of the port by using the Left and Top properties, and then specify the Node to host the port by using the Node property. Once this is done, the port is added to the Ports collection of the Node.
The following code shows how to add a connection port to the node:
	[C#]

// Creating NodeViewModel
ObservableCollection<NodeViewModel> nodes = new ObservableCollection<NodeViewModel>();
NodeViewModel n = new NodeViewModel()
{
Width = 100,
Height = 60,
OffsetX=200,
OffsetY=200,
Shape = new RectangleGeometry() { Rect = new Rect(0, 0, 10, 10) },
ShapeStyle = GetStyle()
};
// Creating NodePort for NodeViewModel
n.Ports = new ObservableCollection<INodePort>()
{
// NodePort with Relative Positioning and Default Shape
new NodePort()
{
Width=10,
Height=10,
NodeOffsetX=0.5,
NodeOffsetY=0.5,
UnitMode=UnitMode.Fraction,
Node=n
},

// NodePort with Absolute Positioning,Customizied Shape and Style
new NodePort()
{
Width=10,
Height=10,
NodeOffsetX=25,
NodeOffsetY=50,
UnitMode=UnitMode.Absolute,
Node=n,
Shape=new EllipseGeometry(){RadiusX=10,RadiusY=10},
ShapeStyle= this.Resources["portstyle"] as Style
}
};
// Adding Nodes to SfDiagram
nodes.Add(n);
diagramcontrol.Nodes = nodes;

[image:]
Figure 35: Node with Port
Setting the Port Shape
Shape is a collection of predefined geometry. The default value for Node Port Shape is Cross. The following code shows how to set the Shape for a Node Port:
	[C#]

NodePort n1=new NodePort()
{
Width=10,
Height=10,
NodeOffsetX=25,
NodeOffsetY=50,
UnitMode=UnitMode.Absolute,
Shape=new EllipseGeometry(){RadiusX=10,RadiusY=10},
ShapeStyle=GetPortStyle()
};

Setting the Port Shape Style
Shape can be customized by applying styles through the ShapeStyle property. The following code shows how to set the ShapeStyle property:
	[XAML]

<Style TargetType="Path" x:Key="portstyle">
<Setter Property="Stroke" Value="Green"></Setter>
<Setter Property="Fill" Value="Yellow"></Setter>
<Setter Property="StrokeThickness" Value="1"></Setter>
<Setter Property="Stretch" Value="Fill"></Setter>
</Style>

	[C#]

NodePort n1=new NodePort()
{
Width=10,
Height=10,
NodeOffsetX=25,
NodeOffsetY=50,
UnitMode=UnitMode.Absolute,
Shape=new EllipseGeometry(){RadiusX=10,RadiusY=10},
ShapeStyle=this.Resources["portstyle"] as Style
};

[image:]
Figure 36: Port Shape Customization
Port Constraints
PortConstraints property is used to enable or disable certain behaviors of Nodes. This property is applicable only to the Port of SfDiagram control.
Table 6: Constraints Table
	Constraints
	Description

	Connectable
	Enables connection with the connector.

	InConnect
	Enables connection with the incoming connector.

	OutConnect
	Enables connection with the outgoing connector.

	InheritConnectable
	Enables to inherit the connecting behavior from node (incoming or outgoing).

	InheritPortVisibility
	Enables to inherit the value for PortVisibility from the node.

	Inherit
	Enables to inherit both connecting behavior and the value for PortVisibility from the node.

	None
	Disables all behaviors of the control.

The default value for PortConstraints property is Inherit.
The following code example illustrates how to set the PortConstraints property for a Node Port in SfDiagram:
	[C#]

nodeport.Constraints = nodeport.Constraints | PortConstraints.Connectable;

[image:]Note: PortConstraints property is manipulated using bitwise operations. For more information about bitwise operations, see Bitwise Operations.
Setting Up a Port Connection
The SourcePort and TargetPort properties are used to specify the Source and Target Ports for establishing a connecting between two nodes. Also, the SourceNode and TargetNode properties should be specified.
The following code shows how to establish a port connection:
	[C#]

// Creating NodeViewModel-SourceNode
ObservableCollection<NodeViewModel> nodes = new ObservableCollection<NodeViewModel>();
NodeViewModel source = new NodeViewModel()
{
Width = 75,
Height = 50,
OffsetX=200,
OffsetY=200,
Shape = new RectangleGeometry() { Rect = new Rect(0, 0, 10, 10) },
ShapeStyle = GetStyle()
};

// Creating NodePort for NodeViewModel
source.Ports = new ObservableCollection<INodePort>()
{
// NodePort with Absolute Positioning,Customizied Shape and Style
new NodePort()
{
Width=10,
Height=10,
NodeOffsetX=0.5,
NodeOffsetY=0.95,
UnitMode=UnitMode.Fraction,
Node=source,
Shape=new EllipseGeometry(){RadiusX=10,RadiusY=10},
ShapeStyle=GetPortStyle()}
};
}

// Adding Nodes to Sfdiagram
nodes.Add(source);

// Creating NodeViewModel-TargetNode
NodeViewModel target = new NodeViewModel()
{
Width = 75,
Height = 50,
OffsetX = 200,
OffsetY = 330,
Shape = new RectangleGeometry() { Rect = new Rect(0, 0, 10, 10) },
ShapeStyle = GetStyle()
};

// Creating NodePort for NodeViewModel
target.Ports = new ObservableCollection<INodePort>()
{
// NodePort with Absolute Positioning, Customized Shape and Style
new NodePort()
{
Width=10,
Height=10,
NodeOffsetX=0.5,
NodeOffsetY=0.09,
UnitMode=UnitMode.Fraction,
Node=target,
Shape=new EllipseGeometry(){RadiusX=10,RadiusY=10},
ShapeStyle=GetPortStyle()
}
};

// Adding Nodes to SfDiagram
nodes.Add(target);
ObservableCollection<ConnectorViewModel> lines = new ObservableCollection<ConnectorViewModel>();
ConnectorViewModel con = new ConnectorViewModel()
{
SourceNode = source,
TargetNode = target,
SourcePort = source.Ports.ToList()[0] as NodePort,
TargetPort = target.Ports.ToList()[0] as NodePort,
};

// Adding Connection to SfDiagram
lines.Add(con);
diagramcontrol.Connectors = lines;

[image:]
Figure 37: Creating Connection with Port

PortVisibility

The PortVisibility property is used to control the visibility of ports on a node. PortVisibility has following four options.
1. MouseOver
1. MouseOverOnConnect
1. Visible
1. Collapse
Properties
Table 7: Property Table
	Property
	Description
	Value

	PortVisibility
	Gets and sets whether the port will be visible or not.
	PortVisibility

Enum Fields
Table 8: List of Ennum fields
	Enum
	Description

	MouseOver
	Port is visible when pointer is over the Node.

	MouseOverOnConnect
	Port is visible only when you try to connect the Node, that is, when connector’s endpoints are in the dragging state and also the pointer is near or over the node.

	Visible
	Port is always visible.

	Collapse
	Port is always collapsed.

[image:]Note: Maintain some distance (25 pixels) around the Node. Port is visible when the pointer enters its surrounding area. This is applicable only for MouseOver and MouseOverOnConnect.
The PortVisibility property is used to control the visibility of Ports.
	[C#]

//Node.
Node node = new Node()
{
 UnitWidth = 100,
 UnitHeight = 100,
 OffsetX = 200,
 OffsetY = 200,
 Shape = new RectangleGeometry(){Rect = new Rect(10,10,10,10)},
 ShapeStyle = GetStyle(),
//PortVisibility of Node.
 PortVisibility = PortVisibility.Visible
};
//Adds Port to Node.
node.Ports = new ObservableCollection<INodePort>()
 {
 AddPort(0.5, 0.1,node),
 AddPort(0.9, 0.5,node),
 AddPort(0.5, 0.9,node),
 AddPort(0.1, 0.5,node)
 };
//Adds Node.
(Diagram.Nodes as ICollection<Node>).Add(node);

//Creates Port.
private NodePort AddPort(double x, double y, Node node)
{
 return new NodePort()
 {
//Sets PortVisibility of Port.
 PortVisibility = PortVisibility.Visible,
 Node = node,
 Width = 10,
 Height = 10,
 NodeOffsetX = x,
 NodeOffsetY = y,
 UnitMode = UnitMode.Fraction,
 ShapeStyle = GetStyle1()
 };
}

Inherit PortVisibility

PortVisibility property can be set in Diagram, Node, and Port. This helps control the visibility in a single place (Diagram instance) instead of all ports. Port’s visibility can be controlled by using two properties;
PortVisibility and Constraints.
When Port’s Constraint is set to InheritPortVisibility, visibility is updated based on Node’s PortVisibility property. Similarly, when Node’s Constraint property is set to InheritPortVisibility, visibility is updated based in Diagram’s PortVisibility.
By default, Port inherits node’s port visibility, and node in turn inherits diagram’s port visibility. This property value inheritance can be stopped for a particular item by changing the constraint as explained.
To stop node’s inheritance with Diagram
Port visibility of a particular node can be stopped by removing InheritPortVisibility from the Node.Constraints as shown in the following code.
	[C#]

//Sets PortVisibility to SfDiagram.

sfDiagram.PortVisibility = PortVisibility.MouseOverOnConnect;

Node node = new Node()
{
//Overrides port visibility.
 PortVisibility = PortVisibility.MouseOver,
};

//Removes InheritPortVisibility from NodeConstraints.
node.Constraints = NodeConstraints.Default & ~NodeConstraints.InheritPortVisibility;

 //Adds Port to Node.
 node.Ports = new ObservableCollection<INodePort>()
 {
 AddPort(0.5, 0.1,node),
 }

To stop Port’s inheritance with Node
	[C#]

// Sets PortVisibility to SfDiagram.

sfDiagram.PortVisibility = PortVisibility.MouseOverOnConnect;

Node node = new Node()
{
//Sets PortVisibility to Node.
 PortVisibility = PortVisibility.None,
};

//Creates port.
INodePort port = AddPort(0.5, 0.1,node);

//Overrides port visibility.
port.PortVisibility = PortVisibility.MouseOver,

// Removes InheritPortVisibility from PortConstraints.
port.Constraints = PortConstraints.Default & ~PortConstraints.InheritPortVisibility;

 //Adds Port to Node.
 node.Ports = new ObservableCollection<INodePort>()
 {
 port
 }

Groups
SfDiagram provides support to group and ungroup nodes. Grouping feature is useful when you want to apply the same edits to a number of objects, and yet retain their individuality. All the operations performed on a group also affect the individual items in the group. However, any item in the group can also be edited individually. On ungrouping, the items in the group again act as individual entities.
Create Group
You can create a group by using the following methods:
By Using Nodes Property
By Using ParentGroup Property in Node
By Using Nodes Property
The following code example illustrates how to create a group by using Nodes property:
	[C#]

// Creating Nodes
ObservableCollection<NodeViewModel> nodes = new ObservableCollection<NodeViewModel>();
Node n1 = AddNode("Node1",100,100);
Node n2 = AddNode("Node2",300,100);

// Creating Groups
ObservableCollection<GroupViewModel> groups = new ObservableCollection<GroupViewModel>();
GroupViewModel g = new GroupViewModel()
{
Nodes=new ObservableCollection<object>()
{
n1,n2
}
};

// Adding Nodes to Sfdiagram
nodes.Add(n1);
nodes.Add(n2);
diagramcontrol.Nodes = nodes;

// Adding Groups to SfDiagram
groups.Add(g);
diagramcontrol.Groups = groups;

// Creating Nodes
private Node AddNode(string name, double x, double y)
{
Node n = new Node()
{
Width = 100,
Height = 50,
OffsetX = x,
OffsetY = y
}
return n;
}

By Using ParentGroup property in Node
The following code example illustrates how to create a group by using ParentGroup property of Node:
	[C#]

// Creating Groups
ObservableCollection<GroupViewModel> groups = new ObservableCollection<GroupViewModel>();
GroupViewModel g = new GroupViewModel();

// Create Nodes
ObservableCollection<NodeViewModel> nodes = new ObservableCollection<NodeViewModel>();
Node n1 = AddNode("Node1",100,100);
Node n2 = AddNode("Node2",300,100);

// Add Nodes to Sfdiagram
nodes.Add(n1);
nodes.Add(n2);
diagramcontrol.Nodes = nodes;

// Add Groups to SfDiagram
groups.Add(g);
diagramcontrol.Groups = groups;

// Create Nodes
private Node AddNode(string name, double x, double y)
{
Node n = new Node()
{
Width = 100,
Height = 50,
OffsetX = x,
OffsetY = y,
ParentGroup=g,
}
return n;
}

[image:]
Figure 38: Node Group
Selecting a Group
You can select a group by clicking on any one of its children. Consecutive clicks on a child object, select the parent groups in the order of their creation. In a similar manner, consecutive clicks on a child object leads to the selection of inner groups, and eventually the object itself, and the cycle continues.
The following steps illustrate how to select an object which has two groups.
[image:]
Figure 39: Selecting a Group
1. Click on Node1 to select the outer group.
1. Click again to select the inner group to which it belongs.
[image:]
Figure 40: Selecting a Inner Group
Finally, click again to select the child node after all groups have been traversed.
[image:]
Figure 41: Selecting a Child of Group
Editing a Group
To edit a group, you have to make sure that the corresponding group is selected. The following features apply to the edits performed on an object.
If the edit operation is performed on an object which is a group, then all its children are also affected. For example, resizing a group, automatically resizes its child objects to fit the selection area.
[image:]
Figure 42: Select a Group
If an individual object is selected, then the edit operation will be performed on that particular object only.
[image:]
Figure 43: Selecting a Individual Object
· When size or position of a node contained in a group is getting changed, the group's size and position updates its area to fit the child objects.
[image:]
Figure 44: Editing a Group(Resizing a Child)
Selector
This is a single entity that binds the selected items in SfDiagram. The Diagramming Objects are selected by Tapping on them, and the changes are reflected in the IsSelected property.
SelectedItems
This is the collection of Selected Objects (Nodes, Connectors and Groups) in SfDiagram, and is populated based on the IsSelected property of Diagramming Objects (Nodes, Connectors and Groups).
The following code sample illustrates how to get the selected items:
	[C#]

// Selected Items of SfDiagram
SelectorViewModel selecteditems = (sfdiagram.SelectedItems as SelectorViewModel);

// Selected Items-Collection for Nodes
foreach (INode node in selecteditems.Nodes)
{
// Selected Nodes which has IsSelected as true
}

// SelectedItems-Collection for Connectors
foreach (IConnector connector in selecteditems.Connectors)
{
// Selected Connectors which has IsSelected as true
}

//SelectedItems-Collection for Groups
foreach (IGroup group in selecteditems.Groups)
{
// Selected Groups which has IsSelected as true
}

Multiple Selections
During multiple selections, the selector binds all the selected items.
[image:]
Figure 45: Multiple Selections
Customizing the Selector
This has 12 Diagram Thumbs for Node, Connector, Pivot and Rotator. The Selector Style can be customized by overriding the existing template.

Tooltip and Quick commands

This feature enables visual guide for arranging the Nodes. Tooltip shows information like Size, Position and Angle when you manipulate the Node.
SelectorConstraints
SelectorConstraints property is used to enable or disable certain behaviors of Selector (Quick Commands, Rotator and Resizer)
Table 9: List of constraints Table
	Constraints
	Description

	Resizer
	Enables or Disables the Resizer

	Rotator
	Enables or Disables the Rotator

	TooltipPosition
	Enables or Disables the Tooltip information based on the position of the selected node.

	TooltipSize
	Enables or Disables the Tooltip information based on the size of the selected Node.

	TooltipAngle
	Enables or Disables the Tooltip information based on the angle of the selected node.

	Tooltip
	Enables or Disables all the Tooltip information based on the selected node.

	QuickCommands
	Enables or Disables the QuickCommands

	Default
	By default, position, size, angle information is shown in the Tooltip and Quick Commands.

SelectorConstraints.Resizer
Enables or disables the Resizer
The following code example illustrates how to enable the SelectorConstraints for Resizer.
	[C#]
(Diagram.SelectedItems as SelectorViewModel).SelectorConstraints = (Diagram.SelectedItems as SelectorViewModel).SelectorConstraints & ~SelectorConstraints.Resizer;

[image:]
Figure 9: Resizer
SelectorConstraints.Rotator
Enables or disables the Rotator
The following code example illustrates how to enable the SelectorConstraints for Rotator.
	[C#]
(Diagram.SelectedItems as SelectorViewModel).SelectorConstraints = (Diagram.SelectedItems as SelectorViewModel).SelectorConstraints & ~SelectorConstraints.Rotator;

[image:]
Figure 10: Rotator
Automatic Layouts
SfDiagram provides support to specify automatic layouts for nodes. It includes the following layout modes:
Directed-Tree Layout
Radial-Tree Layout
Directed-Tree Layout
The Directed-Tree layout mode enables you to arrange the nodes in a tree-like structure. This layout can be applied to any diagram that comprises a directed tree graph with unique root and child nodes. This makes creating diagrams easier because the node position is determined automatically based on the connections. However, it is necessary to specify a layout root for the tree layout, as the Directed-Tree layout will position the nodes based on the layout root.
	[C#]

// Creating Layout
diagramcontrol.LayoutManager = new LayoutManager()
{
Layout = new DirectedTreeLayout()
{
HorizontalSpacing = 50,
VerticalSpacing = 100,
SpaceBetweenSubTrees = 50
}
};

// Creating Nodes
ObservableCollection<NodeViewModel> nodes = new ObservableCollection<NodeViewModel>();
Node n1 = AddNode("Steve-CEO");
Node n2 = AddNode("Kevin-MKT_Manager ");
Node n3 = AddNode("Peter-Manager ");
Node n4 = AddNode("John-Manager ");
Node n5 = AddNode("Mary-CSE ");
Node n6 = AddNode("Jim-CSE ");

// Creating Connections
ObservableCollection<ConnectorViewModel> lines = new ObservableCollection<ConnectorViewModel>();
Connector line1 = AddConnector(n1, n2);
Connector line2 = AddConnector(n1, n3);
Connector line3 = AddConnector(n1, n4);
Connector line4 = AddConnector(n3, n5);
Connector line5 = AddConnector(n3, n6);

// Adding Nodes to SfDiagram
nodes.Add(n1);
nodes.Add(n2);
nodes.Add(n3);
nodes.Add(n4);
nodes.Add(n5);
nodes.Add(n6);
diagramcontrol.Nodes = nodes;

// Adding Connections to SfDiagram
lines.Add(line1);
lines.Add(line2);
lines.Add(line3);
lines.Add(line4);
lines.Add(line5);
diagramcontrol.Connectors = lines;
private Node AddNode(string name)
{
Node n = new Node()
{
Width = 100, Height = 50, OffsetX = 500, OffsetY = 300,
ContentTemplate = this.Resources["NodeTemplate"] as DataTemplate,
Foreground = new SolidColorBrush(Colors.Black),
Annotations = new ObservableCollection<IAnnotation>()
{
new AnnotationEditorViewModel()
{
Content=name, HorizontalAlignment=HorizontalAlignment.Center,
VerticalAlignment=VerticalAlignment.Center
}
}
};
return n;
}

private Connector AddConnector(Node source, Node target)
{
Connector line = new Connector()
{
SourceNode = source,
TargetNode = target,
ConnectorGeometryStyle = this.Resources["LineStyle"] as Style,
TargetDecorator = GetPath(),
TargetDecoratorStyle = this.Resources["LineStyle1"] as Style
};
return line;
}

[image:]
Figure 46: Directed-Tree Layout
Radial-TreeLayout
The Radial-TreeLayout is a specialization of the Directed Tree Layout Manager that employs a circular layout algorithm for locating the diagram nodes. The Radial-Tree Layout arranges nodes in a circular layout, positioning the root node at the center of the graph and the child nodes in a circular fashion around the root. Sub-trees formed by the branching of child nodes are located radially around the child nodes. This arrangement results in an ever-expanding concentric arrangement with radial proximity to the root node indicating the node level in the hierarchy. However, it is necessary to specify a layout root for the tree layout, as the Radial-Tree layout will position the nodes based on the layout root.
	[C#]

ObservableCollection<NodeViewModel> nodes = new ObservableCollection<NodeViewModel>();
ObservableCollection<ConnectorViewModel> lines = new ObservableCollection<ConnectorViewModel>();
diagramControl.LayoutManager = new LayoutManager()
{
Layout = new RadialTreeLayout()
};
(diagramControl.LayoutManager.Layout as RadialTreeLayout).HorizontalSpacing = 10;
(diagramControl.LayoutManager.Layout as RadialTreeLayout).VerticalSpacing = 30;
Node head = addNode(toggle, 0);
ConnectNode(head, Flower(4));
(diagramControl.LayoutManager.Layout as RadialTreeLayout).LayoutRoot = head;

// Creating a tree of nodes
private List<Node> Flower(int p)
{
List<Node> nodes1 = new List<Node>();
for (int i = 0; i < p; i++)
{
Node n = addNode(toggle, p);
nodes1.Add(n);
toggle = !toggle;
ConnectNode(n, Flower(p - 4));
toggle = !toggle;
}
if (p <= 0)
{
nodes1.Add(addNode(toggle, -1));
nodes1.Add(addNode(toggle, -1));
}
return nodes;
}

// Creating a Node
private Node addNode(bool toggle, int lev)
{
Node n = new Node();
// n.Level = lev + 1;
n.Shape = new EllipseGeometry() { RadiusX = 15, RadiusY = 15 };
n.ShapeStyle = GetStyle();
n.Height = n.Width;
nodes.Add(n);
diagramcontrol.Nodes = nodes;
return n;
}

//Connect a node with a collection of nodes
private void ConnectNode(Node head, List<Node> tail)
{
foreach (Node t in tail)
{
Connector lc = new Connector();
diagramControl.DefaultConnectorType = ConnectorType.Line;
lc.SourceNode = head;
lc.TargetNode = t;
Connectors.Add(lc);
diagramcontrol.Connectors = Lines;
}
}

[image:]
Figure 47: Radial – TreeLayout
Updating the Layout
When changes are made to content in SfDiagram, for example, for linking new nodes or adding new connectors, the layout has to be updated to create space for adding the new content. The following code sample illustrates how to update the layout in SfDiagram:
	[C#]

SfDiagram diagramcontrol=new SfDiagram();
(diagramcontrol.LayoutManager.Layout as DirectedTreeLayout).UpdateLayout();

Layout Bounds, Margins, and Alignments
Description
Diagram layouts can be arranged at the custom positions based upon the layout bounds, margins, and alignments.
Examples
Layout Alignments and Bounds
	[C#]
diagramControl.LayoutManager = new LayoutManager()
 {
 Layout = new DirectedTreeLayout()
 {
 HorizontalSpacing=30,
 VerticalSpacing=50,
 HorizotalAlignment=HorizontalAlignment.Left,
 VerticalAlignment=VerticalAlignment.Top,
 Bounds=new Rect(100,100,500,500),
 Margin=new Thickness(25,25,25,25)
 }
 };

[image:]
Figure 48: Layout Bounds
Stencil
Stencil has a collection of Symbols. Stencil is used to clone the desired symbol by dragging it from the Stencil and dropping it into the SfDiagram. Each symbol can be grouped together by using the SymbolGroupProvider and filtered by using the SymbolFilterProvider through delegates.
	[XAML]

xmlns:stencil="clr-namespace:Syncfusion.UI.Xaml.Diagram.Stencil;assembly=Syncfusion.SfDiagram.Wpf"

[image:]
Figure 49: Stencil
Table 10: Key Terms Table
	Key Terms
	Description

	Symbol
	To visualize the items in Stencil.

Table 11: Properties Table
	Properties
	Description

	SymbolGroups
	Collection of SymbolGroupProvider To Group the Symbols based on the MappingName Property.

	SymbolFilters
	Collection of SymbolFilterProvider To filter/Hide the Symbols based on MappingName Property.

	SymbolSource
	ItemSource for Stencil to populate the SymbolGroups with Symbol

Symbol
Symbol is used to implement the ISymbol interface. The ISymbol interface consists of two properties to visualize symbols in Stencil: Symbol and SymbolTemplate.
	[C#]

public class SymbolItem : ISymbol
{
// Symbol-Any Object
public object Symbol { get; set; }

// Data Template to Visualize the Object
public DataTemplate SymbolTemplate { get; set; }

//For Cloning the Symbol from the given Object and Data Template
public ISymbol Clone()
{
return new SymbolItem()
{
Symbol = this.Symbol,
SymbolTemplate = this.SymbolTemplate
};
}
// Custom Property for Mapping
public string GroupName { get; set; }
}

Adding the Symbol
The following example illustrates how to add the Symbol into a Collection:
1. Create the ISymbol with Symbol and SymbolTemplate properties.
	[XAML]

<local:SymbolItem GroupName="Flow Chart" Symbol="FlowChart_Star"
SymbolTemplate="{StaticResource FlowChart_Star}">
</local:SymbolItem>

2. Define the SymbolTemplate.

	[XAML]

<DataTemplate x:Key="FlowChart_Star">
<Path Style="{StaticResource SymbolStyle}"
Data="M 9,2 11,7 17,7 12,10 14,15 9,12 4,15 6,10 1,7 7,7 Z"
Stretch="Fill">
</Path>
</DataTemplate>

3. Add the ISymbol into the Collection.

	[C#]

// SymbolSource to Stencil
public class SymbolCollection : ObservableCollection<ISymbol>
{
// ISymbols
}

	[XAML]

<local:SymbolCollection x:Key="symbolcollection">
<!--Adding Symbol into a Collection-->
<local:CustomSymbolItem GroupName="Flow Chart" Symbol="FlowChart_Star"
SymbolTemplate="{StaticResource FlowChart_Star}">
</local:CustomSymbolItem>
</local:SymbolCollection>

This Collection will be the SymbolSource to the Stencil. Based on the SymbolSource, the Stencil will populate the Symbols.

SymbolGroup

SymbolGroup is used group the Symbols in Stencil. The SymbolGroupProvider groups the symbols based on the MappingName property.

The following code example illustrates how to create a Stencil:

	[XAML]

<stencil:Stencil SymbolSource="{StaticResource symbolcollection}"
x:Name="stencil">
<stencil:Stencil.SymbolGroups>
<stencil:SymbolGroups>
<stencil:SymbolGroupProvider MappingName="GroupName"/>
</stencil:SymbolGroups>
</stencil:Stencil.SymbolGroups>
</stencil:Stencil>

[image:]Note: In the preceding code example, “GroupName” is the custom property of Symbol used to group the symbols by using MappingName property of the SymbolGroupProvider.

SymbolFilter

This is used to filter the SymbolGroups in Stencil. SymbolFilterProvider is used for filtering the SymbolGroup by using Delegate. The desired Group can be displayed by using the SelectedFilter property.

The following code example shows how to define the SymbolFilter:

	[XAML]

<stencil:Stencil.SymbolFilters>
<stencil:SymbolFilters>
<stencil:SymbolFilterProvider>
</stencil:SymbolFilterProvider>
</stencil:SymbolFilters>
</stencil:Stencil.SymbolFilters>

The following code example shows how to define the SelectedFilter:

	[C#]

stencil.SelectedFilter = new SymbolFilterProvider { Filter = Filter, Content = "Test" };

The following code example shows how to use Delegate for SymbolFilter:

	[C#]

public bool Filter(ISymbol symbol)
{
if ((symbol as SymbolItem).GroupName == "Flow Chart")
{
return true;
}
else
{
return false;
}
}

[image:]Note: In the preceding code example, only symbols with GroupName as “Flow Chart” is displayed.Symbol

Symbol is used to implement the ISymbol interface. The ISymbol interface consists of two properties to visualize symbols in Stencil.
	Property
	Description

	Symbol
	Symbol accepts any object.

	SymbolTemplate
	DataTemplate to visualize the symbol in Stencil

Create and add a Symbol
The following is a simple example that shows how to create and add custom symbols.
1. Create a custom class (SymbolItem in this example) that derives ISymbol and implements necessary things.
	[C#]
public class SymbolItem : ISymbol
 {

 // Symbol-Any Object
 public object Symbol { get; set; }

 // Data template to visualize the object.
 public DataTemplate SymbolTemplate { get; set; }

 //For cloning the symbol from the given object and data template.
 public ISymbol Clone()
 {
 return new SymbolItem()
 {
 Symbol = this.Symbol,
 SymbolTemplate = this.SymbolTemplate
 };
 }

 // Custom property for grouping.
 public string GroupName { get; set; }
}

[image: http://help.syncfusion.com/UG/winrt/ImagesExt/image106_19.png]Note: Custom Property GroupName in SymbolItem is used for grouping the Symbols by Mapping.
1. Create a collection for Symbols

	[C#]
// A custom class to hold a collection of symbols.
public class SymbolCollection : ObservableCollection<ISymbol>
{
}

1. Define the SymbolTemplate.
	[XAML]
<DataTemplate x:Key="Star">
 <Path Style="{StaticResource SymbolStyle}"
 Data="M 9,2 11,7 17,7 12,10 14,15 9,12 4,15 6,10 1,7 7,7 Z" Stretch="Fill">
 </Path>
</DataTemplate>

1. Create an instance of SymbolItem with the Symbol and SymbolTemplate properties.

	[XAML]
<local:SymbolItem GroupName="FlowChart" Symbol="Star" SymbolTemplate="{StaticResource Star}">
</local:SymbolItem>

1. Add the symbols into the collection (SymbolSource for Stencil).

	[XAML]

<local:SymbolCollection x:Key="symbolcollection">
	<!--Adding a Symbol into a Collection-->
	<local:CustomSymbolItem GroupName="FlowChart" Symbol="Star" SymbolTemplate="{StaticResource Star}"/>
</local:SymbolCollection>

This collection will be the SymbolSource for the stencil. Based on the SymbolSource, the stencil will populate the symbols.
Preview for Drag and Drop
SfDiagram provides preview support for Stencil. When you drag an item from Stencil to Diagram, a preview of the dragged item will be displayed. You can enable or disable the preview support. You can also customize the preview.
Use Case Scenario
This feature displays a preview of the item you drag from Stencil, enabling you to identify the item you are dragging from the Stencil to the SfDiagram control. It also it gives a preview of the size and appearance of the item before it is dropped.
Enabling Preview
To enable preview for the dragged item from Stencil, set the Constraints property of Stencil to ShowPreview. To disable preview, remove ShowPreview from Constraints property. By default, preview for drag and drop is enabled.
The following code example illustrates how to enable preview support:
	[C#]
//Enable the drag and drop preview.
stencil.Constraints = stencil.Constraints | StencilConstraints.ShowPreview;

//Disable the drag and drop preview.
stencil.Constraints = stencil.Constraints &~ StencilConstraints.ShowPreview;

Here, stencil is an instance of Stencil.
[image:]
Figure 50: Preview of Dragged Symbol

Customization of Preview for Drag and Drop
You can customize the preview content by overriding the PrepareDragDropPreview method of the Stencil feature. The following code example illustrates how to customize preview content:
	[C#]
public class CustomStencil : Stencil
 {
 /// <summary>
 /// Virtual method to customize the preview of dragging the symbol from Stencil.
 /// </summary>
 protected override void PrepareDragDropPreview()
 {
 this.SymbolPreview = new ContentPresenter()
 {
 Content = new Rectangle()
 {
 Width = 50,
 Height = 50,
 Fill = new SolidColorBrush(Colors.SteelBlue)
 }
 };
 }
 }

[image:]
Figure 51: Customized SymbolPreview
SymbolGroups
The SymbolGroupProvider groups the symbols into SymbolGroup based on the MappingName property.
	Name
	Description

	MappingName
	Used to group the symbols by mapping this property to the custom property of Symbols.

The following code example illustrates how to create a SymbolGroup:
	[XAML]
<stencil:Stencil SymbolSource="{StaticResource symbolcollection}" x:Name="stencil">
 <stencil:Stencil.SymbolGroups>
 <stencil:SymbolGroups>
 <stencil:SymbolGroupProvider MappingName="GroupName"/>
 </stencil:SymbolGroups>
 </stencil:Stencil.SymbolGroups>
</stencil:Stencil>

 [image: http://help.syncfusion.com/UG/winrt/ImagesExt/image106_19.png]Note: In the preceding code example, “GroupName” is the custom Symbol property that is used to group the symbols using the MappingName property of the SymbolGroupProvider.
Expand or Collapse SymbolGroup
Expand and Collapse can be performed on SymbolGroup (updating the Visibility of the Symbols) based on the ExpandMode property. It includes the following options; the default option is One:
	S.No
	Expand Mode
	Description

	1.
	One
	Always one SymbolGroup will be in expanded state.

	2.
	OneOrMore
	At least one SymbolGroup will be in Expanded state.

	3.
	ZeroOrOne
	Not more than a single SymbolGroup will be in expanded state. All ‘SymbolGroup’ can be in collapsed state.

	4.
	ZeroOrMore
	Any number of SymbolGroup can be in the expanded state. All ‘SymbolGroup’ can be in collapsed state.

SymbolFilters
SymbolFilterProvider is used to filter or hide the symbols using delegates. SymbolFilters are the collection of SymbolFilterProvider.
The following code example shows how to create and add the SymbolFilter. Based on the return Boolean value of the SymbolFilter delegate, the corresponding item will be removed from Stencil. When a SymbolGroup does not have any Symbols, the corresponding SymbolGroup will also be removed.
	[C#]

 private void CreateFilters()
 {
 stencil.SymbolFilters = new SymbolFilters();
 SymbolFilterProvider allFilter = new SymbolFilterProvider
 {
 Content = "All",
 Filter = SymbolFilter
 };
 SymbolFilterProvider kitchenFilter = new SymbolFilterProvider
 {
 Content = "Kitchen",
 Filter = SymbolFilter
 };

 stencil.SymbolFilters.Add(addFilter);
 stencil.SymbolFilters.Add(kitchenFilter);
 }

// sender: used to get the selected SymbolFilters
private bool SymbolFilter(SymbolFilterProvider sender, ISymbol symbol)
{
 if (sender.Content.ToString() == "All")
 {
 return true;
 }
 if ((symbol as SymbolItem).GroupName == sender.Content.ToString())
 {
 return true;
 }
 return false;
}

SelectedFilter
There can be multiple SymbolFilters, but only one filter can be selected at a time. These SymbolFilters are visually represented in a combo box. When the selected item is changed in the combo box, SelectedFilter will be updated accordingly.
[image:]

Figure 52
: SymbolFilters
Commands
There are several commands provided in the SfDiagram control. These commands can be executed from XAML or C# as shown in the following code samples. Some commands require parameters to be executed.
Execute commands without parameters

	[C#]

 IGraphInfo graphInfo = (sfDiagram.Info as IGraphInfo);
 graphInfo.Commands.Flip.Execute(null);

	[XAML]
 <Button x:Name="Flip"
 Command="{Binding Path=Info.Commands.Flip, ElementName=sfDiagram}"
 Content="Flip" />

Here, sfDiagram refers to an instance of SfDiagram.
Customizing the Object Size
Object size commands enable selected diagram objects on the page to be resized. The selected objects are resized in proportion to the first object in the selection list.
SameHeight Command
The SameHeight command enables selected objects to be resized to the same height of the first object in the selection list.

[image:]

Figure 53: Height Customization
SameWidth Command
The SameWidth command enables selected objects to be resized to the same width of the first object in the selection list.

[image:]

Figure 54: Width Customization
SameSize Command
The SameSize command enables selected objects to be resized to the same height and width of the first object in the selection list.

[image:]

Figure 55: Height and Width Customization

Customizing the Object Position
Object position commands enable you to change the z-index value of the selected objects (nodes and connectors) on the page. These commands provide support to control overlapping objects.
BringToFront Command
The BringToFront command enables you to move the selected object over other objects by increasing the z-index to its maximum value.
[image:]

Figure 56: Order Commands
SendToBack Command
The SendToBack command enables you to move the selected object behind all other objects by setting the z-index to zero.

[image:]

Figure 57: SendToBack

MoveForward Command
The MoveForward command increases the z-index value of the selected object by 1.

[image:]

Figure 58: MoveForward
SendBackward Command
The SendBackward command decreases the z-index value of the selected object by 1.

[image:]l

Figure 59: SendBackward
Customizing the Object Alignment
Object alignment commands enable you to align selected objects (nodes and connectors) on a page with respect to a reference object. The first object in the selection is considered the reference object.

AlignLeft Command
The AlignLeft command enables you to align all selected objects along the left corner of the reference object.

[image:]

Figure 60: AlignLeft
AlignCenter Command
The AlignCenter command enables you to center all selected objects vertically. It aligns selected objects to the center with respect to the horizontal axis by changing the x-coordinate of the object.

[image:]

Figure 61: AlignCenter
AlignRight Command
The AlignRight command enables you to align all selected objects along the right corner of the reference object.

[image:]

Figure 62: AlignRight
AlignTop Command
The AlignTop command enables you to align all selected objects along the top surface of the reference object.

[image:]

Figure 63: AlignTop

AlignMiddle Command
The AlignMiddle command enables you to center all selected objects horizontally. It aligns selected objects to the center with respect to the vertical axis by changing the y-coordinate of the object.

[image:]

Figure 64: AlignMiddle
AlignBottom Command
The AlignBottom command enables you to align all selected objects along the bottom surface of the reference object.

[image:]

Figure 65: AlignBottom

Customizing the Space between Objects
Spacing commands enable you to place selected objects on the page at equal intervals from each other. The objects are spaced within the bounds of the first and last objects in the selection.

SpaceAcross Command
The SpaceAcross command spaces selected objects with equal horizontal distance between them.

[image:]

Figure 66: SpaceAcross
SpaceDown Command
The SpaceDown command spaces selected objects with equal vertical distance between them.

[image:]

Figure 67: SpaceDown
Undoing or Redoing Actions
The Undo command reverses the last editing action performed. For example, some of the basic operations performed on diagram objects such as translation, rotation, resizing, grouping, ungrouping, changing z-order, addition, deletion, and so on, can be reversed. The Redo command restores the last editing action if no other actions have occurred since the last undo.

Nudge Commands
Commands enable you to move selected objects on the page toward the top, bottom, left, or right by 1 pixel.
NudgeUp Command
The NudgeUp command moves the selected object toward the top by 1 pixel.
NudgeDown Command
The NudgeDown command moves the selected object toward the bottom by 1 pixel.
NudgeRight Command
The NudgeRight command moves the selected object toward the right by 1 pixel.
NudgeLeft Command
The NudgeLeft command moves the selected object toward the left by 1 pixel.

Clipboard Commands
Clipboard commands are used to perform cut, copy, and paste operations.
[bookmark: p87]Clipboard commands allow you to cut or copy selected diagram objects to the Clipboard and paste the valid Clipboard content into the diagram.

Cut Command
Cut the selected objects from the diagram to the Clipboard.
Copy Command
Copy the selected objects from the diagram to the Clipboard.
Paste Command
Paste the valid contents of the Clipboard into the diagram.

[image: http://help.syncfusion.com/UG/winrt/ImagesExt/image106_393.png]

Figure 68: Pasting Diagram Objects
Duplicate Command
This command copies the selected objects from the diagram and pastes the copied content into the diagram.

[image:]
Figure 69: Duplicating Diagram Objects

Flip Commands
Flip commands are used to mirror a diagram object’s content.
Execute Group Command
Group Commands are used to group the nodes.
[image:]
Figure 11: Group
Execute UnGroup Command
UnGroup Command are used to ungroup the grouped nodes.
[image:]
Figure 12: Ungroup
Parameter
To customize flipping, a parameter of type IFlipParameter has to be passed.
IFlipParameter Properties

	Property
	Description
	Value

	Flip
	Gets or sets whether the object is to be mirrored horizontally, vertically, or both.
	Enum Flip

Flip.HorizontalFlip
Flip.VerticalFlip
Flip.Flip

Execute Flip Command
	[C#]
 (sfdiagram.Info as IGraphInfo).Commands.Flip.Execute(null);

If the parameter is null, the object will be flipped both horizontally and vertically.

	[C#]

 IGraphInfo graphInfo = sfdiagram.Info as IGraphInfo;
 FlipParameter flipParam = new FlipParameter();
 // Horizontal Flip	
 flipParam.Flip = Flip.HorizontalFlip;
 graphInfo.Commands.Flip.Execute(flipParam);
 //Vertical Flip
 flipParam.Flip = Flip.VerticalFlip;
 graphInfo.Commands.Flip.Execute(flipParam);

[image:]

Figure 70:Without Flip
	[image:]
	[image:]
	[image:]

	
Figure 71: Horizontal Flip
	
Figure 72: Vertical Flip
	
Figure 73: Flip

FitToPage Commands
FitToPage commands are used to bring the entire diagram into the view.

Parameter
To use the FitToPage command, a parameter of type IFitToPageParameter has to be passed.

IFitToPageParameter Properties

	Property
	Description
	Value

	FitToPage
	Gets or sets whether the diagram is to fit into the view in terms of its width, height, or entirety.
	Enum FitToPage

FitToPage.FitToPage
FitToPage.FitToHeight
FitToPage.FitToWidth

	Margin
	Gets or sets the margin value from the view to diagram.
	Thickness

Fit the Entire Diagram into the View

	[C#]

 IGraphInfo graphInfo = sfdiagram.Info as IGraphInfo;

 graphInfo.Commands.FitToPage.Execute(
 new FitToPageParameter()
 {
 Margin = new Thickness(25),
 //To fit the diagram with respect to width/height use FitToWidth or FitToHeight.
 FitToPage = FitToPage.FitToPage
 });
(or)
 graphInfo.Commands.FitToPage.Execute(null);

Zoom Commands
Zoom commands are used to zoom in and out of the diagram.
To execute zoom commands, parameters of type IZoomParameter (IZoomManipulationParameter, IZoomPositionParameter, or IZoomPointerParameter) have to be passed.

IZoomManipulationParameter Properties

	Property
	Description
	Value

	ManipulationArgs
	Gets or sets the ManipulationDeltaRoutedEventArgs associated with the desired zoom function.
	ManipulationDeltaRoutedEventArgs

IZoomPositionParameter Properties

	Property
	Description
	Value

	ZoomTo
	Gets or sets the zoom level to which the diagram is to be zoomed.
	double

	ZoomFactor
	Gets or sets the percentage of scale value for each ZoomIn or ZoomOut function.
	double

	FocusPoint
	Gets or sets the point of focus while zooming.
	Point

	ZoomCommand
	Gets or sets whether zoom in or zoom out has to be performed.
	Enum ZoomCommand

ZoomCommand.ZoomIn
ZoomCommand.ZoomOut

IZoomPointerParameter Properties

	Property
	Description
	Value

	PointerArgs
	Gets or sets the PointerRoutedEventArgs associated with the desired zoom function.
	PointerRoutedEventArgs

	ZoomCommand
	Gets or sets whether zoom in or zoom out has to be performed.
	Enum ZoomCommand

ZoomCommand.ZoomIn
ZoomCommand.ZoomOut

Execute ZoomCommand
	[C#]

 IGraphInfo graphInfo = sfdiagram.Info as IGraphInfo;

 //Zoom to a particular scale.
 graphInfo.Commands.Zoom.Execute(
 new ZoomPositionParamenter() { ZoomTo = 2 , ZoomCommand=ZoomCommand.ZoomOut});

 //Zoom out based on zoom factor.
 graphInfo.Commands.Zoom.Execute(
 new ZoomPositionParamenter()
 {
 ZoomFactor = 0.2,
 ZoomCommand=ZoomCommand.ZoomOut
 });

Reset Commands
Reset commands are used to reset horizontal offset, vertical offset, and zoom level of the diagram.
To execute a reset command, a parameter of type IReset has to be passed.

	Property
	Description
	Value

	Reset
	Gets or sets the reset function
	Enum Reset
Reset.Zoom – To reset zoom level to 1,
Reset.Pan – To reset offsets to 0,
Reset.ZoomPan

Execute ResetCommand

	[C#]
 IGraphInfo graphInfo = sfdiagram.Info as IGraphInfo;
 graphInfo.Commands.Reset.Execute(new ResetParameter() { Reset = Reset.ZoomPan });

Draw Commands
Draw commands are used to draw connections. They take parameters of type IDrawParameter.

IDrawParameter Properties

	Property
	Description
	Value

	DrawingTool
	Gets or sets a tool to draw.
	Enum DrawingTool

DrawingTool.Connector

	Point
	Gets or sets the start point for drawing.
	Point

	Node
	Gets or sets the source node of the new connection.
	object

	Port
	Gets or sets the source port of the new connection.
	object

	PressedEventArgs
	Gets or sets the PressedEventArgs.
	PointerRoutedEventArgs

Execute DrawCommand

	[C#]
 void button_PointerPressed(object sender, PointerRoutedEventArgs evtArgs)
 {
 IGraphInfo graphInfo = sfdiagram.Info as IGraphInfo;
 Point? sourcePoint = new Point(200, 200);
 graphInfo.Commands.Draw.Execute(
 new DrawParameter(
 DrawingTool.Connector,
 evtArgs,
 sourcePoint,
 sourceNode,
 sourcePort)
);
 }

Command Manager
Command manager is used to map between user gestures (keyboard, mouse) with commands. Refer the following table for inbuilt commands with Key Gesture and Mouse Gesture.

List of Commands and Key Gesture:

	Command
	Key
	Key Modifiers

	Copy
	C
	Control

	Cut
	X
	Control

	Paste
	V
	Control

	Duplicate
	D
	Control

	Undo
	Z
	Control

	Redo
	Y
	Control

	MoveLeft
	Left
	

	MoveUp
	Up
	

	MoveRight
	Right
	

	MoveDown
	Down
	

	Delete
	Delete
	

	SelectAll
	A
	Control

	Group
	G
	Control

	UnGroup
	G
	Control

	SendToBack
	[
	Control + Shift

	SendBackward
	[
	Control

	BringToFront
]
	Control + Shift

	BringForward
]
	Control

List of Commands and Key Gestures with Parameter:

	Command
	Key
	KeyModifier
	Parameter

	Zoom
	-
	Control
	new ZoomPositionParamenter
{
 ZoomCommand=ZoomCommand.ZoomOut
}

	Zoom
	+
	Control
	new ZoomPositionParamenter
{
 ZoomCommand = ZoomCommand.ZoomIn
}

	Reset
	0
	Control
	new ResetParameter
{
 Reset = Diagram.Reset.ZoomPan
}

	FitToPage
	0
	Control + Menu
	new FitToPageParameter
{
 FitToPage = Diagram.FitToPage.FitToPage,
 Margin = new Thickness(20)
}

List of Commands and Mouse Gesture with Parameter:

	Command
	Scroll State
	Parameter

	Vertical Scroll using ‘Zoom’ command
	Scroll
	new ZoomPointerParamenter
{
 ZoomCommand = ZoomCommand.VerticalScroll
}

List of Command and Key & Mouse Gestures with Parameter:

	Command
	KeyModifiers
	ScrollState
	Parameter

	Horizontal Scroll using ‘Zoom’ command
	Shift
	Scroll
	new ZoomPointerParamenter
{
 ZoomCommand = ZoomCommand.HorizondalScroll
}

	Zoom
	Control
	Scroll
	new ZoomPointerParamenter
{
ZoomCommand = ZoomCommand.ZoomIn | ZoomCommand.ZoomOut
}

[image:]Note: Handle the command once executed if different commands can be register with the same key / mouse gestures.

Custom Commands:
User defined commands can also be created and mapped with existing gesture using command manager.The following code example explains How to register mouse key gesture with Parameter for Save Command (Control + S)

Create a user defined command: Save command

	[C#]
//Creating ICommand
private ICommand _save;

public ICommand Save
{
 get { return _save; }
 set { _save = value; }
}
//Initializing Command
Save = new DelegateCommand(OnSaveCommand);

//Execute Command
private async void OnSaveCommand(object obj)
{
 var picker = new FileSavePicker();
 // set appropriate file types
 picker.FileTypeChoices.Add(".xaml", new List<string> { ".xaml" });
 picker.DefaultFileExtension = ".xaml";
 object parameter =(obj as IGestureParameter).Parameter;
 picker.SuggestedFileName = parameter.ToString();
 StorageFile file = await picker.PickSaveFileAsync();
 using (var fileStream = await file.OpenStreamForWriteAsync())
 {
 sfdiagram.Save(fileStream);
 }
}

Map user defined command with key gesture:

	[C#]
//Adding new Command to CommandManager-Cntrl +S =>Save
sfdiagram.CommandManager.Commands.Add
(
 new GestureCommand()
 {
 Command = Save,
 Gesture = new Gesture
 {
 KeyModifiers = VirtualKeyModifiers.Control,
 KeyState = CoreVirtualKeyStates.Down,
 Key = VirtualKey.S
 },
 //Parameter is name of the File(.XAML)
 Parameter = "diagram"
 }
);

Printing
This feature enables you to print a copy of the diagram with Print Preview (located in the CharmBar).
Print Preview
Print preview is used to preview the SfDiagram control before printing. Print preview will scale the entire diagram into a single page.
[image: C:\Users\mohanapriya\Desktop\sshot-2.png]

Figure 74: Print Preview

Customization of Print Preview
The SfDiagram control provides support to customize the appearance print preview using the PrintStretch properties of PrintingService.

Customize the Orientation and Size

The following code illustrates how to customize the orientation and size of the print preview:
	[C#]

//Customize the appearance of the print preview.
sfdiagram.PrintingService.PrintPreviewStretch= PrintPreviewStretch.Fill;

Here, sfdiagram is an instance of SfDiagram.
Customize the Appearance
The SfDiagram control provides the PrintPreview Control to customize the page to be printed by overring the ControlTemplate of the PrintPreview Control, the customization will also be shown in PrintPreview. This will be helplful when a header or footer has been added to the page.
For more details about the customization of PrintPreviewControl, Please refer to the Print and Export sample from our dashboard samples.
Graph Constraints
The GraphConstraints property is used to enable or disable all or certain behaviors of the SfDiagram control. This property is applicable to the entire SfDiagram control.

	Constraint
	Description

	None
	Disables all behaviors of the control

	Zoomable
	Enables zooming behavior

	PannableX
	Enables panning in the horizontal direction.

	PannableY
	Enables panning in the vertical direction.

	Pannable
	Enables panning behavior

	PanRailsX
	Enables panning actions on the x-axis in SfDiagram (horizontal panning).

	PanRailsY
	Enables panning actions on the y-axis in SfDiagram (vertical panning).

	Undoable
	Enables Redo or Undo behavior.

	Virtualize
	Enables Virtualizing behavior.

	Relationship
	Enables properties based on Node and Connector relationships on dragging at run time.

	Events
	Enables all events of the control.

	Bridging
	Enables line bridging.

	Routing
	Enables line routing.

	AutoScroll
	Enables AutoScroll behavior

	PanRails
	Enables panning actions on the x-axis (horizontal panning) and y-axis (vertical panning) in SfDiagram.

	Default
	Enables all behaviors of the control.

The default value for GraphConstraints property is Default.

The following code example illustrates how to add the Undoable constraint to existing constraints in SfDiagram:

	[C#]

sfdiagram.Constraints = sfdiagram.Constraints | GraphConstraints.Undoable;

[image:]Note: GraphConstraints property is manipulated using bitwise operations. For more information about bitwise operations, see Bitwise Operations.
Tool
Some gestures have multiple functionalities; for example, “Touch and Drag” gesture is used for panning, drawing and rubber band selection.

Tool property provides support to operate any one of the multiple functionalities at any particular time. It supports the following functionalities:

	S.No
	Tools
	Description

	1.
	None
	Disables all behaviors of the control

	2.
	SingleSelect
	Enables to select the diagramming objects.

	3.
	MultipleSelect
	Enables multiple selection (rubber band selection) behavior.

	4.
	ZoomPan
	Enables Zooming/panning behavior of the control.

	5.
	DrawOnce
	Enables to draw different types of Line Connector only once

	6.
	ContinuousDraw
	Enables to draw different types of Line Connector at continuously

The default value for Tool property is MultipleSelect.

The following code example illustrates how to enable the Panning and Zooming functionality by using Tools property of SfDiagram:

	[C#]

sfdiagram.Tool = Tool.ZoomPan;

[image:]Note: Tool property is manipulated using bitwise operations. For more information about bitwise operations, see Bitwise Operations.

Multiple Selection
Description
There are many ways to select multiple elements. Multiple selection can be customized by changing the values of SfDiagram.MultipleSelectionMode.

The following table lists the enumerable elements of MultipleSelectionMode.

	Enumerable Elements
	Description

	RubberbandCompleteIntersect
	Elements that are completely positioned in the selection rectangle will be selected.

	RubberbandPartialIntersect
	Elements that intersect with the selection rectangle will be selected.

	JustTap
	Elements can be selected by tapping.

	HoldKeyAndTap
	Elements can be selected by holding a key and tapping.

Change the MultipleSelectionMode

	[C#]
diagramControl.MultipleSelectionMode = MultipleSelectionMode.RubberBandPartialIntersect;

Examples
RubberbandCompleteIntersect
Elements that are completely positioned in the selection rectangle are selected.

[image:]

Figure 75: While Selecting

[image:]

Figure 76: After Selection
RubberbandPartialIntersect
Elements that intersect with the selection rectangle are selected.

[image:]

Figure 77: While Selecting

[image:]

Figure 78: After Selection
JustTap
By default, when tapping an element, the existing selection list will be cleared, and the tapped element will be added to the selection list. JustTap is used to avoid clearing the selection list and add the tapped element to the list.
HoldKeyAndTap
By default, when tapping an element, the existing selection list will be cleared, and the tapped element will be added to the selection list. Holding Ctrl and tapping an element will avoid clearing the selection list and add the tapped element to the list.

Serialization
Serialization is the process of saving and loading Essential Diagram for state persistence of SfDiagram.

In SfDiagram, DataContractSerializer is used for serialization. The functionalities in DataContractSerializer are applicable to SfDiagram Serialization. It supports saving SfDiagram to stream; the SfDiagram gets saved with all its properties. On loading, it gets loaded in the current view with all its nodes and connections. As a result, this feature enables you to save the SfDiagram for future use. You can continue working on the SfDiagram by loading the appropriate stream.

The following code example illustrates how to save and load SfDiagram control to Stream:
	[C#]

// SfDiagram saved to Stream.
SfDiagram sfdigram = new SfDiagram();
System.IO.MemoryStream str = new System.IO.MemoryStream();
sfdiagram.Save(str);

// SfDiagram loaded to Stream.
sfdiagram.Load(str);

Serialization of Nodes
The properties in INode interface and Known types are serializable.
For example, the following steps illustrate how to serialize the Custom Property:

1. All serializable [DataMember] custom fields or custom properties in a [DataContract] type must be set to public, and read or write.

	[C#]

[DataContract]
public class NodeContent : INotifyPropertyChanged
{
[DataMember]
public string NodeType
{
get;
set;
}
}

2. Known types must be specified in code for the custom class.

	[C#]

sfdiagram.KnownTypes = () => new List<Type>()
{
typeof(NodeContent)
};

In the preceding code, NodeContent is unknown type to Serializer. This is similar to IConnector and IGroup.

Virtualization
Virtualization is the process of loading the diagramming objects that are available in the visible area of the diagram control, that is, only the diagramming objects that lie within the ViewPort of the ScrollViewer are loaded (remaining objects will be loaded only when they come into view).

This feature gives optimized performance while loading and dragging items to SfDiagram which consists of many Nodes and Line Connectors.

The following code sample illustrates how to enable Virtualization in SfDiagram:

	[C#]

sfdiagram.Constraints = sfdiagram.Constraints | GraphConstraints.Virtualize;

[image:]Note: For more information about virtualization, see Appendix.

Gridlines
Gridlines
Gridlines are horizontal and vertical lines behind the diagram elements. They provide visual guidance when dragging or arranging objects on the diagram surface.
 [image:]

Figure 79: Diagram with Gridlines Enabled

SfDiagram.SnapSettings.SnapConstraints
The visibility of gridlines and their snapping feature can be enabled or disabled by changing the values of the enum property SfDiagram.SnapSettings.SnapConstraints.
	Elements
	Description

	ShowHorizontalLines
	Display horizontal gridlines.

	ShowVerticalLines
	Show vertical gridlines.

	ShowLines
	Show both horizontal and vertical gridlines.

	SnapToHorizontalLines
	Snap to horizontal gridlines.

	SnapToVerticalLines
	Snap to vertical gridlines.

	SnapToLines
	Snap to both horizontal and vertical gridlines.

	All
	Show and snap to both horizontal and vertical gridlines.

	None
	Disable gridlines and disable snapping.

Enabling and Disabling Gridlines
The visibility of gridlines can be enabled or disabled by changing the values of the enum property SfDiagram.SnapSettings.SnapConstraints.
SnapConstraints.All and SnapConstraints.ShowLines enables the visibility of both horizontal and vertical gridlines.

	[C#]
diagramControl.SnapSettings.SnapConstraints = SnapConstraints.All;

Or

	[C#]
diagramControl.SnapSettings.SnapConstraints = SnapConstraints.ShowLines;

SnapConstraints.HorizontalLines enables the visibility of horizontal gridlines.

	[C#]
 diagramControl.SnapSettings.SnapConstraints = SnapConstraints.HorizontalLines;

SnapConstraints.VerticalLines enables the visibility of vertical gridlines.

	[C#]
 diagramControl.SnapSettings.SnapConstraints = SnapConstraints.VerticalLines;

SnapConstraints.None disables gridlines.
	[C#]
 diagramControl.SnapSettings.SnapConstraints = SnapConstraints.None;

Customization of Gridlines
The spacing and appearance of gridlines can be customized using the HorizontalGridlines and VerticalGridlines properties of SfDiagram.SnapSettings, which is of type Gridlines.
The Gridlines class enables the definition of spacing between gridlines, snapping intervals, and the style and thickness of gridlines.
LinesInterval
The spacing and thickness of gridlines can be customized by changing the value of the LinesInterval property. LinesInterval is a DoubleCollection that contains a series of line thicknesses separated by the space left before the next gridline thickness. This series will be repeated throughout the diagram.

To change spacing between lines:
	[C#]
 Gridlines gridlines = new Gridlines()
 {
 LinesInterval = new List<double>() { 2, 23, 1, 24 }
 };

 diagramControl.SnapSettings.HorizontalGridlines = gridlines;

 diagramControl.SnapSettings.VerticalGridlines = gridlines;

	LinesInterval
	Effect

	2
	A line with a two-pixel thickness will be drawn.

	23
	A 23-pixel gap will be left.

	1
	A line with a one-pixel thickness will be drawn at the 25th pixel (2+23).

	24
	A 24-pixel gap will be left.

	
	The cycle will start again with the first item in the collection.

Strokes
Styles for a pattern of gridlines can be assigned to the Strokes property. This collection will be applied to each line pattern of the diagram.

To change the appearance of gridlines:
	[C#]
 Style brown = new Style(typeof(Path));
 brown.Setters.Add(new Setter(Path.StrokeProperty, new
 SolidColorBrush(Colors.Brown)));
 Style sandyBrown = new Style(typeof(Path));
 sandyBrown.Setters.Add(new Setter(Path.StrokeProperty, new
 SolidColorBrush(Colors.SandyBrown)));

 Gridlines gridlines = new Gridlines()
 {
 LinesInterval = new List<double>() { 2, 23, 1, 24 }
 Strokes = new List<Style>() { brown, sandyBrown }
 };

 diagramControl.SnapSettings.HorizontalGridlines= gridlines;

 diagramControl.SnapSettings.VerticalGridlines= gridlines;

In the following screenshot, the gridline styles are customized.

[image:]

Figure 80: Customized Gridlines
Snapping
Snap to Grid
The snap-to-grid feature allows diagram objects to snap to the nearest intersection of gridlines when being dragged or resized. This feature enables easier alignment during layout or design.

[image:]

Figure 81: Diagram Objects Snapped to Gridlines

Enabling and Disabling Snapping to Gridlines
Snapping to gridlines can be enabled or disabled by changing the value of the enum property
SfDiagram.SnapSettings.SnapConstraints.

	[C#]
//Enables snapping to both horizontal and vertical lines.
 diagramControl.SnapSettings.SnapConstraints = SnapConstraints.All;

//Enables snapping to both horizontal and vertical lines.
diagramControl.SnapSettings.SnapConstraints = SnapConstraints.SnapToLines;

//Enables snapping to horizontal lines.
diagramControl.SnapSettings.SnapConstraints = SnapConstraints.SnapToHorizontalLines;

//Enables snapping to vertical lines.
diagramControl.SnapSettings.SnapConstraints = SnapConstraints.SnapToVerticalLines;

//Disables snapping to lines.
diagramControl.SnapSettings.SnapConstraints = SnapConstraints.None;

When snapping is set in the SfDiagram control (diagramControl.SnapSettings), the same setting will be applied to every element of the SfDiagram control by default.
If there is a need to change or disable snapping to a gridline for a particular element, users can set the constraints of a particular object to SnapToLines, SnapToHorizontalLines, or SnapToVerticalLines.

	[C#]
//Disable inheritance of snapping from SfDiagram.
obj.Constraints = obj.Constraints & ~NodeConstraints.InheritSnapping;

//Enables snapping to horizontal lines for a specific object (e.g., node, connector).
obj.Constraints |= NodeConstraints.SnapToHorizontalLines;

//Enables snapping to vertical lines for a specific object (e.g., node, connector).
obj.Constraints |= NodeConstraints.SnapToVerticalLines;

//Enables snapping to both horizontal and vertical lines
//for a specific object (e.g., node, connector).
obj.Constraints |= NodeConstraints.SnapToLines;

Customizing Snap Interval
The gridline or position to which a diagram object snaps can be customized by changing the value of the Gridlines.SnapInterval property.
By default, diagramControl.SnapSettings.HorizontalGridlines and diagramControl.SnapSettings.VerticalGridlines are set to null, and gridline intervals will be internally calculated based on measurement units and ruler segments.

Gridlines.SnapInterval is a double collection that determines the space between patterns of gridlines.

	 [C#]
 Gridlines gridlines = new Gridlines()
 {
 SnapInterval = new List<double>() { 40, 25 }
 };

 diagramControl.SnapSettings.HorizontalGridlines= gridlines;
 diagramControl.SnapSettings.VerticalGridlines= gridlines;

Snap to Object
The snap-to-object feature provides visual cues to assist with aligning and spacing diagram nodes. A node can be snapped with its neighboring objects based on certain alignments. Such alignments are visually represented as guidelines. For example, users can easily arrange a column of nodes to be evenly spaced apart and horizontally centered with each other.

[image:]

Figure 82: Guidelines in a Diagram

Enabling and Disabling Snapping to Objects
diagramControl.SnapSettings.SnapToObject determines whether nodes can be snapped to objects.
Snapping to objects can be enabled by assigning values other than SnapToObject.None to SfDiagram.SnapSettings.SnapToObject.

	[C#]
//Enables snapping to objects.
diagramControl.SnapSettings.SnapToObject = SnapToObject.All;

//Disables snapping to objects.
diagramControl.SnapSettings.SnapToObject = SnapToObject.None;

The value set to diagramControl.SnapSettings will be applied to every element of the SfDiagram control.
If there is a need to change or deny snapping to a particular object, we can set the desired value to the SnapToObject property of that particular object.

	[C#]
//Disable inheritance of snapping from SfDiagram.
obj.Constraints = obj.Constraints & ~NodeConstraints.InheritSnapToObject;

//Enables SnapToObject.
node.SnapToObject = SnapToObject.All;

Examples
[image:]

Figure 83: Center Alignment
[image:]

Figure 84: Equal Spacing

[image:]

Figure 85: Left and Top Alignment
[image:]

Figure 86: Bottom and Right Alignment

[image:]

Figure 87: Same Size Alignment

The following table describes the many enumerable elements of the SnapToObject property.

	Enumerable Elements
	Description

	LeftLeft
	Snaps the left side of an object to the left side of another object.

	LeftRight
	Snaps the left side of an object to the right side of another object.

	Left
	Behaves as if both the LeftLeft and LeftRight settings are applied.

	RightRight
	Snaps the right side of an object to the right side of another object.

	RightLeft
	Snaps the right side of an object to the left side of another object.

	Right
	Behaves as if both the RightRight and RightLeft settings are applied.

	TopTop
	Snaps the top side of an object to the top side of another object.

	TopBottom
	Snaps the top side of an object to the bottom side of an another object.

	Top
	Behaves as if both the TopTop and TopBottom settings are applied.

	BottomBottom
	Snaps the bottom side of an object to the bottom side of an another object.

	BottomTop
	Snaps the bottom side of an object to the top side of an another object.

	Bottom
	Behaves as if both the BottomBottom and BottomTop settings are applied.

	VerticalCenter
	Center aligns an object vertically.

	HorizontalCenter
	Center aligns an object horizontally.

	VerticalSpacing
	Aligns objects so that they are equally spaced vertically.

	HorizontalSpacing
	Aligns objects so that they are equally spaced horizontally.

	Width
	Highlights objects with the same width.

	Height
	Highlights objects with the same height.

	Size
	Sets the width and height of an object.

Customization of Snapping
By default, the objects will be snapped based on the diagramControl.SnapSettings.SnapConstraints or diagramControl.SnapToObject. If in some cases the suggested snapping is not desired, snapping can be disabled or modified by overriding the protected virtual method OnSnap.

	Virtual Method
	Description
	Parameters

	Node.OnSnap
	Snaps an object to the grid, an object, or to a custom position.
	List<SnapParameter>,
out SnapAccepted

The following table lists the properties associated with SnapParameter.

	Property
	Description
	Value

	SnapChanges
	Gets the property that will be changed because of the suggested snap.
	SnapChanges-enum

SnapChanges.X,
SnapChanges.Y,
SnapChanges.Width,
SnapChanges.Height,
SnapChanges.Angle

	SnapReason
	Gets the reason/target of the suggested snap.
	SnapReason-enum

SnapReason.Gridlines,
SnapReason.Sides,
SnapReason.Segment,
SnapReason.Size,
SnapReason.Angle

	SnapInfo
	Gets the information about the target.
	object

The value of this property may be:
GridlineSnapInfo
ObjectSnapInfo
SegmentSnapInfo
SameSizeSnapInfo
EqualSpaceSnapInfo

	Current
	Gets the current status of the object that is being manipulated.

	SnapState

	Proposed
	Gets the proposed status of the object that is being manipulated.
	SnapState

SnapInfo property of SnapParameter gives details about the cause of snapping, following table lists the possible cases and corresponding values of SnapParameter.

	Change
	Possible Snap
	SnapReason
	SnapChanges
	SnapInfo

	Dragging
	SnapToGrid
	GridLine
	X/Y
	GridlineSnapInfo : SnapInfo

	
	SnapToObject
	Sides
	X/Y
	ObjectSnapInfo: SnapInfo

	
	SnapToSegment
	Segment
	None
	SegmenSnaptInfo: SnapInfo

	
	EquallySpaced
	EqualSpace
	X/Y
	EqualSpaceSnapInfo: SnapInfo

	Resizing
	SnapToGrid
	GridLine|Size
	Width/Height
	GridlineSnapInfo: SnapInfo

	
	SnapToObject
	Sides|Size
	Width/Height
	ObjectSnapInfo

	
	SameSize
	Size
	Width/Height
	EqualSizeSnapInfo

	Rotating
	Rotate
	Angle
	Angle
	null

Properties associated with GridlineSnapInfo.

	Property
	Description
	Value

	TargetLine
	Gets the position of the target gridline.
	double

	Side
	Gets the direction of the node movement.
	enum Side
Side.Left
Side.Right
Side.Top
Side.Bottom

Properties associated with the ObjectSnapInfo.

	Property
	Description
	Value

	TargetObject
	Gets the target object toward which the node has to be snapped.
	object

	SnapToObject
	Gets the possible snap.
	enum SnapToObject

Properties associated with the EqualSpaceSnapInfo.

	Property
	Description
	Value

	Target
	Gets the target of the snap.
	object

	SnapToObject
	Gets the possible snap.
	SnapToObject enum

	Distance
	Gets the equal distance between objects.
	double

	EquallySpacedObjects
	Gets the collection of objects that are equally spaced.
	List<object>

Properties associated with the SameSizeSnapInfo.

	Property
	Description
	Value

	SnapToObject
	Gets the possible snap.
	SnapToObject enum

	EquallySizedObjects
	Gets the collection of objects that are of the same size.
	List<object>

Properties associated with the SegmentSnapInfo.

	Property
	Description
	Value

	TargetConnectors
	Gets the collection of TargetConnectors that are closest to the node.
	object

Properties associated with the TargetConnector.

	Property
	Description
	Value

	Connector
	Gets the nearest connector.
	Connector

	TargetSegment
	Gets the nearest connector segment.
	IConnectorSegment

	SegmentStartingPoint
	Gets the starting point of the nearest segment.
	Point

	IntersectingPoints
	Gets the collection of points through which TargetSegment intersects the object.
	List<Point>

The following table lists the properties associated with SnapState.

	Property
	Description
	Value

	X
	Gets OffsetX value of the object.
	double

	Y
	Gets OffsetY value of the object.
	double

	Width
	Gets the width of the object.
	double

	Height
	Gets the height of the object.
	double

	Angle
	Gets the RotateAngle of the object.
	double

Rulers
The ruler provides a horizontal and vertical guide for measuring in the Diagram control. The ruler can be used to measure diagram objects, indicate positions, and align diagram elements. This is especially useful in creating scale models. Users can set the unit of measure, such as centimeters or inches. The default unit of measure is pixels.

Adding Rulers to a Diagram
Use the following code sample to add the ruler to the diagram.
	[C#]

diagramControl.HorizontalRuler = new Ruler();
diagramControl.VerticalRuler = new Ruler() { Orientation = Orientation.Vertical };

[image:]

Figure 88: Default ruler

Customizing the Ruler
By default, ruler segments will be arranged based on measurement units.
Segment width, the textual description of the ruler segment, and the appearance of the ruler ticks can be customized. Use the following code sample to customize the ruler:
	[C#]

 // Customizing the Ruler

 public class CustomRuler : Ruler
 {
 protected override RulerSegment GetNewSegment()
 {

 //Creating a custom segment with 12 intervals.
 return new CustomSegment() {Intervals=12 };
 }
 }

 // Customizing RulerSegment

 public class CustomSegment : RulerSegment
 {
 protected override Tick GetNewTick()
 {
 return new CustomTick() ;
 }

 public override double GetSegmentWidth()
 {
 // Customizing the ruler segment width.
 return 200;
 }

 // Customizing the label of the RulerSegment
 protected override void UpdateLabel(TextBlock label)
 {
 base.UpdateLabel(label);
 }
 }

 // Customizing the Ruler ticks.

 public class CustomTick : Tick
 {
 // <summary>
 /// To update the ticks values start value, length, alignment
 /// </summary>
 /// <param name="start">Start value</param>
 /// <param name="length">Length of the tick</param>
 /// <param name="align">Alignment of the tick</param>

 protected override void ArrangeTick(out double start, out double length, out
 TickAlignment align)
 {
 start = 0;
 if (Value % 200 == 0)
 {
 length = 20;
 }
 else if (Value % 100 == 0 || Value%100<2)
 {
 length = 14;
 }
 else if (Value % 50 == 0)
 {
 length = 9;
 }
 else
 {
 length = 5;
 }
 align = TickAlignment.RightOrBottom;
 }
 }

In this example, the ruler segment width is set to 200 and the number of intervals is customized as 12.
[image:]

Figure 89: Customized ruler segments

Page Settings
Description
Page settings enable users to customize the appearance, width, height, and measurement units of the diagram page. Page size will be based on any one of the following options:
· Content of the page.
· Specified PageWidth and PageHeight.
· Both the content of the page and the specified PageWidth and PageHeight values.

Page Appearance Based on Content of the Page
If the PageWidth and PageHeight are not specified, the page size will be updated based on the content of the page.

By default, the page size will be updated based on the content.

[image:]

Figure 90: Content-based Page Size

Page Appearance Based on PageWidth and PageHeight
If PageWidth and PageHeight are specified and MultiplePage is set to false, the page size will be the specified values.

Set PageWidth and PageHeight

	[C#]
//Initializing SfDiagram
SfDiagram diagramControl = new SfDiagram();
diagramControl.PageSettings.PageWidth = 500;
diagramControl.PageSettings.PageHeight = 500;

[image:]

Figure 91: Single Page with Specified Width and Height

MultiplePage and PageBreaks
If MultiplePage is set to true, based on the content of the page, the page size will be in multiples of the specified PageWidth and PageHeight. If ShowPageBreaks is set to true, page break lines will be rendered to separate the pages.

Set MultiplePage
	[C#]
//Initializing SfDiagram
SfDiagram diagramControl = new SfDiagram();
diagramControl.PageSettings.PageWidth = 500;
diagramControl.PageSettings.PageHeight = 500;
diagramControl.PageSettings.MultiplePage = false;

[image:]

Figure 92: Multiple Pages in a Diagram

Measurement Units
Description
An element’s position, size, and many other numeric values are measured in pixels by default. These values can be changed to standard measurement units like inches, centimeters, etc. These units can also be changed at runtime. Once the unit is changed, all numeric values will be updated to the new unit to maintain the same visual appearance. Rulers and gridlines will be updated accordingly.

To change measurement units
	[C#]
//Initializing SfDiagram
SfDiagram diagramControl = new SfDiagram();
LengthUnit unit=diagramControl.PageSettings.Unit as LengthUnit;
unit.Unit = LengthUnits.Feets;

[image: C:\Users\Admin\Desktop\Whats New\Rulers and Units.png]

Figure 93: Rulers with Different Measurement Units
Supported Units
MeasurementUnit is an abstract class. LengthUnit is a class that implements this abstract class. LengthUnit supports following units:

· Centimeters
· Feets
· Inches
· Kilometers
· Miles
· Millileters
· Meters
· Pixels
· Yards

Custom Units	
MeasurementUnit is an abstract class. The Unit property of PageSettings is of type MeasurementUnit. A new kind of measurement unit can also be created by implementing this abstract base class.
Exporting
SfDiagram can be exported to the following File formats:
Image File Format
1. Png
Jpeg
Tiff
Gif
Bitmap

[bookmark: _GoBack]Contents of diagram can be exported as raster image files using Export function. This exporting can be customized using ExportSettings.

The following code illustrates how to use ExportSettings Property of SfDiagram:
	[C#]
 ExportSettings settings= new ExportSettings()
 {
 //Stretch Option for Exporting the Image
 ImageStretch = Stretch.Uniform,
 //Specifies the Modes for Exporting
 ExportMode = ExportMode.Content
 };

 //Assign the ExportSettings
 sfdiagram.ExportSettings = settings;

The following code shows how to export SfDiagram:
	[C#]

 //Method to Export the SfDiagram
 sfdiagram.Export();

1. Export Mode
	ExportMode
	Description

	PageSettings

	The area to be exported will be based on PageSettings and how Children are arranged.

	Content
	Areas occupied by children are exported exactly.

Overview
Overview control is used to display a preview (overall view) of the entire content of a diagram. This helps you to look overall picture of large diagram and also to navigate (pan or zoom) to a particular position of the page.
When you work on a very large diagram, you may not know in which part you are actually working or navigation from one part to another might be difficult. To navigation, you can zoom out entire diagram and find where you are. This solution is not suitable if you need some frequent navigation.
Overview control solves these problem by displays a preview (overall view) of entire diagram. A rectangle indicates viewport of the diagram. Navigation becomes easy by dragging this rectangle.
Supported platform: WinRT 8.1, Universal
Use Case Scenarios
You can view the entire content of a diagram in a preview window. This helps you to navigate to a particular position of the page.
	Property
	Description
	Type
	Data Type

	Constraint
	Gets or sets the OverviewConstraints type.
	Dependency Property
	enum
OverviewContraints.None
OverviewContraints.Pan
OverviewContraints.TapFocus
OverviewContraints.DrawFocus
OverviewContraints.Zoom

	FocusBrush
	Specifies the color of the viewport area in the preview.
	Dependency Property
	Brush

	UnFocusBrush
	Specifies the background of the extended area in the preview.
	Dependency Property
	Brush

 Adding Overview Control to an Application
The following code example explains how to add Overview to Application

	[XAMl]
<!--Overview-->
<overview:Overview Source="{Binding ElementName=diagramControl}" Height="300" Margin="0,25,0,0"></overview:Overview>

[image: D:\OverView.png]
Figure 94: Overview

Please refer to the Overview Sample from the following link.
Sample Link:
Navigation->WPF->Diagram->Overview
AutoScroll
AutoScroll feature enables you to perform drag operationS from one end to other end of a large Diagram. For example, when you want to drag a node towards the borders of Diagram, Diagram is automatically scrolled to place the node that does not lies in visible area. AutoScroll takes place for the following interation Node / Connector dragging, Resizing the Node, Multiple Selection (Rubber band selection).
Enable and Disable the AutoScroll
Autoscroll is enabled by default. Following code example describes you how to disable the AutoSroll.

	[C#]
// Remove AutoScroll from GraphConstraints
sfDiagram.Constraints = sfDiagram.Constraints &~ GraphConstraints.AutoScroll;

[image:]Note: GraphConstraints property is manipulated using bitwise operations. For more information about bitwise operations, see Bitwise Operations.

DataSource Support
SfDiagram is populated with the node taken from an external hierarchical data source. SfDiagram exposes its specific, data-related properties and allows you to specify the data source fields from where the node information is retrieved from.
DataSource Settings
Two mapping fields are necessary to map a hierarchical datatsource with the diagram. Id property is used for unique identification of a record. ParentId property is used to identify the parent object to which a particular object is connected.
	Properties
	Description
	Value

	DataSource
	Data source based on the diagram that is to be generated.
	Object

	ParentId
	Specifies the mapping parent id property of the data source items.
	String

	Id
	Specifies the mapping unique id property of data source items.
	String

DataSource
The following code example illustrates how to bind data to SfDiagram.
	[C#]
//Creating Data
ObservableCollection<Employee> employee = new ObservableCollection<Employee>();
employee.Add(new Employee() { Name = "Steve", Designation = "CEO" });
employee.Add(new Employee() { Name = "Kevin", ParentId = "Steve", Designation = "Manager" });
employee.Add(new Employee() { Name = "John", ParentId = "Steve", Designation = "Manager" });
employee.Add(new Employee() { Name = "Raj", ParentId = "Kevin", Designation = "TeamLead" });
employee.Add(new Employee() { Name = "Will", ParentId = "Kevin", Designation = "s/w Developer"});
employee.Add(new Employee() { Name = "Sarah", ParentId = "John", Designation = "TeamLead"});
employee.Add(new Employee() { Name = "Mike", ParentId = "John”, Designation = "Testing Engineer"});
//Setting ParentId-For Relation
diagram.Nodes = new ObservableCollection<object>();
diagram.Connectors = new ObservableCollection<object>();
//Setting ParentId-For Relation
diagram.DataSourceSettings.ParentId = "ParentId";
//Setting ID-for Mapping
diagram.DataSourceSettings.Id = "Empid";
//Assigning Collection
diagram.DataSourceSettings.DataSource = employee;

[image:]

Figure 95: DataSource
API
SfDiagram Properties
The following table lists the General Properties associated with the SfDiagram control:

	Property
	Description
	 Value

	Constraints
	Gets or sets the Constraints Type.
	 Enum
 GraphConstraints.None
 GraphConstraints.Zoomable
 GraphConstraints.Pannable
 GraphConstraints.PannableX
 GraphConstraints.PannableY
 GraphConstraints.PanRails
 GraphConstraints.PanRailsX
 GraphConstraints.PanRailsY
 GraphConstraints.Undoable
 GraphConstraints.Virtualize
 GraphConstraints.Relationship
 GraphConstraints.Events
 GraphConstraints.Bridging
 GraphConstraints.LineRouting
 GraphConstraints.Default

	DefaultConnectorType
	Gets or sets the Connector Type.
	 Enum
 ConnectorType.Line
 ConnectorType.Orthogonal

	DragOverNode
	Gets or sets the Node to be specified for DrawingTool.
	 Node

	DragOverPort
	Gets or sets the Node Port to be specified for DrawingTool.
	 NodePort

	DrawingTool
	Gets or sets the DrawingTool Type.
	 Enum
 DrawingTool.Connector

	LayoutManager
	Gets or sets the LayoutManager of SfDiagram.
	 LayoutManager

	MultipleSelectionMode
	Gets or sets the MultipleSelectionMode type.
	 Enum

 MultipleSelectionMode.None
 MultipleSelectionMode.RubberBandCompleteIntersect
 MultipleSelectionMode.RubberBandPartialIntersect
 MultipleSelectionMode.JustTap
 MultipleSelectionMode.HoldKeyAndTap
 MultipleSelectionMode.Default

	SnapSettings

	Defines SnapConstraints and Gridlines.
	SnapSettings

	Tool
	Gets or sets the Tool Type.
	 Enum

 Tool.None
 Tool.SingleSelect
 Tool.MultipleSelect
 Tool.ZoomPan
 Tool.DrawOnce
 Tool.ContinuesDraw

	ViewDictionary
	Gets or sets the Data Template Dictionary.
	 DataTemplateDictionary

	ViewPort
	Gets the ViewPort of SfDiagram.
	 Rect

	DefaultConnectorType
	Gets or sets the drawing tool type.
	Enum
ConnectorType.Line
ConnectorType.Orthogonal
ConnectorType.CubicBezier
ConnectorType.QuadraticBezier
ConnectorType.PolyCubicBezier

	BezierSmooth
	Enables or disables the ability to customize line smoothness.
	Enum
BezierSmooth.None
BezierSmooth.SymmetricAngle
BezierSmooth.SymmetricDistance
BezierSmooth.Symmetric

	HorizontalRuler
	Gets or sets the HorizontalRuler
	Ruler

	VerticalRuler
	Gets or sets the VerticalRuler
	Ruler

	ExportBitmapEncoder
	Gets or Sets the ExportBitmapEncoder
	BitmapEncoder

	ExportMode
	Gets or Sets the ExportMode
	Enum

ExportMode.Content
ExportMode.PageSettings

	BitmapAlphaMode
	Gets or Sets the BitmapAlphaMode
	Enum

BitmapAlphaMode.Premultiplied
BitmapAlphaMode.Straight
BitmapAlphaMode.Ignore

	BitmapPixelFormat
	Gets or Sets the BitmapPixelFormat
	Enum

BitmapPixelFormat.Unknown
BitmapPixelFormat.Rgba16
BitmapPixelFormat.Rgba8
BitmapPixelFormat.Rgba8

	Constraints
	Gets or sets constraints.
	Enum

StencilConstraints.None
StencilConstraints.ShowPreview
StencilConstraints.Filters
StencilConstraints.Default

	ExpandMode
	Gets or sets ExpandMode.
	Enum

ExpandMode.One
ExpandMode.OneOrMore
ExpandMode.ZeroOrOne
ExpandMode.ZeroOrMore

	PrintOrientation
	Gets or sets the print orientation.

	Enum
PrintOrientation.Portrait,
PrintOrientation.Landscape

The default value is PrintOrientation.Landscape

	PrintMediaSize
	Gets or sets the size of the print media.
	Enum
PrintMediaSize.NorthAmericaLetter,
PrintMediaSize.IsoA4,
PrintMediaSize.IsoA3

More options are available in PrintMediaSize.

The default value is PrintMediaSize.NorthAmericaLetter

	PrintMargin
	Gets or sets the print margin.
	Thickness

Methods

	Method
	Prototype
	Description

	Export
	Void Export()
	This method is used to export the diagram as an Image.

	PrepareDragDropPreview
	Void PrepareDragDropPreview()
	This virtual method is used to customize the drag and drop preview.

	RegisterForPrinting
	void RegisterForPrinting()
	This method is used to register the printing task to the printer.
A printing task can be registered at once.

	UnregisterForPrinting
	void UnregisterForPrinting()
	This method is used to unregister the printing task from the printer.

INode Properties

The following table lists the Properties associated with INode of SfDiagram control:
Table 12: Property Table
	Property
	Description
	 Value

	AutoBind
	Gets or sets a value indicating whether properties of View are binded to ViewModel. The default value is set to true.
	 Boolean

	Bounds
	Gets or sets the Bounds of the node.
	 Rect

	Constraints
	Gets or sets the Constraints Type.
	 Enum
 NodeConstraints.None
 NodeConstraints.Selectable
 NodeConstraints.Draggable
 NodeConstraints.Resizable
 NodeConstraints.Rotatable
 NodeConstraints.InConnect
 NodeConstraints.OutConnect
 NodeConstraints.Connectable
 NodeConstraints.AllowPan
 NodeConstraints.Default

	ID
	Gets or sets the ID of the node.
	 Object

	IsConnecting
	Specifies whether the node is connecting. The default value is set to true.
	 Boolean

	IsGrouped
	Specifies whether the node can be grouped. The default value is set to true.
	 Boolean

	IsSelected
	Specifies whether the node is selected. The default value is set to true.
	 Boolean

	Key
	Gets or sets the Key of the node.
	 Object

	OffsetX
	Gets or sets the offset X-axis value of the node.
	 Double

	OffsetY
	Gets or sets the offset Y-axis value of the node.
	 Double

	ParentGroup
	Gets or sets the Parent Group of the node.
	 Object

	Pivot
	Gets or sets the Pivot of the node.
	 Point

	RotateAngle
	Gets or sets the Rotation Angle of the node.
	 Double

	Shape
	Gets or sets the Shape of the node.
	 Geometry

	ShapeStyle
	Gets or sets the Shape Style of the node.
	 Style

	SnapToObject
	This property overrides SfDiagram.SnapToObject and decides when the node is to be snapped.
(To enable this, NodeConstraints.InheritSnapToObject should be removed from Node.Constraints).
	SnapToObject

	VirtualizationState
	Gets or sets the Virtualization State of the node.
	 VirtualizationState

	ZIndex
	Gets or sets the z-index of the node.
	 Int32

	Constraints
	Gets or sets the Constraints Type.
	Enum
NodeConstraints. ResizeNorthEast
NodeConstraints. ResizeEast
NodeConstraints. ResizeSouthEast
NodeConstraints. ResizeSouth
NodeConstraints. ResizeSouthWest
NodeConstraints. ResizeWest
NodeConstraints. ResizeNorthWest
NodeConstraints. ResizeNorth

	ConnectorPadding
	Gets or sets the ConnectorPadding of the Node.
	 Double

IConnector Properties

The following table lists the Properties associated with IConnector of SfDiagram control:
Table 13: Property Table
	Property
	Description
	 Value

	AutoBind
	Gets or sets a value indicating whether properties of View are binded to ViewModel. The default value is set to true.
	 Boolean

	ConnectorGeometryStyle
	Gets or sets the Connector Geometry Style of the connector.
	 Style

	Constraints
	Gets or sets the Constraints of the connector.
	 Enum
 ConnectorConstraints.Inherit
 ConnectorConstraints.Selectable
 ConnectorConstraints.SourceDraggable
 ConnectorConstraints.TargetDraggable
 ConnectorConstraints.EndDraggable
 ConnectorConstraints.EndThumbs
 ConnectorConstraints.SegmentThumbs
 ConnectorConstraints.Thumbs
 ConnectorConstraints.Bridging
 ConnectorConstraints.Routing
 ConnectorConstraints.Default

	Geometry
	Gets or sets the Geometry of the connector.
	 PathGeometry

	ID
	Gets or sets the ID of the connector.
	 Object

	IsSelected
	Specifies whether the connector is selected. The default value is set to true.
	 Boolean

	Key
	Gets or sets the Key of the connector.
	 Object

	ParentGroup
	Gets or sets the Parent Group of the connector.
	 Object

	SourceDecorator
	Gets or sets the Source Decorator of the connector.
	 Geometry

	SourceDecoratorStyle
	Gets or sets the Source Decorator Style of the connector.
	 Style

	SourceNode
	Gets or sets the Source Node of the connector.
	 Object

	SourcePoint
	Gets or sets the Source Point of the connector.
	 Point

	SourcePort
	Gets or sets the Source Port of the connector.
	 IPort

	TargetDecorator
	Gets or sets the Target Decorator of the connector.
	 Geometry

	TargetDecoratorStyle
	Gets or sets the Target Decorator Style of the connector.
	 Style

	TargetNode
	Gets or sets the Target Node of the connector.
	 Object

	TargetPoint
	Gets or sets the Target Point of the connector.
	 Point

	TargetPort
	Gets or sets the Target Port of the connector.
	 IPort

	ZIndex
	Gets or sets the z-index of the connector.
	 Int32

	BezierSmooth
	Enables or disables the ability to customize line smoothness.
	Enum
BezierSmooth.None
BezierSmooth.SymmetricAngle
BezierSmooth.SymmetricDistance
BezierSmooth.Symmetric

	CornerRadius
	Gets or sets the CornerRadius of the LineConnector.
	 Double

	SourcePadding
	Gets or sets the SourcePadding of the LineConnector.
	 Double

	TargetPadding
	Gets or sets the SourcePadding of the LineConnector.
	 Double

IConnectorSegment properties
Table 14: Property Table
	Property
	Description
	Value

	BezierSmooth
	Gets or sets the BezierSmooth property.
	Enum
BezierSmooth.None
BezierSmooth.SymmetricAngle
BezierSmooth.SymmetricDistance
BezierSmooth.Symmetric

	Constraints
	Decides whether to consider IConnector.Smooth or IConnectorSegment.Smooth
	Enum
Constraints.None
Constraints.Inherit

INodePort Properties

The following table lists the Properties associated with INodePort of SfDiagram control:
Table 15: Property Table
	Property
	Description
	 Value

	Node
	Gets or sets the Node of the NodePort.
	 Object

	NodeOffsetX
	Gets or sets the NodeOffsetX value of the NodePort.
	 Double

	NodeOffsetY
	Gets or sets the NodeOffsetY value of the NodePort.
	 Double

	UnitMode
	Gets or sets the Unit Mode of the NodePort.
	 UnitMode

	ConnectorPadding
	Gets or sets the ConnectorPadding of the Port.
	 Double

ISymbol Properties	

The following table lists the Properties associated with ISymbol of SfDiagram control:

	Property
	Description
	 Value

	Symbol
	Gets or sets the Symbol of the NodePort.
	 Object

	SymbolTemplate
	Gets or sets the Symbol Template of the NodePort.
	 DataTemplate

Stencil Properties

The following table lists the Properties associated with Stencil of SfDiagram control:

	Property
	Description
	 Value

	SelectedFilter
	Gets or sets the selected Filter of the NodePort.
	 SymbolFilterProvider

Annotations Properties

The following table lists the Properties associated with Annotations of SfDiagram control:

	Property
	Description
	 Value

	Alignment
	Specifies the alignment for the annotation when used with connectors.
	 ConnectorAnnotationAlignment.Center
 ConnectorAnnotationAlignment.Source
 ConnectorAnnotationAlignment.Target

	Content
	Specifies the content for the annotation.
	 String

	EditTemplate
	Specifies the template for editing the annotation.
	 DataTemplate

	HorizontalAlignment
	Specifies the horizontal alignment for the annotation when used with Nodes.
	 HorizontalAlignment.Center
 HorizontalAlignment.Left
 HorizontalAlignment.Right
 HorizontalAlignment.Stretch

	Mode
	Specifies the mode for editing the annotation during initial loading; whether it is in view mode or edit mode.
	 ContentEditorMode.Edit
 ContentEditorMode.View

	VerticalAlignment
	Specifies the vertical alignment for the annotation when used with Nodes.
	 VerticalAlignment.Center
 VerticalAlignment.Bottom
 VerticalAlignment.Top
 VerticalAlignment.Stretch

	ViewTemplate
	Specifies the template for viewing the annotation.
	 DataTemplate

Layout Properties

The following table lists the Layout Properties associated with Directed Tree Layout of SfDiagram control:

	Property
	Description
	 Value

	HorizontalSpacing
	Specifies the horizontal spacing between the nodes.
	 Double

	LayoutRoot
	Specifies the root element of the tree.
	 Object

	SpaceBetweenSubTrees
	Specifies the space between sub trees.
	 Double

	VerticalSpacing
	Specifies the vertical spacing between the nodes.
	 Double

	Bounds
	Gets or sets the bounds where the layout has to be placed.
	Rect

	Margin
	Gets or sets the margin of the layout.
	Thickness

	HorizontalAlignment
	Gets or sets horizontal alignment of the layout.
	HorizontalAlignment enum

HorizontalAlignment.Center
HorizontalAlignment.Left
HorizontalAlignment.Right

	VerticalAlignment
	Gets or sets vertical alignment of the layout.
	VerticalAlignment enum

VerticalAlignment.Center
VerticalAlignment.Top
VerticalAlignment.Bottom

PageSettings Properties

	Property
	Description
	Value

	PageWidth
	Gets or sets the width of the page.
	double
Default value: 0

	PageHeight
	Gets or sets the page height.
	double
Default value: 0

	MultiplePage
	Gets or sets whether multiple page is enabled.
	bool
Default value: false

	ShowPageBreaks
	Gets or sets the visibility of page break lines.
	bool
Default value: true

	PageOrientation
	Gets or sets the PageOrientation.
	enum-PageOrientation

PageOrientation.Landscape
PageOrientation.Portrait

	PrintMargin
	Gets or sets the PrintMargin.
	Thickness
Default value: new Thickness(24).

	PageBackground
	Gets or sets the PageBackground.
	Brush

	PageBorderBrush
	Gets or sets the PageBorderBrush.
	Brush

	PageBorderThickness
	Gets or sets the PageBorderThickness.
	Thickness

	Unit
	Gets or sets the Unit.
	MeasurementUnit

	OffPageMinMargin
	Gets or sets the OffPageMinMargin.
	Thickness

	OffPageMaxMargin
	Gets or sets the OffPageMaxMargin.
	Thickness

	Property
	Description
	Value

	ScrollLimit
	Gets or sets the scrollable area is restricted / not.
	ScrollLimit. Infinity
ScrollLimit. Diagram
ScrollLimit. Limited

	AutoScrollBorder
	Gets or sets the distance inside the Diagram viewport boundaries to enable the AutoScroll.

AutoScroll starts once the pointer reaches this area. AutoScroll stops when the pointer is left from this area.

Default value is (20, 20, 20, 20).
	Thickness

	ScrollableArea
	Gets or sets the limited area that is the only area to view by auto scrolling.

Default value is Empty. This property is applicable only when ScrollLimit as Limited.
	Rect

	MinimumScrollableArea
	Gets or sets the limited area
 (Minimum point (i.e Left, Top) and
Maximum point (i.e Right, Bottom)) that is the only area to view by auto scrolling.

Default value is Null. This property is applicable only when ScrollLimit as Limited.

When these properties doesn’t set, compiler gets ScrollableArea property automatically.

	Point

	MaximumScrollableArea
	
	

Scroll Limit
The following table lists the Properties associated with ScrollLimit of PageSettings.
	Enum Field
	Description

	Infinity
	AutoScroll is not stopped until pointer leaves from the AutoScrollBorder.

	Diagram
	AutoScroll is stopped when the captured element / pointer reaches the boundaries of the Diagram.

	Limited
	AutoScroll is stopped when the captured element / pointer reaches the limited scrollable area.

SfDiagram Events

The following table lists the Events associated with SfDiagram control:
	Event
	Parameters
	Description

	ConnectorSourceChangedEvent
	ChangeEventArgs<object, ConnectorChangedArgs>
	Event: Raised when the source of the connector is changed. Event cannot be cancelled.

Event Args: ChangeEventArgs

	ConnectorTargetChangedEvent
	ChangeEventArgs<object, ConnectorChangedArgs>

	Event: Raised when the target of the connector is changed. Event cannot be cancelled.
Event Args: ChangeEventArgs

	ItemAdded
	ItemAddedEventArgs

	Event: Raised when an item is added. Event cannot be cancelled.
Event Args: ItemAddedEventArgs

	ItemDeleted
	 DiagramEventArgs

	Event: Raised when an item is deleted. Event cannot be cancelled.
Event Args: DiagramEventArgs

	ItemDoubleTappedEvent
	DiagramEventArgs

	Event: Raised when an item is double-tapped. Event cannot be cancelled.

Event Args: DiagramEventArgs

	ItemTappedEvent
	DiagramEventArgs

	Event: Raised when an item is tapped. Event cannot be cancelled.
Event Args: DiagramEventArgs

	ViewPortChangedEvent
	ChangeEventArgs<object, ScrollChanged>

	Event: Raised when the viewport or scroll changes. Event cannot be cancelled.
Event Args: ViewPortChangeEventArgs

	ItemSelectingEvent
	DiagramPreviewEventArgs

	Event: Raised before a diagram object is selected from the SfDiagram. Cancelable event.
Event Args: DiagramPreviewEventArgs

	ItemUnSelectingEvent
	DiagramPreviewEventArgs

	Event: Raised before a diagram object is unselected from the SfDiagram. Cancelable event.
Event Args: DiagramPreviewEventArgs

	ItemSelectedEvent
	DiagramEventArgs

	Event: Raised when an item is selected. Event cannot be cancelled.
Event Args: DiagramEventArgs

	ItemUnSelectedEvent
	DiagramEventArgs

	Event: Raised when an item is unselected. Event cannot be cancelled.
Event Args: DiagramEventArgs

SfDiagram Event Arguments

	Event Args
	Description

	[bookmark: ChangeEventArgs]ChangeEventArgs<object,ConnectorChangedArgs>
	ChangeEventArgs
Item: Gets Connector whose source or target is changed.
OldValue: Gets the old values of the source or target.
NewValue: Gets the new values of the source or target.

ConnectorChangedArgs
Node: Gets connector’s source or target as a node.
Point: Gets connector’s source or target as a point.
Port: Gets connector’s source or target as a port.
Group: Gets connector’s source or target as a group.
DragState: Gets connector’s DragState (enum)
 DragState.None
 DragState.Starting
 DragState.Started
 DragState.Dragging
 DragState.Completed

	[bookmark: ItemAddedEventArgs]ItemAddedEventArgs

	Item: Gets new object as a node, connector, or group that is added to SfDiagram collections.
ItemSource: From where the item is created (Stencil/Drawing Tool/Unknown).

	[bookmark: DiagramEventArgs]DiagramEventArgs

	Item: Gets new object as a node, connector, or group on which the event is raised.

	[bookmark: ViewPortChangeEventArgs]ChangeEventArgs<object, ScrollChanged>

	ChangeEventArgs
Item: Gets the SfDiagram on which the event is raised.
OldValue: Gets the old scroll values.
NewValue: Gets the new scroll values.

ScrollChanged
ContentBounds: Gets the size and position of the diagram page based on its children.
CurrentZoom: Gets the zoom value.
MaxZoom: Gets the new max zoom value.
MinZoom: Gets the new mininmum zoom value.
PageBounds: Gets the size and position of diagram page based on its children and page settings.
ScrollFactor: Gets the scroll factor value.
ViewPort: Gets the viewport value.
ZoomFactor: Gets zoom factor value.

	[bookmark: DiagramPreviewEventArgs]DiagramPreviewEventArgs

	Item: Gets new object as a node, connector, or group on which the event is raised.
Cancel: If set to true, this will be cancelled.

Public or Virtual Methods

The following table lists the Public or Virtual Methods associated with SfDiagram control:

	Method
	Prototype
	Description

	Connectors
	Add(<AnyType >arg1)
	To Add any object(ConnectorViewModel, IConnector) into SfDiagram.

	Groups
	Add(<AnyType >arg1)
	To Add any object(GroupViewModel, IGroup) into SfDiagram.

	Nodes
	Add(<AnyType>arg1)
	To Add any object(NodeViewModel, INode) into SfDiagram.

	PrintTaskRequested
	virtual void PrintTaskRequested
(PrintManager sender, PrintTaskRequestedEventArgs args)

	This is the event handler for PrintManager.PrintTaskRequested

	GetPrintPreviewPage
	virtual void GetPrintPreviewPage
(object sender, GetPreviewPageEventArgs e)

	This method provides a specific print preview page, in the form of a UIElement, to an instance of PrintDocument.

	CreatePrintPreviewPages
	virtual void CreatePrintPreviewPages
(object sender, PaginateEventArgs e)

	This creates print preview pages for the app.

	AddPrintPages
	virtual void AddPrintPages
(object sender, AddPagesEventArgs e)

	This provides all of the pages to be printed, in the form of UIElements, to an instance of PrintDocument.

SfDiagram Event
	Event
	Parameters
	Description

	AutoScrolled
	AutoScrolledArgs
	Event: Raised when pointer reaches the AutoScrollBorder. Event can be cancelled.

SfDiagram Event Arguments

	Event Args
	Description

	AutoScrolledArgs
	Cancel : when set to true, this is cancelled.

Item : Gets the item that is captured by pointer

Delay : Gets or sets the time interval between each auto scroll (Related to ScrollSpeed).

DragDelay : Gets or sets the distance to scroll for each auto scroll (Related to ScrollSpeed).

DistanceFromDiagram: Gets or sets the distance outside the Diagram Viewport boundaries to remains the AutoScroll

Public or Virtual Methods
	Method
	Prototype
	Description

	OnAutoScroll
	virtual void OnAutoScroll(AutoScrolledArgs args)
	This method sets the default value for AutoScrolledArgs when you create the instance for custom SfDiagram.

INode Methods
The following table lists the INode Methods associated with SfDiagram control:

	Method
	Prototype
	Description

	Annotations
	Add(<IAnnotation >arg1)
	To Add object(IAnnotation) into SfDiagram

	Ports
	Add(<INodePort >arg1)
	To Add object(INodePort) into SfDiagram

IConnector Methods
The following table lists the IConnector Methods associated with SfDiagram control:

	Method
	Prototype
	Description

	Annotations
	Add(<IAnnotation >arg1)
	To Add object(IAnnotation) into SfDiagram

	Segments
	Add(<IConnectorSegment >arg1)
	To Add object(IConnectorSegment) into SfDiagram

IGroup Methods
The following table lists the IGroup Methods associated with SfDiagram control:

	Method
	Prototype
	Description

	Connectors
	Add(<AnyType >arg1)
	To Add any object(ConnectorViewModel, IConnector) into SfDiagram

	Groups
	Add(<AnyType >arg1)
	To Add any object(GroupViewModel, IGroup) into SfDiagram

	Nodes
	Add(<AnyType >arg1)
	To Add any object(NodeViewModel, INode) into SfDiagram

Stencil Methods

The following table lists the Stencil Methods associated with SfDiagram control:

	[bookmark: _Bitwise_Operations]Method
	Prototype
	Description

	SymbolFilters
	Add(<ISymbolFilterProvider >arg1)
	To Add object(ISymbolFilterProvider) into SfDiagram

	SymbolGroups
	Add(<ISymbolGroupProvider >arg1)
	To Add object(ISymbolGroupProvider) into SfDiagram

	SymbolSource
	Add(<ISymbol >arg1)
	To Add object(ISymbol) into SfDiagram

ILineSegment Properties
The following table lists the properties associated with ILineSegment of the SfDiagram control:

	Property
	Description
	Value

	Point
	Specifies the end point of the line segment.
	Point

ILineSegmentLength Properties
The following table lists the properties associated with ILineSegmentLength of the SfDiagram control:

	Property
	Description
	Value

	Length
	Specifies the length of the line segment.
	DoubleExt

	Angle
	Specifies the angle of the line segment.
	DoubleExt

	AngleMode
	Specifies the mode of the angle, whether it is relative or absolute.
	RelativeMode.Absolute
RelativeMode.Relative

IOrthogonalSegment Properties
The following table lists the properties associated with IOrthogonalSegment of the SfDiagram control:

	Property
	Description
	Value

	Length
	Specifies the length of the line segment.
	DoubleExt

	OrthogonalDirection
	Specifies the direction of the line segment.
	OrthogonalDirection.Auto
OrthogonalDirection.Left
OrthogonalDirection.Top
OrthogonalDirection.Right
OrthogonalDirection.Bottom
OrthogonalDirection.Straight
OrthogonalDirection.ClockWise90
OrthogonalDirection.Opposite
OrthogonalDirection.AntiClockWise90

IQuadraticCurveSegment Properties
The following table lists the properties associated with IQuadraticCurveSegment of the SfDiagram control:
	Property
	Description
	Value

	Point1
	Specifies the control point of the line segment.
	Point

	Point2
	Specifies the end point of the line segment.
	Point

ICubicCurveSegment Properties
The following table lists the properties associated with ICubicCurveSegment of the SfDiagram control:

	Property
	Description
	Value

	Point1
	Specifies the first control point of the line segment.
	Point

	Point2
	Specifies the second control point of the line segment.
	Point

	Point3
	Specifies the end point of the line segment.
	Point

	Vector1
	Gets or sets the vector format of the first control point(ICubicCurveSegment.Point1)
	Vector

	Vector2
	Gets or sets the vector format of the second control point(ICubiccurveSegment.Point2)
	Vector

Snapping to Gridlines
Gridlines and snapping can be defined by the SfDiagram.SnapSettings property.
	 Property
	Description
	Value

	SnapSettings

	Defines SnapConstraints and Gridlines.
	SnapSettings

SfDiagram.SnapSettings Properties
	 Property
	Description
	Value

	SnapConstraints
	Enables or disables the visibility of gridlines and the snapping feature.
	Enum
SnapConstraints.ShowHorizontalLines
SnapConstraints.ShowVerticalLines
SnapConstraints.ShowLines
SnapConstraints.SnapToHorizontalLines
SnapConstraints.SnapToVerticalLines
SnapConstraints.SnapToLines
SnapConstraints.All
SnapConstraints.None

	HorizontalGridlines
	Defines the style and the space between horizontal gridlines.
	Gridlines

	VerticalGridlines
	Defines the style and the space between vertical gridlines.
	Gridlines

Gridlines Properties
	Property	
	Description
	Value

	Strokes
	Defines the style for a group or pattern of lines. The pattern will be repeated throughout the diagram.
	new IEnumerable<Style>(){
Style values};

	LineInterval
	Defines the spacing between a group or pattern of lines. That pattern will be repeated throughout the diagram.
	new IEnumerable<double>(){
double values};

	SnapInterval
	Defines a set or pattern of intervals.
	new IEnumerable<double>(){
double values};

	DynamicZoom
	Describes whether gridlines have to be updated on zooming and panning.
	True/False

SfDiagram.SnapSetting Properties
The following table lists the properties associated with guidelines in the SfDiagram control:
	Property
	Description
	Value

	SnapToObject
	Enables or disablse the appearance of guidelines and decides when guidelines have to be created.
	SnapToObject-enum

SnapToObject.LeftLeft
SnapToObject.LeftRight
SnapToObject.Left
SnapToObject.RightRight
SnapToObject.RightLeft
SnapToObject.Right
SnapToObject.TopTop
SnapToObject.TopBottom
SnapToObject.Top
SnapToObject.BottomBottom
SnapToObject.BottomTop
SnapToObject.Bottom
SnapToObject.HorizontalCenter
SnapToObject.VerticalCenter
SnapToObject.HorizontalSpacing
SnapToObject.VerticalSpacing
SnapToObject.Width
SnapToObject.Height
SnapToObject.Size

[bookmark: _Appendix][bookmark: _Rendering]Appendix
The following topics are discussed in the following section:
Rendering
Bitwise Operations
Rendering
Diagram consists of many internal controls like Node, Connector, Port, Annotations, and so on. These controls can be added and manipulated in different ways. This has been discussed in detail in the following topics:

· Diagram Objects used for representing Diagram Elements
· Usage Scenario, Advantages, and Disadvantages of Diagram Objects
· Mapping a View
· Workflow

Diagram Objects used for representing Diagram Elements

SfDiagram uses various data types to represent Diagram Objects; all data types must implement the corresponding interfaces. The supported data types are listed in the following table:

	Diagram Element
	Diagram Object

	
	Interface
(Objects that implement this interface)
	ViewModel
(Predefined Objects that implement the required interface)
	View
(Control that is shown in the View)

	Annotation
	IAnnotation
INodeAnnotation
IConnectorAnnotation
	AnnotationEditorViewModel
	AnnotationEditor

	Connector
	IConnector
	ConnectorViewModel
	Connector

	Group
	IGroup
	GroupViewModel
	Group

	Node
	INode
	NodeViewModel
	Node

	Port
	IPort
INodePort
	NodePortViewModel
	NodePort

	Selector
	ISelector
	SelectorViewModel
	Selector

Usage Scenario, Advantages and Disadvantages of Diagram Objects

Following table illustrates the usage scenario, advantages and disadvantages of Diagram Objects.

	Diagram Object
	Usage Scenario
	Advantages
	Disadvantages

	Interface
	To follow MVVM pattern.

To support large sets of data through virtualization with better performance and reduce memory usage.

If required, business objects can directly be used as the source for diagram objects, instead of using types defined in the diagram library.

Direct access to the View is not required (as per MVVM guidelines). New properties, commands, behaviors can be added and bound between View and ViewModel to overcome this limitation.
	Directly use the business objects just by implementing the required interface.

High possibility of accessing objects in Non-UI thread.
	Have to implement all properties in interfaces.

Object needs to be updated on moving to a new version as new properties may be added to new version.

	ViewModel
	
	Directly use the business objects just by deriving required ViewModel.

High possibility of accessing objects in Non-UI thread.

	If the business object already has a base class, the business object cannot derive this ViewModel.

	View
	When diagram is not widely used in the application with limited set of data.

MVVM pattern is not required.

Quick and easy development as everything is directly accessible.
	Easy access to View anywhere.

Simpler and easy to use.
	When requirements keep growing, huge implementation in a single class can make it unclear.

Trying to access this object in a Non-UI thread will lead to an exception.

During Virtualization, performance and memory usage will not be as good as using Non-UI objects.

Mapping View for Non-UI Objects

A Non-UI element can be visualized as a Node, Connector or any Diagram Element by using the following methods:

· ViewDictionary
· Calling Virtual Methods

ViewDictionary
ViewDictionary is used for creating and reusing Views for Non-UI elements. Scrolling in Diagram with Virtualization enabled causes objects to get into view and off view very frequently. This ViewDictionary recycles the view by caching the view when an object goes off view, and reuses the same view when another object comes into view. This improves the performance of SfDiagram that has a huge set of diagrams by keeping the count of visuals to a minimum.

ViewDictionary consists of a collection of DiagramKeyValue<DataTemplate>; a particular Non-UI object is mapped to a DataTemplate by using a Key. The criteria for mapping are as follows:
1. Key specified in Non-UI element and the DiagramKeyValue should be equal.
2. If Key is a Type, the Non-UI element’s Type should be assignable to key set to DiagramKeyValue.

The following steps illustrate how to add, delete or recycle a View from the ViewDictionary:

1. When a view is requested for a Non-UI element based on a matching key, a view will be created from the Data Template and returned.
2. If such a Non-UI element is deleted, and it has a matching key found in ViewDictionary, the view will not be deleted. Instead, it will be cached for future use.
3. If another Non-UI element requires the same view, a cached view will be returned. If a cache is not available, a new view will be loaded from the provided Data Template.

Calling Virtual Methods
When there is no View found in the ViewDictionary, following virtual methods can be called to get a view. As these are virtual methods, they can be overridden by deriving the SfDiagram class. The following virtual methods used to create a View for Non-UI elements.

· Node - SfDiagram.GetNodeForItemOverride()
· Connector - SfDiagram.GetConnectorForItemOverride()
· Group - SfDiagram.GetGroupForItemOverride()
· Selector - SfDiagram.GetSelectorForItemOverride()

Workflow
Following is the internal workflow for creating a view on Diagram Objects:

1. Add objects to be visualized into the diagram.
2. If the added object is already a View, it can be used directly.
3. If the added object is a Non-UI object (ViewModel or object that implements the necessary interface), diagram will search for a matching View by using ViewDictionary.
4. If a matching View is not found, a View is created though Virtual methods.
5. If there is no cached view, a new View instance will be loaded from the Data Template stored in the ViewDictionary.
6. The Non-UI object will be set as the Data Context for the view that is created or reused dynamically.
7. View is ready for use.

[bookmark: _Bitwise_Operations_1]Bitwise Operations

In this section, Bitwise Operations are illustrated using Graph Constraints. The same can be reproduced while working with Node Constraints, Connector Constraints or Port Constraints

Add Operation

You can add or enable multiple values at a time by using Bitwise ‘|’ (OR) operator.

	[C#]

SfDiagram diagramcontrol=new SfDiagram();
diagramcontrol.Constraints = GraphConstraints.Pannable | GraphConstraints.Zoomable;

In the preceding example, SfDiagram control is both Pannable and Zoomable.

Remove Operation

You can remove or disable values by using Bitwise ‘&~’ (XOR) operator.

	[C#]

SfDiagram diagramcontrol=new SfDiagram();
diagramcontrol.Constraints = diagramcontrol.Constraints &~ GraphConstraints.Zoomable;

In the preceding example, Zoomable property is disabled in SfDiagram control, but all other constraints are enabled.

Check Operation

You can check any values using Bitwise ‘&’ (AND) operator.

	[C#]

SfDiagram diagramcontrol=new SfDiagram();
if((diagramcontrol.Constraints & GraphConstraints.Zoomable)== GraphConstraints.Zoomable)

In the preceding example, a check is made on whether the zoom constraints are enabled in SfDiagram control. The expression will return a zoom constraint, if SfDiagram control constraints have zoom constraints.

[image:]Note: ZoomPan property needs to be enabled for the above settings to take effect.
image90.png

image91.png

image92.png

image93.png

image94.png

image95.png

image96.png

image97.png

image98.png

image99.png

image1.png

image100.png

image101.png

image102.png

image103.png

image104.png

image105.png

image106.emf
(1) Add a objectObject is a View (UIElement)?Yes(2) Directly use the object as ViewNo(3) Search for View from ViewDictionaryViewDictionary has a DataTemplate for non-ui object?No(4) Call virtual method to get the necessary ViewYesCheck if ViewDictionary has any view cashed?Yes(5) Get the cashed viewNo(6) Load a new View instance from the DataTemplate(8) View is Ready(7) Set the non-ui object as the DataContext for this View

Microsoft_Visio_Drawing11.vsdx
(1) Add a object
Object is a View (UIElement)?
Yes
(2) Directly use the object as View
No
(3) Search for View from ViewDictionary
ViewDictionary  has a DataTemplate for  non-ui object?
No
(4) Call virtual method to get the necessary View
Yes
Check if  ViewDictionary has any view cashed?
Yes
(5) Get the cashed view
No
(6) Load a new View instance from the DataTemplate
(8) View is Ready
(7) Set the non-ui object as the DataContext for this View

image2.png

image3.png

image4.png

image5.jpeg

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.jpg

image20.jpeg

image21.jpg

image22.jpg

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.jpg

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image75.png

image76.png

image77.png

image78.png

image79.png

image80.png

image81.png

image82.png

image83.png

image84.png

image85.png

image86.png

image87.png

image88.png

image89.png

