

 [bookmark: _Toc384732424][bookmark: _Toc355385591]About the Author

 Ricardo Peres is a Portuguese developer who has been working with .NET since 2001. He’s a technology enthusiast and has worked in many areas, from games to enterprise applications. His main interests nowadays are enterprise application integration and web technologies. For the last 10 years he has worked for a multinational, Portugal-based company called Critical Software. He keeps a blog on technical subjects at http://weblogs.asp.net/ricardoperes and can be followed on Twitter as @rjperes75.

 [bookmark: _Toc384732425][bookmark: _Toc355385592][bookmark: _Toc355022513]About the Reviewers

 Pedro Gomes is a technical manager at Critical Software. He is an expert on ASP.NET and SharePoint. He keeps a personal blog at http://blog.pedromvgomes.com and occasionally tweets as @pedromvgomes.

 Marco Carreira is a software engineer at Critical Software. He excels at Windows Forms and sometimes can be seen cursing Entity Framework. Unfortunately, he has no blog (yet).

 Tiago Andrade is a software developer at Sensefinity. He is particularly preeminent in Java and other legacy technologies.

 [bookmark: _Toc384732426][bookmark: _Toc355385593]Introduction

 NHibernate Succinctly is a book for current and future NHibernate users. I expect that people with some degree of expertise (as well as newbies or wannabes) will be able to learn something from it. Like all Succinctly books, it follows a hands-on approach, so be prepared to see an extensive amount of C# code, XML, table diagrams, and so on.

 Each chapter focuses on a concept—installing, configuring, querying, updating, extending, and common scenarios—and provides a realistic example. Throughout the book, I will give some practical advice, best practices, and guidance on how to avoid common pitfalls. In the end, my goal is to demonstrate that NHibernate is one of the most serious Object/Relational Mappers (ORMs) available—and one that deserves credibility.

 All code samples are available for download on Syncfusion’s repository at Bitbucket: https://bitbucket.org/syncfusiontech/nhibernate-succinctly. You will need at least Visual Studio 2010 installed and a SQL Server 2008 database in order to run the examples. However, it should be very easy to port to a different database; in fact, that’s one of the reasons why we use NHibernate.

 [bookmark: _Toc384732427][bookmark: _Toc355385594][bookmark: _Toc354573225]What is NHibernate and Why Should You Care?

 NHibernate is one of the oldest Object/Relational Mappers (ORMs) available for the .NET world. But it still is relatively unknown to most developers, mostly because it has an aura of geekiness and complexity associated with it. But it’s actually not that complex. Nowadays, ORMs are a hot topic and there are a lot of strong contenders. So, why pick NHibernate?

 ORMs exist to fill a gap (or mismatch) between relational databases and object-oriented programming (OOP). For many OOP developers, knowing C# or some other object-oriented language is not the same as knowing SQL or database programming; their skills are usually stronger in OOP. With ORMs, you, the OOP developer, focus on what you know best: OOP code, and you do that in a database-independent way.

 It also happens to be true that NHibernate has a number of features that are not commonly found in other ORMs. Take, for instance, the number of database engines that are supported out of the box. These include:

 · Microsoft SQL Server, Microsoft SQL Server Compact edition (SQL CE), and Windows Azure SQL Database Object Linking and Embedding (OLE).

 · Oracle.

 · MySQL.

 · Any database engine that supports Open Database Connectivity (ODBC) or Object Linking and Embedding Database (OLE DB).

 Also, the ways by which its entities can be mapped and queried far exceeds those of its more direct contenders.

 Realistically, we know that no API that tries to do everything will do everything well. NHibernate knows this, so it offers a number of extensibility points that you can use to make it better. Its API is incredibly powerful and can be used to extend even the slightest details including, for instance, the very SQL that is sent to perform all kinds of operations.

 Let’s start our journey!

 [bookmark: _Toc384732428][bookmark: _Toc355385595][bookmark: _Toc354573226]Chapter 1 Installation

 [bookmark: _Toc384732429][bookmark: _Toc355385596][bookmark: _Toc354573227]Before We Start

 You will need a Visual Studio 2010/2012/2013 (any edition, including Express) and a SQL Server 2008 installation (any edition). The SQL Server instance must be using the TCP/IP protocol and must be accessible from the host where the examples will run. You will need permissions on the SQL Server to create a database; call it Succinctly.

 [bookmark: _Toc384732430][bookmark: _Toc355385597][bookmark: _Toc354573228]Getting NHibernate

 You can get NHibernate from a number of sources:

 · NuGet.

 · As source code from a GitHub repository.

 · As a downloadable .zip package from SourceForge.

 [bookmark: _Toc384732431][bookmark: _Toc355385598][bookmark: _Toc354573229]NuGet

 On Visual Studio 2010/2012/2013, with an open .NET project, fire up the Package Manager Console and enter the following command:

 This is probably the most convenient way to obtain NHibernate and to wire up references. It also allows you to update automatically when new versions are available. The NHibernate package will bring along log4net and Iesi.Collections; these are required dependencies (more on this later).

 Figure 1: Manage NuGet Packages

 By default, the package installer will only add references to the added packages in the current project, but you can add them explicitly to the other projects by clicking on Manage NuGet Packages for Solution and selecting the other projects:

 Figure 2: Manage Packages for Solution

 [bookmark: _Toc384732432][bookmark: _Toc355385599][bookmark: _Toc354573230]Downloadable Packages

 There are packages available for download for current and past versions, including source code and reference documentation, on the SourceForge site at http://sourceforge.net/projects/nhibernate. Navigate to the Files page and select the version you want:

 Figure 3: NHibernate Project at SourceForge

 Download the binary distribution (the one ending in .bin), extract the files into a local folder, and add references to the DLLs NHibernate.dll, Iesi.Collections.dll, and log4net.dll to your projects so that you can start using NHibernate right away.

 [bookmark: _Toc384732433][bookmark: _Toc355385600][bookmark: _Toc354573231]Source Code

 The NHibernate source code repository can be found on GitHub under the name nhibernate-core. You need to install a Git client (which you can download from http://git-scm.com) and clone this repository into your local drive. Using the command line, it would look something like this:

 Figure 4: Cloning the NHibernate GitHub Repository

 There’s a web interface for this repository available at https://github.com/nhibernate/nhibernate-core where you see the latest changes, browse through the folders, and view individual files including their content and individual changes.

 Figure 5: NHibernate Project's GitHub Web Interface

 Once you have the files locally, enter the nhibernate-core folder and run the ShowBuildMenu.bat script:

 Figure 6: Building NHibernate from Source Code

 When you run this script for the first time, you need to first select option A for setting up the Visual Studio files. This is only needed once; afterwards, to obtain a build package, either choose option E or F for Debug or Release builds. After the build process terminates, binaries will be available on the nhibernate-core\build\<version> folder and you can add them as references to your projects.

 There are some things you should keep in mind when using the source code repository:

 · You can get the latest changes at any time by running git pull.

 Figure 7: Getting Latest Changes

 · The files you are obtaining are the latest unstable ones; that is, they are the result of individual contributions and experimental features as soon as they are submitted, and may not be so thoroughly tested as the official packages (the ones you get from NuGet or SourceForge).

 · You are free to experiment and make modifications to the local source code files. Don’t be alarmed; you can always revert if something goes wrong. Or you can implement some new functionality or fix some bugs, in which case you may want to make these modifications available to everyone using NHibernate. More on this in the last chapter, Additional References.

 [bookmark: _Toc384732434][bookmark: _Toc355385601][bookmark: _Toc354573232]What’s Inside

 The NHibernate binary distribution consists of three files: Nhibernate.dll, Iesi.Collections.dll, and log4net.dll. Some explanation about their purpose is as follows:

 · NHibernate.dll contains the core NHibernate libraries; these are the ones you need to work with NHibernate. This is a .NET 3.5 assembly which, as you probably know, is basically .NET 2.0 with some additional libraries and support for LINQ syntax. Thanks to backwards compatibility, NHibernate still targets .NET 2.0 (which doesn’t mean you can’t use it in a .NET 4.0 or .NET 4.5 project because, indeed, you can).

 · Iesi.Collections.dll contains some collection definitions and implementations that, as of .NET 2.0/3.5, didn’t exist in the .NET Base Class Library. The most notable of these is a set interface and some implementations; the NHibernate.dll internally makes use of this assembly and most likely you will, too, so it must also be present. Its source code is together with NHibernate’s.

 · log4net.dll is actually an external project; you can find its home page at http://logging.apache.org/log4net and, if you don’t know, it’s a general purpose logger. Internally, NHibernate uses log4net for its own logging including runtime warnings, debug messages, exceptions, and generated SQL queries. Although strictly not required–NHibernate will detect whether log4net is present at startup and won’t complain if it is not–it may be very useful, especially when debugging your projects. Of course, log4net is a very mature library used in several projects and you may also be interested in using it for your own logging purposes.

 [bookmark: _Toc384732435][bookmark: _Toc355385602][bookmark: _Toc354573233]Which One Shall I Choose?

 It is up to you which one you choose but I would recommend NuGet due to its simplicity and ease of use. On the other hand, if you want to live dangerously and stay up to date with the latest development on the NHibernate core, by all means, use the source!

 [bookmark: _Toc384732436][bookmark: _Toc355385603][bookmark: _Toc354573234][bookmark: _Ref350075109][bookmark: _Ref350075083][bookmark: _Ref350075080][bookmark: _Ref350075074]Chapter 2 Configuration

 Before using NHibernate, you must configure it. Basic required configuration consists of the database driver, the dialect to use, and the driver-specific database connection string. As you will see, there are several ways to make this configuration in NHibernate.

 For the drivers and dialects, these are the ones included with NHibernate:

 Table 1: NHibernate Drivers and Dialects

 	
 Driver

 	
 Dialects

 	
 Description

 	
 CsharpSqliteDriver

 	
 GenericDialect

 	
 A NHibernate driver for the Community CsharpSqlite data provider

 	
 DB2400Driver

 	
 DB2400Dialect

 	
 A NHibernate driver for using the IBM.Data.DB2.iSeries data provider

 	
 DB2Driver

 	
 DB2Dialect

 	
 A NHibernate driver for using the IBM.Data.DB2 data provider

 	
 FirebirdClientDriver

 	
 FirebirdDialect

 	
 A NHibernate driver for using the Firebird data provider located in FirebirdSql.Data.FirebirdClient assembly

 	
 FirebirdDriver

 	
 FirebirdDialect

 	
 A NHibernate driver for using the FirebirdSql.Data.Firebird data provider

 	
 IfxDriver

 	
 InformixDialect

 InformixDialect0940

 InformixDialect1000

 	
 A NHibernate driver for using the Informix data provider

 	
 IngresDriver

 	
 IngresDialect

 	
 A NHibernate driver for using the Ingres data provider

 	
 MySqlDataDriver

 	
 MySQLDialect

 MySQL5Dialect

 	
 Provides a database driver for MySQL

 	
 NpgsqlDriver

 	
 PostgreSQLDialect

 PostgreSQL81Dialect

 PostgreSQL82Dialect

 	
 The PostgreSQL data provider provides a database driver for PostgreSQL

 	
 OdbcDriver

 	
 GenericDialect

 	
 A NHibernate driver for using the ODBC Data Provider

 	
 OleDbDriver

 	
 GenericDialect

 	
 A NHibernate driver for using the OleDb Data Provider

 	
 OracleClientDriver

 	
 Oracle8iDialect

 Oracle9iDialect

 Oracle10gDialect

 	
 A NHibernate driver for using the Oracle Data Provider

 	
 OracleDataClientDriver

 	
 Oracle8iDialect

 Oracle9iDialect

 Oracle10gDialect

 	
 A NHibernate driver for using the Oracle.DataAccess data provider

 	
 OracleLiteDataClientDriver

 	
 OracleLiteDialect

 	
 A NHibernate driver for using the Oracle.DataAccess.Lite data provider

 	
 Sql2008ClientDriver

 	
 MsSql2008Dialect

 MsSqlAzure2008Dialect

 	
 SQL Server 2008 and Azure driver

 	
 SqlClientDriver

 	
 MsSql7Dialect

 MsSql2000Dialect

 MsSql2005Dialect

 	
 A NHibernate driver for using the SqlClient data provider

 	
 SQLite20Driver

 	
 SQLiteDialect

 	
 NHibernate driver for the System.Data.SQLite data provider for .NET 2.0

 	
 SqlServerCeDriver

 	
 MsSqlCeDialect

 MsSqlCe40Dialect

 	
 A NHibernate driver for Microsoft SQL Server CE data provider

 	
 SybaseAsaClientDriver

 	
 SybaseASA9Dialect

 	
 The SybaseAsaClientDriver driver provides a database driver for Adaptive Server Anywhere 9.0

 	
 SybaseAseClientDriver

 	
 SybaseASE15Dialect

 	
 This provides a driver for Sybase ASE 15 using the ADO.NET driver

 	
 SybaseSQLAnywhereDotNet4Driver

 	
 SybaseSQLAnywhere10Dialect

 	
 SQL Dialect for SQL Anywhere 12

 	
 SybaseSQLAnywhereDriver

 	
 SybaseSQLAnywhere10Dialect

 SybaseSQLAnywhere11Dialect

 	
 The SybaseSQLAnywhereDriver Driver provides a database driver for Sybase SQL Anywhere 10 and above

 Some of these drivers and dialects are subclasses of others, which means they inherit something from their ancestors as well as add something new. You are free to create your own classes by inheriting from the most appropriate one.

 A driver is the class responsible by actually creating the connection, by instancing a System.Data.Common.DbConnection-derived class suitable for a particular database engine. If you have ODBC or OLE DB drivers available, you can connect to virtually any database by using the corresponding NHibernate drivers (but you will have better performance if you use a specific driver).

 The dialect describes characteristics and registers functions of a specific version of an engine so, generally speaking, you should choose the dialect that is closer to the actual version you are using (although you can always use the generic dialect).

 A configuration is, essentially, an instance of the NHibernate.Cfg.Configuration class. It needs to get populated somehow and is required for using NHibernate since everything starts from it. You may have several configuration instances, which is typical if you need to support different databases at the same time (even hosted in different engines). In most cases, however, you will need only one configuration instance.

 [bookmark: _Toc384732437][bookmark: _Toc355385604][bookmark: _Ref354763406][bookmark: _Toc354573235]XML Configuration

 In previous versions of NHibernate, the only possible configuration was through XML. The process now is: you register a custom section on the configuration file (App.config or Web.config) and you create this section, filling its required definitions. This section would look like this:

 	
 <?xmlversion="1.0"encoding="utf-8"?>

 <configuration>

 <configSections>

 <sectionname="hibernate-configuration"

 type="NHibernate.Cfg.ConfigurationSectionHandler,NHibernate"/>

 </configSections>

 <hibernate-configurationxmlns="urn:nhibernate-configuration-2.2">

 <session-factory>

 <propertyname="hbm2ddl.keywords">auto-quote</property>

 <propertyname="connection.driver_class">NHibernate.Driver.Sql2008ClientDriver

 </property>

 <propertyname="dialect">NHibernate.Dialect.MsSql2008Dialect</property> <propertyname="connection.connection_string_name">Succinctly</property>

 <propertyname="query.substitutions">true1,false0</property>

 <mappingassembly="Succinctly.Model"/>

 </session-factory>

 </hibernate-configuration>

 <connectionStrings>

 <addname="Succinctly"providerName="System.Data.SqlClient"

 connectionString="DataSource=.\sqlexpress;IntegratedSecurity=SSPI;InitialCatalog=Succinctly"/>

 </connectionStrings>

 </configuration>

 This is a minimal NHibernate configuration. You can see that inside the hibernate-configuration section we are setting some properties and adding a mapping reference. Their meaning is:

 · hbm2ddl.keywords: Tells NHibernate if it should automatically escape all column and table names so that, if reserved keywords are used, they are treated appropriately. For example, in SQL Server, replace any column named INT for [INT], ORDER for [ORDER], etc. Although not required, it is very handy to have this setting. I advise you to keep it.

 · connection.driver_class: The full name of a .NET class that implements a NHibernate driver and thus allows you to connect to a database (see the above table). In this example, we are using the SQL Server 2008 driver; this is a required property.

 · dialect: Also a required setting for the full name of a .NET class that is tied to the driver and supports a specific database version’s dialect. For this example, we will be using the SQL Server 2008.

 · connection.connection_string_name: The name of a connection string specified in its own section (connectionStrings); this is required unless you set the actual connection string in a property connection.connection_string. It is recommended that you leave the connection strings on their own section and just reference the one you want by its unique name (in this case, Succinctly).

 · query.substitutions: Some constant substitutions that will be performed whenever a query is about to be sent to the database. In this example, we are translating the string constants true and false for their SQL Server equivalents, 1 and 0, respectively. Although strictly not required, you should have this setting or you may run into trouble when executing HQL queries.

 · mapping: The full name of an assembly containing entity classes and their mapping files, using XML configuration for this purpose (more on this on the Mappings chapter). It is not required as there are other ways to achieve this. But, nonetheless, it is useful and you can place as many mapping entries as you want.

 To build the configuration instance and load settings from the configuration file, all you need is:

 	
 Configurationcfg=newConfiguration().Configure();

 	

 	
 Tip: Import the NHibernate.Cfg namespace.

 If you would like to use XML-based configuration, one thing that may come in handy is Visual Studio IntelliSense. You can add such support by following the following steps:

 1. Download the XML Schema Definition (XSD) file for the configuration section from https://github.com/nhibernate/nhibernate-core/blob/master/src/NHibernate/nhibernate-configuration.xsd.

 2. Open the Web.config or App.config file where you have the NHibernate configuration in Visual Studio.

 3. Go to the Properties window and select the ellipsis (…) button next to Schemas.

 4. Click the Add… button and select the nhibernate-configuration.xsd file that you just downloaded.

 5. Select Use this Schema at the line with target namespace urn:nhibernate-configuration-2.2:

 Figure 8: XML Schemas for IntelliSense

 6. When you close the XML Schemas window, you will have IntelliSense:

 Figure 9: IntelliSense for NHibernate XML

 [bookmark: _Toc384732438][bookmark: _Toc355385605][bookmark: _Toc354573236]Loquacious Configuration

 NHibernate 3.2 brought along what is called loquacious (or fluent) configuration. Basically, it renders the configuration section on the configuration file unnecessary and, instead, relies on code to initialize NHibernate. The configuration expressed in the previous section can be transformed into the following code:

 	
 Configurationcfg=newConfiguration()

 .DataBaseIntegration(db=>

 {

 db.ConnectionStringName="Succinctly";

 db.Dialect<MsSql2008Dialect>();

 db.Driver<Sql2008ClientDriver>();

 db.HqlToSqlSubstitutions="true1,false0";

 db.KeywordsAutoImport=Hbm2DDLKeyWords.AutoQuote;

 })

 .AddAssembly("NHibernate.Succinctly");

 	

 	
 Tip: You will need to import the NHibernate, NHibernate.Cfg, NHibernate.Dialect, and NHibernate.Driver namespaces.

 Some things worth mentioning:

 · The Dialect and Driver methods take generic parameters that must inherit from NHibernate.Dialect.Dialect and implement NHibernate.Driver.IDriver, respectively. As such, there is no easy way to pass in dynamically resolved types, for example, of type System.Type or in string format. For that, you can use the equivalent properties dialect and connection.driver_class:

 	
 [bookmark: _Hlk378972712]Configurationcfg=BuildConfiguration()//whateverwayyoulike

 .SetProperty(NHibernate.Cfg.Environment.ConnectionDriver,typeof(Sql2008ClientDriver)

 .AssemblyQualifiedName)

 .SetProperty(NHibernate.Cfg.Environment.Dialect,typeof(MsSql2008Dialect).AssemblyQualifiedName)

 · The AddAssembly method also has an overload that takes an Assembly instance.

 · If you have both a configuration section and loquacious configuration, loquacious settings take precedence.

 [bookmark: _Toc384732439][bookmark: _Toc355385606][bookmark: _Toc354573237]Which One Shall I Choose?

 Again, which one you choose is up to you. They are fundamentally equivalent. XML-based configuration offers you the advantage of allowing changes without requiring recompilation of the code. However, it merely delays eventual configuration errors to a later stage when the application is run. Loquacious configuration, on the other hand, may detect syntactic errors sooner—even preventing the code from compiling altogether—at the cost of requiring recompilation just to make even the smallest change. But it allows conditional configuration, something you can’t achieve with static XML. You can have the best of both worlds and have both XML-based as well as by code configuration in the same project. It may make sense if, for example, you have to deal with legacy HBM.XML files.

 These are the most basic settings required for NHibernate to work. Most of this book’s examples are agnostic regarding which database engine is used. Whenever this is not the case, it will be explicitly mentioned. Later on we will learn functionality that will require additional settings and so we will come back to this.

 	

 	
 Note: It is also possible to have the configuration entries in an external file; that is, not as content inside the App.config or Web.config files or even as a resource embedded in some assembly. These are not typical scenarios and won’t be covered here, but you are free to explore them by looking at the various overloads of the Configuration.Configure method.

 [bookmark: _Toc354573239][bookmark: _Ref350089422][bookmark: _Ref350075701][bookmark: _Toc384732440][bookmark: _Toc355385607]Chapter 3 Domain Model

 [bookmark: _Toc384732441][bookmark: _Toc355385608]Scenario

 Let’s consider a simple model, a blogging system:

 Figure 10: Class Model for a Blogging System

 It can be described as this: A Blog is owned by a User and has a collection of Posts. Each Post may have Comments and Attachments, each referring to a single Post. A User may have several Blogs. Both User and Comment have UserDetails.

 Occasionally, I will also refer another model, a classical ordering system, which will look like this:

 Figure 11: Class Model for the Orders System

 These are the concepts that we will want to represent and manipulate in our code. However, I will only include code for the blogging model. You will be able to find the classes and mappings for the ordering model on the book’s Bitbucket repository.

 [bookmark: _Toc384732442][bookmark: _Toc355385609]Entities

 We have several ways to represent these concepts. I chose one. Here are the classes that we will be using throughout the book:

 The User class:

 	
 publicclassUser

 {

 publicUser()

 {

 this.Blogs=newIesi.Collections.Generic.HashedSet<Blog>();

 this.Details=newUserDetail();

 }

 publicvirtualInt32UserId { get; protected set;}

 publicvirtualStringUsername { get; set; }

 publicvirtualUserDetailDetails { get; set; }

 publicvirtualDateTime?Birthday { get; set; }

 publicvirtualIesi.Collections.Generic.ISet<Blog>Blogs { get; protectedset; }

 }

 The Blog class:

 	
 publicclassBlog

 {

 publicBlog()

 {

 this.Posts=newList<Post>();

 }

 publicvirtualInt32BlogId { get; protected set; }

 publicvirtualSystem.Drawing.ImagePicture { get; set; }

 publicvirtualInt64PostCount { get; protectedset; }

 publicvirtualUserOwner { get; set; }

 publicvirtualStringName { get; set; }

 publicvirtualDateTimeCreation { get; set; }

 publicvirtualIList<Post>Posts { get; protectedset; }

 }

 	

 	
 Tip: Because the Blog class has a property of type System.Drawing.Image, you need to add a reference to the System.Drawing assembly.

 The Post class:

 	
 publicclassPost

 {

 publicPost()

 {

 this.Tags=newIesi.Collections.Generic.HashedSet<String>();

 this.Attachments=newIesi.Collections.Generic.HashedSet<Attachment>();

 this.Comments=newList<Comment>();

 }

 publicvirtualInt32PostId { get; protected set; }

 publicvirtualBlogBlog { get; set; }

 publicvirtualDateTimeTimestamp { get; set; }

 publicvirtualStringTitle { get; set; }

 publicvirtualStringContent { get; set; }

 publicvirtualIesi.Collections.Generic.ISet<String>Tags { get; protectedset; }

 publicvirtualIesi.Collections.Generic.ISet<Attachment>Attachments { get; protectedset; }

 publicvirtualIList<Comment>Comments { get; protectedset; }

 }

 The Comment class:

 	
 [bookmark: _Hlk378973184]publicclassComment

 {

 publicComment()

 {

 this.Details=newUserDetail();

 }

 publicvirtualInt32CommentId { get; protected set; }

 publicvirtualUserDetailDetails { get; set; }

 publicvirtualDateTimeTimestamp { get; set; }

 publicvirtualStringContent { get; set; }

 publicvirtualPostPost { get; set; }

 }

 The Attachment class:

 	
 publicclassAttachment

 {

 publicvirtualInt32AttachmentId { get; protected set; }

 publicvirtualStringFilename { get; set; }

 publicvirtualByte[]Contents { get; set; }

 publicvirtualDateTimeTimestamp { get; set; }

 publicvirtualPostPost { get; set; }

 }

 And, finally, the UserDetail class (it is the implementation of the Details component of the User and Comment classes):

 	
 [bookmark: _Hlk378973198]publicclassUserDetail

 {

 publicStringUrl { get; set; }

 publicStringFullname { get; set; }

 publicStringEmail { get; set; }

 }

 Some notes:

 · As you can see, there is no base class or special interface that we need to implement. This does not mean that NHibernate can’t use them; it is actually quite the opposite.

 · All classes are non-sealed. This is not strictly a requirement but a recommended practice.

 · Some properties are virtual, basically all except those from the UserDetail component class. Also, a recommended practice; we will see why when we talk about lazy loading in the next chapter.

 · Properties that will represent the primary key have a protected setter. This is because NHibernate will be providing this key for us so there is no need. In fact, it is dangerous to change it.

 · Collections also have protected setters because the operations that we will be performing with them won’t require changing the actual collection reference, but rather, merely adding, removing, and eventually clearing it.

 · All collections are instantiated in the constructor of their declaring classes so that they are never null.

 [bookmark: _Toc384732443][bookmark: _Toc355385610]Before We Start

 Because NHibernate is an ORM, it will transform tables into classes, columns into properties, and records into object instances and values. Exactly how this transformation occurs depends on the mapping. A mapping is something that you add to the configuration instance. You can add multiple mappings—typically one for each .NET class that you want to be able to persist to the database. At the very minimum, a mapping must associate a table name to a class name, the column that contains the primary key to a related class property, and probably some additional columns into the properties they will be turned to.

 As far as NHibernate is concerned, an entity is just a Plain Old CLR Object (POCO). You have to make a fundamental choice when it comes to creating these entities:

 · You start from code, following a Domain Driven Design (DDD) approach. You define your classes without much concern about how they will be stored in the database. Instead, you focus on getting them right. This may include creating inheritance relationships and complex properties.

 · You start from the database and you have to craft your entities so that they match the data model. This may be because it’s the way your company works, you have a legacy database, or it is just a matter of personal preference.

 We won’t go into what is the best approach; that is up to you. Either way is fully supported by NHibernate. If you start from code, NHibernate will happily generate the database for you or validate it. In both cases—database first or code first—NHibernate will also give you the option to check the database against your entities and either update the database to match the entities or warn you if there are discrepancies. There’s a SchemaAction setting for this on the Configuration class, using loquacious configuration:

 	
 Configurationcfg=newConfiguration()

 .DataBaseIntegration(db=>

 {

 //…

 db.SchemaAction=SchemaAutoAction.Validate;

 })

 As well as in XML configuration, as a property:

 	
 <propertyname="hbm2ddl.auto">validate</property>

 The possible values you can pass to SchemaAction/hbm2ddl.auto are:

 · Create/create: Will always drop existing tables and recreate them from the current mappings.

 · Recreate/create-drop: Identical to Create, with the difference being that it will drop everything again when NHibernate finishes using the database (the session factory is disposed of).

 · Update/update: NHibernate will compare the existing tables to the current mappings and will update the database, if necessary, including creating missing tables or columns.

 · Validate/validate: An exception will be thrown if the comparison between the actual tables and the current mapping detects mismatches.

 	

 	
 Tip: Create and Recreate are dangerous, and you should only use them for scenarios such as unit tests or demonstrations where you need to quickly set up a database or where you have no important information because every mapped table will be dropped—not mapped tables will be left alone, though. Update will also create any missing tables and columns so it is safe to use in real-life scenarios, but it may take some time to check all tables if you have a lot of mapped classes. If no value is set by calling SchemaAction or by setting the hbm2ddl.auto attribute on the XML configuration, no validation will be performed and no schema update/creation will occur.

 [bookmark: _Toc384732444][bookmark: _Toc355385611]Chapter 4 Mappings

 [bookmark: _Toc384732445][bookmark: _Toc355385612]Concepts

 We essentially define mappings for:

 · Entities.

 · Entity identifiers.

 · Entity properties.

 · References to other entities.

 · Collections.

 · Inheritance.

 Identifiers, properties, references, and collections are all members of the entity class where:

 · Identifiers can either be of simple .NET types, such as those one would find as table columns (such as Int32, String or Boolean), but also common value types such as DateTime, Guid or TimeSpan or, for representing composite primary keys, they can also be of some custom class type.

 · Scalar properties (or just properties) are also of primitive or common value types; other cases are Byte[] for generic Binary Large Objects (BLOBs) and XDocument/XmlDocument for XML data types.

 · Complex properties, known as value objects in Domain-Driven Design (DDD) and as components in NHibernate, are classes with some properties that are logically grouped together. Think of a postal address, for example, which may be comprised of a street address, zip code, city, country, etc. Of course, in the database, these are also stored as scalar columns.

 · References to other entities (one-to-one, many-to-one) are declared as the type of the entity in the other endpoint of the relation; in the database, these are foreign key columns.

 · Collections of entities (one-to-many, many-to-many) are declared as collections of the other endpoint’s entity type. Of course, in the database these are also stored as foreign key columns.

 Let’s look at each of these concepts in more detail.

 [bookmark: _Toc384732446][bookmark: _Toc355385613][bookmark: _Toc354573240]Entities

 An entity is at the core of a NHibernate mapping. It is a .NET class that will be saved into one (or more, as we will see) table. Its most important configurable options are:

 · Name: The name of the class; a mandatory setting.

 · Table: The table to which the class is mapped, also a mandatory setting unless we are defining a hierarchy of classes (see Entity Byte[]).

 · Laziness: If the entity’s class allows creating a proxy to it, thus allowing lazy loading. The default is true.

 · Mutable: If any changes to the class’ members should be persisted to the database. The default is true.

 · Optimistic lock: The strategy to be followed for optimistic concurrency control (see Optimistic Locking). The default is none.

 · Where restriction: An optional SQL restriction (see Restrictions).

 · Batch size: The number of additional instances of the same type that will be loaded automatically by NHibernate. You will see a more detailed explanation of this setting in section Batch Loading. It is not a required setting and the default value is 0.

 [bookmark: _Toc384732447][bookmark: _Toc355385614][bookmark: _Toc354573241]Properties

 A property either maps to a column in a table or to a SQL formula, in which case it will not be persisted but instead calculated when the containing entity is loaded from the database. A property has the following attributes:

 · Name: The name of the property in the entity class; required.

 · Column: The name of the column to which it maps; required unless a formula is used.

 · Length: For string or array properties, the maximum length of the column in the table. It is only used when generating the table or the column; not required an the default value is 255.

 · Not Null: Indicates if the properties’ underlying column takes NULL values; must match the property type (for value types, if they might be nullable on the database, they must be declared with ?); not required, the default is false.

 · Formula: If set, it should be a SQL statement that may reference other columns of the entity’s table; if set, the column property has no meaning.

 · Unique: Indicates if the column should be unique; only used when the table or column is generated. Default is false.

 · Optimistic Lock: If set to false, it won’t consider this property for determining if the entity’s version should change (more on versioning in the Optimistic Locking chapter). It is not required and the default value is true.

 · Update: Indicates if the column is considered for updating when the entity is updated; the default is true.

 · Insert: If the column should be inserted or not; the default is true.

 · Generated: If set, indicates if the column’s value is generated upon insertion (insert) or always, generally by means of a trigger. The default is never, and if something else is used, an extra SELECT is needed after the insertion or update of the entity to know its value.

 · Lazy: Should the column be loaded when the containing entity is loaded, we should set this to true if the column contains large contents (CLOBs or BLOBs) and its value may not always be required. The default is false.

 · Type: If the property is not one of the primitive types, it should contain the full name of a concrete .NET class, which is responsible for creating the property’s actual value from the column coming from the database and for translating it back into the database. There are several type implementations included with NHibernate.

 · Mutable: Do changes to this property be reflected to the database? The default is true.

 For scalar properties, either at entity level or as members of a component, NHibernate supports the following .NET types:

 Table 2: NHibernate Recognized Types

 	
 .NET Type

 	
 OOTB

 	
 Purpose

 	
 Boolean

 	
 Yes

 	
 A boolean or single bit (0/1 value)

 	
 Byte/SByte

 	
 Yes

 	
 8-bit signed/unsigned integer number, usually for representing a single ANSI character

 	
 Byte[]

 	
 Yes

 	
 Stored in a BLOB

 	
 Char

 	
 Yes

 	
 Single ANSI or UNICODE character

 	
 CultureInfo

 	
 Yes

 	
 Stored as a string containing the culture name

 	
 DateTime

 	
 Yes

 	
 Date and time

 	
 DateTimeOffset

 	
 Yes

 	
 Date and time with offset relative to UTC

 	
 Decimal

 	
 Yes

 	
 128-bit signed integers, scaled by a power of 10

 	
 Double

 	
 Yes

 	
 Double precision (64-bit) signed floating point values

 	
 Enum (enumerated type)

 	
 Yes/No

 	
 Stored as an integer (default), as a character or as a string

 	
 Guid

 	
 Yes

 	
 GUIDs or generic 128-bit numbers

 	
 Int16/UInt16

 	
 Yes

 	
 16-bit signed/unsigned integer numbers

 	
 Int32/UInt32

 	
 Yes

 	
 32-bit signed/unsigned integer numbers

 	
 Int64/UInt64

 	
 Yes

 	
 64-bit signed/unsigned integer numbers

 	
 Object (serializable)

 	
 No

 	
 Stored in a BLOB containing the object’s contents after serialization

 	
 Single

 	
 Yes

 	
 Single precision (32-bit) signed floating point values

 	
 String

 	
 Yes

 	
 ANSI or UNICODE variable or fixed-length characters

 	
 TimeSpan

 	
 Yes

 	
 Time

 	
 Type

 	
 Yes

 	
 Stored as a string containing the assembly qualified type name

 	
 Uri

 	
 Yes

 	
 Stored as a string

 	
 XDocument/XmlDocument

 	
 Yes

 	
 XML

 The second column indicates if the property’s type is supported out of the box by NHibernate, that is, without the need for additional configuration. If we need to map a nonstandard primitive type or one of those other types that NHibernate recognizes out of the box (Enum, DateTime, DateTimeOffset, Guid, TimeSpan, Uri, Type, CultureInfo, Byte[]) or if we need to change the way a given property should be handled, we need to use a custom user type. For common cases, no type needs to be specified. For other scenarios, the available types are:

 Table 3: NHibernate Types

 	
 NHibernate Type

 	
 .NET Property Type

 	
 Description

 	
 AnsiCharType

 	
 Char

 	
 Stores a Char as an ANSI (8 bits per character) column instead of UNICODE (16 bits). Some national characters may be lost.

 	
 AnsiStringType

 	
 String

 	
 Stores a String as an ANSI (8 bits per character) column instead of UNICODE (16 bits). Some national characters may be lost.

 	
 BinaryBlobType

 	
 Byte[]

 	
 Will store a Byte[] in a database-specific BLOB. If the database requires defining a maximum length, as in SQL Server, use BinaryBlobType.

 	
 CharBooleanType

 	
 Boolean

 	
 Converts a Boolean value to either True or False

 	
 DateType

 	
 DateTime

 	
 Stores only the date part of a DateTime

 	
 EnumCharType<T>

 	
 Enum (enumerated type)

 	
 Stores an enumerated value as a single character, obtained from its numeric value

 	
 EnumStringType<T>

 	
 Enum (enumerated type)

 	
 Stores an enumerated value as its string representation instead of its numeric value

 	
 LocalDateTimeType

 	
 DateTime

 	
 Stores a DateTime as local

 	
 SerializableType

 	
 Object (serializable)

 	
 Serializes an Object into a database-specific BLOB type.

 	
 StringClobType

 	
 String

 	
 Will store a String in a database-specific CLOB type instead of a standard VARCHAR

 	
 TicksType

 	
 DateTime

 	
 Stores a DateTime as a number of ticks

 	
 TrueFalseType

 	
 Boolean

 	
 Converts a Boolean value to either T or F

 	
 UtcDateTimeType

 	
 DateTime

 	
 Stores a DateTime as UTC

 	
 YesNoType

 	
 Boolean

 	
 Converts a Boolean value to either Y or N

 Complex properties differ from references to other entities because all of their inner properties are stored in the same class as the declaring entity, and complex properties don’t have anything like an identifier, just a collection of scalar properties. They are useful for logically grouping together some properties that conceptually are related (think of an address, for example). A component may be used in several classes and its only requirements are that it is not abstract and that it has a public, parameterless constructor.

 A property does not have to be public but, at the least, it should be protected, not private. Its visibility will affect the ability of the querying APIs to use it; LINQ, for example, will only work with public properties. Different access levels for setters and getters are fine, too, as long as you keep them protected at most.

 Finally, although you can use properties with an explicit backing field, there is really no need to do so. In fact, some functionality will not work with backing fields and, as a rule of thumb, you should stick to auto properties.

 [bookmark: _Toc384732448][bookmark: _Toc355385615][bookmark: _Toc354573242]Custom Types

 Some scenarios where we need to specify a type include, for example, when we need to store a String in a BLOB column such as VARBINARY(MAX) in SQL Server or when we need to store just the date part of a DateTime or even when we need to store a Boolean as its string representation (True/False). Like I said, in most cases, you do not need to worry about this.

 You can create your own user type, for example, if you want to expose some columns as a different type—like converting a BLOB into an Image. See the following example:

 	
 [Serializable]

 publicsealedclassImageUserType:IUserType,IParameterizedType

 {

 privateByte[]data=null;

 publicImageUserType():this(ImageFormat.Png)

 {

 }

 publicImageUserType(ImageFormatimageFormat)

 {

 this.ImageFormat=imageFormat;

 }

 publicImageFormatImageFormat { get; privateset; }

 publicoverrideInt32GetHashCode()

 {

 return((thisasIUserType).GetHashCode(this.data));

 }

 publicoverrideBooleanEquals(Objectobj)

 {

 ImageUserTypeother=objasImageUserType;

 if(other==null)

 {

 return(false);

 }

 if(Object.ReferenceEquals(this,other)==true)

 {

 return(true);

 }

 return(this.data.SequenceEqual(other.data));

 }

 BooleanIUserType.IsMutable

 {

 get

 {

 return(true);

 }

 }

 ObjectIUserType.Assemble(Objectcached,Objectowner)

 {

 return(cached);

 }

 ObjectIUserType.DeepCopy(Objectvalue)

 {

 if(valueisICloneable)

 {

 return((valueasICloneable).Clone());

 }

 else

 {

 return(value);

 }

 }

 ObjectIUserType.Disassemble(Objectvalue)

 {

 return((thisasIUserType).DeepCopy(value));

 }

 BooleanIUserType.Equals(Objectx,Objecty)

 {

 return(Object.Equals(x,y));

 }

 Int32IUserType.GetHashCode(Objectx)

 {

 return((x!=null)?x.GetHashCode():0);

 }

 ObjectIUserType.NullSafeGet(IDataReaderrs,String[]names,Objectowner)

 {

 this.data=NHibernateUtil.Binary.NullSafeGet(rs,names)asByte[];

 if(data==null)

 {

 return(null);

 }

 using(Streamstream=newMemoryStream(this.data??newByte[0]))

 {

 return(Image.FromStream(stream));

 }

 }

 voidIUserType.NullSafeSet(IDbCommandcmd,Objectvalue,Int32index)

 {

 if(value!=null)

 {

 Imagedata=valueasImage;

 using(MemoryStreamstream=newMemoryStream())

 {

 data.Save(stream,this.ImageFormat);

 value=stream.ToArray();

 }

 }

 NHibernateUtil.Binary.NullSafeSet(cmd,value,index);

 }

 ObjectIUserType.Replace(Objectoriginal,Objecttarget,Objectowner)

 {

 return(original);

 }

 TypeIUserType.ReturnedType

 {

 get

 {

 return(typeof(Image));

 }

 }

 SqlType[]IUserType.SqlTypes

 {

 get

 {

 return(newSqlType[]{NHibernateUtil.BinaryBlob.SqlType});

 }

 }

 voidIParameterizedType.SetParameterValues(IDictionary<String,String>parameters)

 {

 if((parameters!=null)&&(parameters.ContainsKey("ImageFormat")==true))

 {

 this.ImageFormat=typeof(ImageFormat).GetProperty(parameters["ImageFormat"],

 BindingFlags.Static|BindingFlags.Public|BindingFlags.GetProperty).GetValue(null,null)asImageFormat;

 }

 }

 }

 [bookmark: _Toc354573243][bookmark: _Ref351561531]The most important aspects are:

 · How the data is retrieved from and saved back to the data source (NullSafeGet and NullSafeSet methods)

 · The value comparison, for letting NHibernate know if the property has changed (Equals and GetHashCode), for the purpose of change tracking

 · The database data type (SqlTypes)

 [bookmark: _Toc384732449][bookmark: _Toc355385616]Identifiers

 An identifier is either a scalar property, for the most general case of single column primary keys, or a custom class that contains properties for all the columns that make up the composite key. If it is a scalar property, not all types are allowed. You should only use primitive types (Char, Byte/SByte, Int16/UInt16, Int32/UInt32, Int64/UInt64, Decimal, String) and some specific value types (Guid, DateTime, DateTimeOffset, TimeSpan). BLOB, CLOB, and XML columns cannot be used as primary keys.

 An identifier property may also be non-public but the most restricted access level you should use is protected or protected internal. Protected setters and public getters are fine, too, and are actually a good idea—unless you want to use manually assigned identifiers.

 A very important concept around identifiers is the generation strategy. Basically, this is how the primary key is generated when a record is to be inserted into the database. These are the most important high-level strategies:

 Table 4: NHibernate Identity Generators

 	
 Strategy Type

 	
 Generator (by code/XML)

 	
 Identifier Property Type

 	
 Description

 	
 Database-generated

 	
 Identity/identity

 Sequence/sequence

 	
 Int16/UInt16, Int32/UInt32, Int64/UInt64

 	
 Identity columns are supported in SQL Server, MySQL, and Sybase, among others. Sequences are supported on Oracle and PostgreSQL, and can provide values for multiple tables. Both are safe for multiple simultaneous accesses but do not allow batching (more on this later).

 	
 GUID-based

 	
 Guid/guid

 GuidComb/guid.comb

 	
 Guid

 	
 GUIDs are generated by NHibernate and are assumed to be unique. It is safe for multiple simultaneous accesses and it is possible to do batch insertions.

 GuidComb is always sequencial.

 	
 Supported by a backing table

 	
 HighLow/hilo

 	
 Int16/UInt16, Int32/UInt32, Int64/UInt64

 	
 A table exists where the next high value is stored. When a session needs to insert records, it increments and updates this value and combines it with the next of a range of sequential low values until this range is exhausted and another high value needs to be retrieved. It is safe for both multiple simultaneous accesses and batching.

 	
 Manually assigned

 	
 Assigned/assigned

 	
 Any

 	
 You are responsible for assigning unique keys to your entities; use with care when you have multiple sessions inserting records.

 There are other identifier generators but is advised that you stick with these because they are the ones supported by all mapping APIs. A discussion of these strategies is required.

 Database-generated keys may be appealing because they are naturally used with common database programming and may appear as the natural choice. However, they do have some drawbacks:

 · Because the key is generated inside the database after a record is inserted, an additional immediate SELECT is required to obtain the generated key. This renders batching impossible because we cannot issue multiple INSERTs together.

 · Because both identity columns and sequences are designed for speed, they do not take into consideration database transactions. This means that, even if you rollback, the generated key, although not used, will be lost.

 · They do not comply with the concept of Unit of Work, in the sense that it will try to insert the new record as soon as the entity is marked for saving and not just when the Unit of Work is committed.

 · Most important: They are not database-independent. If you wish to use identity columns or sequences, you can only do it in engines that support this functionality, without changing the mapping configuration.

 	

 	
 Tip: When using the Sequence generator, you have to supply the name for the actual sequence to be used as a parameter to the generator (see below).

 GUIDs have some interesting aspects:

 · Because they are guaranteed to be unique, they are the obvious choice when it comes to designing a database that will be populated with records coming from third-party databases; there will never be clashes.

 · They are fast to compute.

 · They are database-independent.

 They have one serious disadvantage, though: If we use clustered primary keys (the default in SQL Server), because generated GUIDs are not sequential they will make the engine continually reorganize the index, adding new keys either before or after the existing ones. To deal with this problem, NHibernate has implemented an alternative version, GuidComb, which is based on an algorithm designed by Jimmy Nilsson and available at http://www.informit.com/articles/article.aspx?p=25862. It basically consists of making a GUID sequential: two GUIDs generated in sequence are also numerically sequential, while remaining unique. If you really need a GUID as your primary key, do choose GuidComb. However, do keep in mind that GUIDs do take much more space—16 bytes as opposed to the four bytes of an integer.

 The HighLow generation strategy is recommended for most scenarios. It is database-independent, allows batching, copes well with the Unit of Work concept, and, although it does require a SELECT and an UPDATE when the first record is to be inserted and additional ones when the low values are exhausted, the low values are immediately available. Plus, a range can be quite large, allowing for many records to be inserted without performing additional queries.

 As for manually assigned identifiers, there are certainly scenarios where they are useful. But they have a big problem. Because NHibernate uses the identifier value (or lack thereof) to tell if a record is to be updated or inserted, it needs to issue a SELECT before persisting an entity in order to know if the record already exists. This defeats batching and may present problems if multiple sessions are to be used simultaneously.

 Apart from the generation strategy, an identifier also supports the following properties:

 · Name: The name of the .NET entity property; required.

 · Column(s): The name of the column(s) that contain(s) the primary key; required.

 · Length: For string columns, will contain their size, only for the purpose of generating the table or column. If not set, it defaults to 255.

 · Unsaved Value: A textual representation of the value that the identifier property has before the identifier is generated; used for distinguishing if the entity is new or updated. If not set, it defaults to the identifier property’s underlying default value (0 for numbers, null for classes, etc).

 [bookmark: _Toc355385617][bookmark: _Toc354573244]It is possible to pass parameters to identifier generators for those that require it. One example would be specifying the sequence name for the Sequence generator. Examples are included in the mapping sections.

 [bookmark: _Toc384732450]References

 Like table relations, an entity may also be associated with another entity. It is said that the entity’s class has a reference for another entity’s class. There are two types of relations:

 · One-to-one: The primary key is shared between the two tables. For each record on the main table, there may be, at most, one record on the secondary table that refers to it. Useful when you have mandatory data and optional data that is associated with it.

 · Many-to-one: A table’s record may be associated with one record from another table. This other record may be referenced by multiple records on the main table. Think of it as a record’s parent.

 A reference has the type of the class on the other endpoint. There can be even multiple references to the same class, of course, with different names. The properties of the reference are:

 · Name: Mandatory.

 · Required: If the record on the main class must reference an existing record on the second class. The default is false.

 · The relation type: Either one-to-one or many-to-one.

 · Laziness: The default is proxy, meaning that the referenced entity will not be loaded at the same time as its referencing entity but, rather, a proxy will be created for it (which will cause it to load when accessed). Other possibilities are false or no-proxy.

 · Not found: The behavior when the referenced record is not found. The default is exception and the other possibility is ignore.

 [bookmark: _Toc384732451][bookmark: _Toc355385618][bookmark: _Toc354573245][bookmark: _Ref351562041]Collections

 An entity (parent) can be associated with multiple entities (children) of some type at the same time. These collections can be characterized in a number of ways:

 · Endpoint multiplicity: One-to-many (a parent has multiple children, a child only has one parent), many-to-many (a parent can have multiple children and each child can have multiple parents), and values (the children are not entities but values).

 · Relation between the parent and the children endpoints: Unidirectional (the parent knows the children but these do not know the parent), and bidirectional (both sides know each other).

 · Conceptually: Bag (allows duplicates, order does not matter), and set (does not allow duplicates, elements are either sorted or unsorted).

 · What they contain: Values (scalar values), components (complex values without an identity of their own), and entities (complex values with their own identity).

 · How they are accessed: Indexed or keyed (something is used for identifying each of the items in the collection) and non-indexed.

 · Where is the foreign key stored: Inverse (the foreign key is located at the child endpoint) or non-inverse.

 NHibernate has the following collection types:

 Table 5: NHibernate Collection Types

 	
 Collection

 	
 Relations

 	
 Items to Store

 	
 Index Type

 	
 .NET Types

 	
 Set (non-indexed, bidirectional, inverse)

 	
 One-to-many, many-to-many

 	
 Entities, elements, components

 	
 N/A

 	
 IEnumerable<T>, ICollection<T>, Iesi.Collections.Generic.ISet<T>

 	
 Bag (non-indexed, bidirectional, inverse or non-inverse)

 	
 One-to-many, many-to-many, values

 	
 Entities, values, components

 	
 N/A

 	
 IEnumerable<T>, ICollection<T>, IList<T>

 	
 List (indexed, bidirectional, inverse or non-inverse)

 	
 One-to-many, many-to-many, values

 	
 Entities, values, components

 	
 Number

 	
 IEnumerable<T>, ICollection<T>, IList<T>

 	
 Map (indexed, unidirectional, inverse or non-inverse)

 	
 Many-to-many, values

 	
 Entities, values, components

 	
 Entity, scalar value

 	
 IDictionary<TKey, TValue>

 	
 Id Bag (non-indexed, unidirectional, inverse or non-inverse)

 	
 One-to-many, Many-to-many, values

 	
 Entities, values, components

 	
 Number

 	
 IEnumerable<T>, ICollection<T>, IList<T>

 	
 Array (indexed, unidirectional, inverse or non-inverse)

 	
 One-to-many, many-to-many, values

 	
 Entities, values, components

 	
 Number

 	
 IEnumerable<T>, ICollection<T>, T []

 	
 Primitive Array (indexed, unidirectional, non-inverse)

 	
 One-to-many, many-to-many, values

 	
 Values of primitive types

 	
 Number

 	
 IEnumerable<T>, ICollection<T>, T []

 	

 	
 Tip: You cannot use the .NET BCL System.Collections.Generic.ISet<T>; as of now, NHibernate requires the use of Iesi.Collections.

 	

 	

 	

 	

 	

 	

 Collections have the following attributes:

 · Name: This is mandatory.

 · Type (bag, set, list, map, id bag, array, primitive array): This is also mandatory.

 · Key: The name of the column or entity (in the case of maps) that contains the key of the relation.

 · Order: The column by which the collection’s elements will be loaded. Optional.

 · Whether the collection is inverse or not (set, list, id bag, array, primitive array): Default is false.

 · The entity or element type of its values: Mandatory.

 · Restriction: An optional restriction SQL (see Restrictions).

 · Laziness: The desired laziness of the collection (see Lazy Loading). The default is lazy.

 · Endpoint Multiplicity: One-to-many or many-to-many in the case of collections of entities. Mandatory.

 Some remarks:

 · NHibernate fully supports generic collections and you really should use them.

 · All except array and primitive array support lazy loading (see Lazy Loading). Arrays and primitive arrays cannot change their size; that is, it is not possible to add or remove items.

 · The .NET type you use to declare the collection should always be an interface. The actual type will determine what you want to be able to do with the collection. For example, IEnumerable<T> does not allow modifications, which makes it a good choice for scenarios in which you don’t want users to change the content of the collection.

 · All collection types other than primitive array support entities, primitive types, and components as their items.

 · Id bags, lists, arrays, and primitive arrays use an additional table column, not mapped to a class property, to store the primary key (in the case of id bags) or the ordering. If you use NHibernate to create the data model, NHibernate will create it for you.

 · Bidirectional relations between entities are always inverse.

 · Maps, collections of components (complex properties), elements (primitive types), and primitive arrays are never inverse.

 · Maps and many-to-many relations always require an additional mapping table.

 · By far, the most often used collections are sets, lists, and maps.

 · When compared to bags, sets have the advantage in that they do not allow duplicates which, most of the time, is what we want.

 · Because bags do not know the key of their elements, whenever we add or remove from a bag, we need to remove and re-insert all elements, which leads to terrible performance. Id bags solve this problem by allowing an unmapped key column.

 · Lists are better than arrays as indexed collections because arrays cannot change their size.

 · Maps are great for indexing a collection by something other than a number.

 · There should seldom be a need for array mappings.

 Sets and bags are stored using only one table for each entity, and one of these tables contains a foreign key for the other:

 	

 	

 Figure 12: Sets and Bags Class and Table Model

 It will typically be declared like this in code:

 	
 publicvirtualIesi.Collections.Generic.ISet<Comment>Comments { get; protectedset; }

 Lists also need only two tables, but they use an additional, unmapped column for storing one entity’s order in its parent’s collection:

 	

 	

 Figure 13: One-to-Many/Many-to-One Class and Table Model

 A list (and also a bag) is mapped as an IList<T> and the order of its elements is dictated by the list’s indexed column attribute, which must be an integer.

 	
 publicvirtualIList<Post>Posts { get; protectedset; }

 Many-to-many relations do require an additional mapping table, which does not translate to any class but is used transparently by NHibernate:

 	

 	

 Figure 14: Many-to-Many Class and Table Model

 These are represented by two set collections, one on each class, only one of them being inverse.

 	
 publicclassUser

 {

 publicvirtualIesi.Collections.Generic.ISet<Blog>Blogs { get; protectedset; }

 }

 publicclassBlog

 {

 publicvirtualIesi.Collections.Generic.ISet<User>Users { get; protectedset; }

 }

 Maps also need an additional table for storing the additional property (in the case where the value is a single scalar) or the key to the other endpoint entity (for a one-to-many relation):

 	

 	

 Figure 15: Map Class and Table Model

 Maps are represented in .NET by IDictionary<TKey, TValue>. The key is always the containing class and the values can either be entities (in which we have a one-to-many or many-to-many relation), components (complex properties) or elements (primitive types).

 	
 publicvirtualIDictionary<String, String>Attributes { get; protectedset; }

 [bookmark: _Toc384732452][bookmark: _Toc355385619][bookmark: _Toc354573246][bookmark: _Ref354059965]XML Mappings

 Now we get to the bottom of it all. In the beginning, NHibernate only had XML-based mappings. This is still supported and it basically means that, for every entity, there must be a corresponding XML file that describes how the class binds to the data model (you can have a single file for all mappings but this makes it more difficult to find a specific mapping). The XML file must bind the entity class to a database table and declare the properties and associations that it will recognize. One important property that must be present is the one that contains the identifier for the entity instance, the table’s primary key.

 By convention, NHibernate’s XML mapping files end with HBM.XML (in any case). The mappings for this example might be (bear with me, an explanation follows shortly):

 The way to add IntelliSense to the HBM.XML files is like this:

 1. Download the XML Schema Definition (XSD) file for the configuration section from https://github.com/nhibernate/nhibernate-core/blob/master/src/NHibernate/nhibernate-mapping.xsd.

 2. Open the .HBM.XML file where you have a mapping configuration in Visual Studio.

 3. Go to the Properties window and select the ellipsis (…) button next to Schemas.

 4. Click the Add… button and select the nhibernate-mapping.xsd file that you just downloaded.

 5. Select Use this Schema at the line with target namespace urn:nhibernate-mapping-2.2.

 First, the mapping for the User class, which should go in a User.hbm.xml file:

 	
 <?xmlversion="1.0"encoding="utf-8"?>

 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"xmlns="urn:nhibernate-mapping-2.2">

 <classname="User"lazy="true"table="`user`">

 <idname="UserId"column="`user_id`" generator="hilo"/>

 <propertyname="Username"column="`username`"length="10"not-null="true"/>

 <propertyname="Birthday"column="`birthday`"not-null="false"/>

 <componentname="Details">

 <propertyname="Fullname"column="`fullname`"length="50"not-null="true"/>

 <propertyname="Email"column="`email`"length="50"not-null="true"/>

 <propertyname="Url"column="`url`"length="50"not-null="false"/>

 </component>

 <setcascade="all-delete-orphan"inverse="true"lazy="true"name="Blogs">

 <keycolumn="`user_id`"/>

 <one-to-manyclass="Blog"/>

 </set>

 </class>

 </hibernate-mapping>

 Next, the Blog class (Blog.hbm.xml):

 	
 <?xmlversion="1.0"encoding="utf-8"?>

 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"xmlns="urn:nhibernate-mapping-2.2">

 <classname="Blog"lazy="true"table="`blog`">

 <idname="BlogId"column="`blog_id `"generator="hilo"/>

 <propertyname="Name"column="`NAME`"length="50"not-null="true"/>

 <propertyname="Creation"column="`creation`"not-null="true"/>

 <propertyname="PostCount"

 formula="(SELECTCOUNT(1)FROMpostWHEREpost.blog_id=blog_id)"/>

 <propertyname="Picture"column="`PICTURE`"not-null="false"lazy="true">

 <typename="Succinctly.Common.ImageUserType,Succinctly.Common"/>

 </property>

 <many-to-onename="Owner"column="`user_id`"not-null="true"lazy="no-proxy"cascade="save-update"/>

 <listcascade="all-delete-orphan"inverse="true"lazy="true"name="Posts">

 <keycolumn="`blog_id`"/>

 <indexcolumn="`number`"/>

 <one-to-manyclass="Post"/>

 </list>

 </class>

 </hibernate-mapping>

 The Post (Post.hbm.xml):

 	
 <?xmlversion="1.0"encoding="utf-8"?>

 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"xmlns="urn:nhibernate-mapping-2.2">

 <classname="Post"lazy="true"table="`post`">

 <idname="PostId"column="`post_id`" generator="hilo" />

 <propertyname="Title"column="`title`"length="50"not-null="true"/>

 <propertyname="Timestamp"column="`timestamp`"not-null="true"/>

 <propertyname="Content"type="StringClob"column="`content`"length="2000"not-null="true"lazy="true"/>

 <many-to-onename="Blog"column="`blog_id`"not-null="true"lazy="no-proxy"/>

 <setcascade="all"lazy="true"name="Tags"table="`tag`"order-by="`tag`">

 <keycolumn="`post_id`"/>

 <elementcolumn="`tag`"type="String"length="20"not-null="true"unique="true"/>

 </set>

 <setcascade="all-delete-orphan"inverse="true"lazy="true"name="Attachments">

 <keycolumn="`post_id`"/>

 <one-to-manyclass="Attachment"/>

 </set>

 <bagcascade="all-delete-orphan"inverse="true"lazy="true"name="Comments">

 <keycolumn="`post_id`"/>

 <one-to-manyclass="Comment"/>

 </bag>

 </class>

 </hibernate-mapping>

 A Post’s Comments (Comment.hbm.xml):

 	
 <?xmlversion="1.0"encoding="utf-8"?>

 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"xmlns="urn:nhibernate-mapping-2.2">

 <classname="Comment"lazy="true"table="`comment`">

 <idname="CommentId"column="`comment_id`" generator="hilo" />

 <propertyname="Timestamp"column="`timestamp`"not-null="true"/>

 <propertyname="Content"type="StringClob"column="`content`"length="2000"not-null="true"lazy="true"/>

 <componentname="Details">

 <propertyname="Fullname"column="`fullname`"length="50"not-null="true"/>

 <propertyname="Email"column="`email`"length="50"not-null="true"/>

 <propertyname="Url"column="`url`"length="50"not-null="false"/>

 </component>

 <many-to-onename="Post"column="`post_id`"not-null="true"lazy="no-proxy"/>

 </class>

 </hibernate-mapping>

 And, finally, a Post’s Attachments (Attachment.hbm.xml):

 	
 <?xmlversion="1.0"encoding="utf-8"?>

 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"xmlns="urn:nhibernate-mapping-2.2">

 <classname="Attachment"lazy="true"table="`attachment`">

 <idname="AttachmentId"column="`attachment_id`" generator="hilo" />

 <propertyname="Filename"column="`filename`"length="50"not-null="true"/>

 <propertyname="Timestamp"column="`timestamp`"not-null="true"/>

 <propertyname="Contents"type="BinaryBlob"column="`contents`"length="100000"not-null="true"lazy="true"/>

 <many-to-onename="Post"column="`post_id`"not-null="true"lazy="no-proxy"/>

 </class>

 </hibernate-mapping>

 Let’s analyze what we have here.

 First, all entities have a class mapping declaration. On this declaration we have:

 · The class name

 · The table name where the entity is to be persisted

 · The desired laziness (see Lazy Loading), always lazy in this example

 Next, we always need an identifier declaration. In it, we have the following attributes:

 · The property name that contains the identifier

 · The column name that contains the identifier

 · The generator strategy or class (in our examples, always hilo), see section Identifiers

 If we need to pass parameters, we can do it like this:

 	
 <?xmlversion="1.0"encoding="utf-8"?>

 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"xmlns="urn:nhibernate-mapping-2.2">

 <classname="Attachment"lazy="true"table="`attachment`">

 <idname="AttachmentId"column="`attachment_id`" generator="hilo">

 <param name="sequence">ATTACHMENT_SEQUENCE</param>

 </id>

 <!-- … ->

 </hibernate-mapping>

 Then, we have scalar property declarations. For each property we need:

 · The property name.

 · The column name.

 · If the column needs to be not-null.

 · The desired lazy setting, see Lazy Loading.

 · Optionally, a SQL formula, in which case the column name will not be used (see the PostCount property of the Blog class).

 · The length of the column, for strings only.

 · In some cases, we have a type declaration (Post.Content, Blog.Picture properties). The Blog.Picture property references by assembly qualified name a custom user type (ImageUserType). This user type allows translating a BLOB column (Byte[]) to a .NET Image, which can be very handy.

 We have some complex properties for which we use component declarations. They are useful for storing values that conceptually should be together (see the mappings for the Details property of the User class and the Details property of the Comment class). A component contains:

 · The property name.

 · Optionally, a lazy declaration.

 · One or more scalar property mappings (column, length, not-null).

 References come up next. With it, we declare that our entities are associated to the children of another entity. See, for example, the Blog association of the Post entity. A typical mapping includes:

 · The property name.

 · The column name that stores the foreign key.

 · Indication if the foreign key can be not-null, for optional references.

 · The desired lazy option.

 Finally, we have collections. These can be of several types (for a discussion, see the Collections section). In this example, we have collections of entities (for example, see the Comments collection of the Post entity) and collections of strings (the Tags collections of the Post class, mapped as bags, lists and sets, respectively). The possible attributes depend on the actual collection but all include:

 · The property name.

 · The kind of collection (list, set or bag, in this example).

 · The lazy option.

 · The column that contains the foreign key, which should generally match the primary key of the main entity.

 · The index column, in the case of lists.

 · The entity class that represents the child side of the one-to-many relation (for collections of entities).

 · The value’s type, length, column, and uniqueness (for collections of scalar values).

 If you are to use mapping by XML, pay attention to this: You can either include the HBM.XML files as embedded resources in the assembly where the classes live or you can have them as external files.

 If you want to include the resource files as embedded resources, which is probably a good idea because you have less files to deploy, make sure of two things:

 · The project that includes the entity classes should have a base namespace that is identical to the base namespace of these classes (say, for example, Succinctly.Model):

 Figure 16: Setting Project Properties

 · The HBM.XML files should be located in the same folder as the classes to which they refer.

 · Each HBM.XML file should be marked as an embedded resource:

 Figure 17: Setting Embedded Resources

 · For loading mappings from embedded resources, use the AddAssembly method of the Configuration instance or the <mapping assembly> tag in case in XML configuration:

 	
 //add an assembly by name

 cfg.AddAssembly("Succinctly.Model");

 //add an Assembly instance

 cfg.AddAssembly(typeof(Blog).Assembly);

 	
 <session-factory>

 <!-- … ->

 <mappingassembly="Succinctly.Model"/>

 </session-factory>

 	

 	
 Tip: Beware! Any changes you make to HBM.XML files are not automatically detected by Visual Studio so you will have to build the project explicitly whenever you change anything.

 If you prefer instead to have external files:

 	
 //add asinglefile

 cfg.AddFile("Blog.hbm.xml");

 //add all.HBM.XMLfilesinadirectory

 cfg.AddDirectory(newDirectoryInfo("."));

 [bookmark: _Toc384732453][bookmark: _Toc355385620][bookmark: _Toc354573247][bookmark: _Ref354059518]Mapping by Code

 Mapping by code is new in NHibernate as of version 3.2. Its advantage is that there is no need for additional mapping files and, because it is strongly typed, it is more refactor-friendly. For example, if you change the name of a property, the mapping will reflect that change immediately.

 With mapping by code, you typically add a new class for each entity that you wish to map and have that class inherit from NHibernate.Mapping.ByCode.Conformist.ClassMapping<T> where T is the entity class. The following code will result in the exact same mapping as the HBM.XML version. You can see that there are similarities in the code structure and the method names closely resemble the XML tags.

 UserMapping class:

 	
 publicclassUserMapping:ClassMapping<User>

 {

 publicUserMapping()

 {

 this.Table("user");

 this.Lazy(true);

 this.Id(x=>x.UserId,x=>

 {

 x.Column("user_id");

 x.Generator(Generators.HighLow);

 });

 this.Property(x=>x.Username,x=>

 {

 x.Column("username");

 x.Length(20);

 x.NotNullable(true);

 });

 this.Property(x=>x.Birthday,x=>

 {

 x.Column("birthday");

 x.NotNullable(false);

 });

 this.Component(x=>x.Details,x=>

 {

 x.Property(y=>y.Fullname,z=>

 {

 z.Column("fullname");

 z.Length(50);

 z.NotNullable(true);

 });

 x.Property(y=>y.Email,z=>

 {

 z.Column("email");

 z.Length(50);

 z.NotNullable(true);

 });

 x.Property(y=>y.Url,z=>

 {

 z.Column("url");

 z.Length(50);

 z.NotNullable(false);

 });

 });

 this.Set(x=>x.Blogs,x=>

 {

 x.Key(y=>

 {

 y.Column("user_id");

 y.NotNullable(true);

 });

 x.Cascade(Cascade.All|Cascade.DeleteOrphans);

 x.Inverse(true);

 x.Lazy(CollectionLazy.Lazy);

 },x=>

 {

 x.OneToMany();

 });

 }

 }

 	

 	
 Tip: Add a using statement for namespaces NHibernate, NHibernate.Mapping.ByCode.Conformist, NHibernate.Mapping.ByCode, and NHibernate.Type.

 BlogMapping class:

 	
 publicclassBlogMapping:ClassMapping<Blog>

 {

 publicBlogMapping()

 {

 this.Table("blog");

 this.Lazy(true);

 this.Id(x=>x.BlogId,x=>

 {

 x.Column("blog_id");

 x.Generator(Generators.HighLow);

 });

 this.Property(x=>x.Name,x=>

 {

 x.Column("name");

 x.Length(50);

 x.NotNullable(true);

 });

 this.Property(x=>x.Picture,x=>

 {

 x.Column("picture");

 x.NotNullable(false);

 x.Type<ImageUserType>();

 x.Lazy(true);

 });

 this.Property(x=>x.Creation,x=>

 {

 x.Column("creation");

 x.NotNullable(true);

 });

 this.Property(x=>x.PostCount,x=>

 {

 x.Formula("(SELECTCOUNT(1)FROMpostWHEREpost.blog_id=blog_id)");

 });

 this.ManyToOne(x=>x.Owner,x=>

 {

 x.Cascade(Cascade.Persist);

 x.Column("user_id");

 x.NotNullable(true);

 x.Lazy(LazyRelation.NoProxy);

 });

 this.List(x=>x.Posts,x=>

 {

 x.Key(y=>

 {

 y.Column("blog_id");

 y.NotNullable(true);

 });

 x.Index(y=>

 {

 y.Column("number");

 });

 x.Lazy(CollectionLazy.Lazy);

 x.Cascade(Cascade.All|Cascade.DeleteOrphans);

 x.Inverse(true);

 },x=>

 {

 x.OneToMany();

 });

 }

 }

 PostMapping class:

 	
 publicclassPostMapping:ClassMapping<Post>

 {

 publicPostMapping()

 {

 this.Table("post");

 this.Lazy(true);

 this.Id(x=>x.PostId,x=>

 {

 x.Column("post_id");

 x.Generator(Generators.HighLow);

 });

 this.Property(x=>x.Title,x=>

 {

 x.Column("title");

 x.Length(50);

 x.NotNullable(true);

 });

 this.Property(x=>x.Timestamp,x=>

 {

 x.Column("timestamp");

 x.NotNullable(true);

 });

 this.Property(x=>x.Content,x=>

 {

 x.Column("content");

 x.Length(2000);

 x.NotNullable(true);

 x.Type(NHibernateUtil.StringClob);

 });

 this.ManyToOne(x=>x.Blog,x=>

 {

 x.Column("blog_id");

 x.NotNullable(true);

 x.Lazy(LazyRelation.NoProxy);

 });

 this.Set(x=>x.Tags,x=>

 {

 x.Key(y=>

 {

 y.Column("post_id");

 y.NotNullable(true);

 });

 x.Cascade(Cascade.All);

 x.Lazy(CollectionLazy.NoLazy);

 x.Fetch(CollectionFetchMode.Join);

 x.Table("tag");

 },x=>

 {

 x.Element(y=>

 {

 y.Column("tag");

 y.Length(20);

 y.NotNullable(true);

 y.Unique(true);

 });

 });

 this.Set(x=>x.Attachments,x=>

 {

 x.Key(y=>

 {

 y.Column("post_id");

 y.NotNullable(true);

 });

 x.Cascade(Cascade.All|Cascade.DeleteOrphans);

 x.Lazy(CollectionLazy.Lazy);

 x.Inverse(true);

 },x=>

 {

 x.OneToMany();

 });

 this.Bag(x=>x.Comments,x=>

 {

 x.Key(y=>

 {

 y.Column("post_id");

 });

 x.Cascade(Cascade.All|Cascade.DeleteOrphans);

 x.Lazy(CollectionLazy.Lazy);

 x.Inverse(true);

 },x=>

 {

 x.OneToMany();

 });

 }

 }

 CommentMapping class:

 	
 publicclassCommentMapping:ClassMapping<Comment>

 {

 publicCommentMapping()

 {

 this.Table("comment");

 this.Lazy(true);

 this.Id(x=>x.CommentId,x=>

 {

 x.Column("comment_id");

 x.Generator(Generators.HighLow);

 });

 this.Property(x=>x.Content,x=>

 {

 x.Column("content");

 x.NotNullable(true);

 x.Length(2000);

 x.Lazy(true);

 x.Type(NHibernateUtil.StringClob);

 });

 this.Property(x=>x.Timestamp,x=>

 {

 x.Column("timestamp");

 x.NotNullable(true);

 });

 this.Component(x=>x.Details,x=>

 {

 x.Property(y=>y.Fullname,z=>

 {

 z.Column("fullname");

 z.Length(50);

 z.NotNullable(true);

 });

 x.Property(y=>y.Email,z=>

 {

 z.Column("email");

 z.Length(50);

 z.NotNullable(true);

 });

 x.Property(y=>y.Url,z=>

 {

 z.Column("url");

 z.Length(50);

 z.NotNullable(false);

 });

 });

 this.ManyToOne(x=>x.Post,x=>

 {

 x.Column("post_id");

 x.NotNullable(true);

 x.Lazy(LazyRelation.NoProxy);

 });

 }

 }

 AttachmentMapping class:

 	
 publicclassAttachmentMapping:ClassMapping<Attachment>

 {

 publicAttachmentMapping()

 {

 this.Table("attachment");

 this.Lazy(true);

 this.Id(x=>x.AttachmentId,x=>

 {

 x.Column("attachment_id");

 x.Generator(Generators.HighLow);

 });

 this.Property(x=>x.Filename,x=>

 {

 x.Column("filename");

 x.Length(50);

 x.NotNullable(true);

 });

 this.Property(x=>x.Timestamp,x=>

 {

 x.Column("timestamp");

 x.NotNullable(true);

 });

 this.Property(x=>x.Contents,x=>

 {

 x.Column("contents");

 x.Length(100000);

 x.Type<BinaryBlobType>();

 x.NotNullable(true);

 x.Lazy(true);

 });

 this.ManyToOne(x=>x.Post,x=>

 {

 x.Column("post_id");

 x.Lazy(LazyRelation.NoProxy);

 x.NotNullable(true);

 });

 }

 }

 Notice that for every thing (but table and columns names and raw SQL) there are strongly typed options and enumerations. All options are pretty similar to their HBM.XML counterpart, so moving from one mapping to the other should be straightforward.

 For passing parameters to the generator, one would use the following method:

 	
 publicclassAttachmentMapping:ClassMapping<Attachment>

 {

 publicAttachmentMapping()

 {

 this.Table("attachment");

 this.Lazy(true);

 this.Id(x=>x.AttachmentId,x=>

 {

 x.Column("attachment_id");

 x.Generator(Generators.HighLow,x=>x.Params(new{sequence="ATTACHMENT_SEQUENCE"}));

 });

 //…

 }

 One problem with mapping by code—or more generally speaking, with LINQ expressions—is that you can only access public members. However, NHibernate lets you access both public as well as non-public members. If you want to map non-public classes, you have to use their names, for example:

 	
 this.Id("AttachmentId",x=>

 {

 //…

 });

 this.Property("Filename",x=>

 {

 //…

 });

 this.ManyToOne("Post",x=>

 {

 //…

 });

 Now that you have mapping classes, you need to tie them to the Configuration instance. Three ways to do this:

 1. One class mapping at a time (instance of ClassMapping<T>)

 2. A static array of mappings

 3. A dynamically obtained array

 	
 Configurationcfg=BuildConfiguration(); //whateverwayyoulike

 ModelMappermapper=newModelMapper();

 //1: one class at a time

 mapper.AddMapping<BlogMapping>();

 mapper.AddMapping<UserMapping>();

 mapper.AddMapping<PostMapping>();

 mapper.AddMapping<CommentMapping>();

 mapper.AddMapping<AttachmentMapping>();

 //2: or all at once (pick one or the other, not both)

 mapper.AddMappings(newType[]{typeof(BlogMapping),typeof(UserMapping),typeof(PostMapping),

 typeof(CommentMapping),typeof(AttachmentMapping)});

 //3: or even dynamically found types (pick one or the other, not both)

 mapper.AddMappings(typeof(BlogMapping).Assembly.GetTypes().Where(x=>x.BaseType.IsGenericType&&x.BaseType.GetGenericTypeDefinition()==typeof(ClassMapping<>)));

 //code to be executed in all cases.

 HbmMappingmappings=mapper.CompileMappingForAllExplicitlyAddedEntities();

 cfg.AddDeserializedMapping(mappings,null);

 For completeness’ sake, let me tell you that you can use mapping by code without creating a class for each entity to map by using the methods in the ModelMapper class:

 	
 mapper.Class<Blog>(ca=>

 {

 ca.Table("blog");

 ca.Lazy(true);

 ca.Id(x=>x.BlogId,map=>

 {

 map.Column("blog_id");

 map.Generator(Generators.HighLow);

 });

 //…

 I won’t include a full mapping here but I think you get the picture. All calls should be identical to what you would have inside a ClassMapping<T>.

 [bookmark: _Toc384732454][bookmark: _Ref354059980][bookmark: _Toc355385621][bookmark: _Toc354573248]Mapping by Attributes

 Yet another option is mapping by attributes. With this approach, you decorate your entity classes and properties with attributes that describe how they are mapped to database objects. The advantage with this is that your mapping becomes self-described, but you must add and deploy a reference to the NHibernate.Mapping.Attributes assembly, which is something that POCO purists may not like.

 First, you must add a reference to NHibernate.Mapping.Attributes either by NuGet or by downloading the binaries from the SourceForge site at http://sourceforge.net/projects/nhcontrib/files/NHibernate.Mapping.Attributes. Let’s choose NuGet:

 Make sure that the project that contains your entities references the NHibernate.Mapping.Attributes assembly. After that, make the following changes to your entities, after adding a reference to NHibernate.Mapping.Attributes namespace:

 User class:

 	
 [Class(Table="user",Lazy=true)]

 publicclassUser

 {

 publicUser()

 {

 this.Blogs=newIesi.Collections.Generic.HashedSet<Blog>();

 this.Details=newUserDetail();

 }

 [Id(0,Column="user_id",Name="UserId")]

 [Generator(1,Class="hilo")]

 publicvirtualInt32UserId { get; protected set; }

 [Property(Name= "Username", Column="username",Length=20,NotNull=true)]

 publicvirtualStringUsername { get; set; }

 [ComponentProperty(PropertyName="Details")]

 publicvirtualUserDetailDetails { get; set; }

 [Property(Name= "Birthday", Column="birthday",NotNull=false)]

 publicvirtualDateTime?Birthday { get; set; }

 [Set(0,Name= "Blogs", Cascade="all-delete-orphan",Lazy=CollectionLazy.True,Inverse=true,

 Generic=true)]

 [Key(1,Column="user_id",NotNull=true)]

 [OneToMany(2,ClassType=typeof(Blog))]

 publicvirtualIesi.Collections.Generic.ISet<Blog>Blogs { get; protectedset; }

 }

 Blog class:

 	
 [Class(Table="blog",Lazy=true)]

 publicclassBlog

 {

 publicBlog()

 {

 this.Posts=newList<Post>();

 }

 [Id(0,Column="blog_id",Name="BlogId")]

 [Generator(1,Class="hilo")]

 publicvirtualInt32BlogId { get; protected set; }

 [Property(Column="picture",NotNull=false,TypeType=typeof(ImageUserType),Lazy=true)]

 publicvirtualImagePicture { get; set; }

 [Property(Name= "PostCount", Formula="(SELECTCOUNT(1)FROMpostWHEREpost.blog_id=blog_id)")]

 publicvirtualInt64PostCount { get; protectedset; }

 [ManyToOne(0,Column="user_id",NotNull=true,Lazy=Laziness.NoProxy,Name="Owner",

 Cascade="save-update")]

 [Key(1)]

 publicvirtualUserOwner { get; set; }

 [Property(Name= "Name", Column="name",NotNull=true,Length=50)]

 publicvirtualStringName { get; set; }

 [Property(Name= "Creation", Column="creation",NotNull=true)]

 publicvirtualDateTimeCreation { get; set; }

 [List(0,Name= "Posts", Cascade="all-delete-orphan",Lazy= CollectionLazy.True,Inverse=true,

 Generic=true)]

 [Key(1,Column="blog_id",NotNull=true)]

 [Index(2,Column="number")]

 [OneToMany(3,ClassType=typeof(Post))]

 publicvirtualIList<Post>Posts { get; protectedset; }

 }

 Post class:

 	
 [Class(Table="post",Lazy=true)]

 publicclassPost

 {

 publicPost()

 {

 this.Tags=newIesi.Collections.Generic.HashedSet<String>();

 this.Attachments=newIesi.Collections.Generic.HashedSet<Attachment>();

 this.Comments=newList<Comment>();

 }

 [Id(0,Column="post_id",Name="PostId")]

 [Generator(1,Class="hilo")]

 publicvirtualInt32PostId { get; protected set; }

 [ManyToOne(0,Column="blog_id",NotNull=true,Lazy=Laziness.NoProxy,Name="Blog")]

 [Key(1)]

 publicvirtualBlogBlog { get; set; }

 [Property(Name= "Timestamp", Column="timestamp",NotNull=true)]

 publicvirtualDateTimeTimestamp { get; set; }

 [Property(Name= "Title", Column="title",Length=50,NotNull=true)]

 publicvirtualStringTitle { get; set; }

 [Property(Name= "Content", Column="content",Length=2000,NotNull=true,Lazy=true,

 Type="StringClob")]

 publicvirtualStringContent { get; set; }

 [Set(0,Name= "Tags", Table="tag",OrderBy="tag",Lazy=CollectionLazy.False,

 Cascade="all",Generic=true)]

 [Key(1,Column="post_id",Unique=true,NotNull=true)]

 [Element(2,Column="tag",Length=20,NotNull=true,Unique=true)]

 publicvirtualIesi.Collections.Generic.ISet<String>Tags { get; protectedset; }

 [Set(0,Name= "Attachments", Inverse=true,Lazy=CollectionLazy.True,Generic=true,

 Cascade="all-delete-orphan")]

 [Key(1,Column="post_id",NotNull=true)]

 [OneToMany(2,ClassType=typeof(Attachment))]

 publicvirtualIesi.Collections.Generic.ISet<Attachment>Attachments { get; protectedset; }

 [Bag(0,Name= "Comments", Inverse=true,Lazy=CollectionLazy.True,Generic=true,

 Cascade="all-delete-orphan")]

 [Key(1,Column="post_id",NotNull=true)]

 [OneToMany(2,ClassType=typeof(Comment))]

 publicvirtualIList<Comment>Comments { get; protectedset; }

 }

 Comment class:

 	
 [Class(Table="comment",Lazy=true)]

 publicclassComment

 {

 publicComment()

 {

 this.Details=newUserDetail();

 }

 [Id(0,Column="comment_id",Name="CommentId")]

 [Generator(1,Class="hilo")]

 publicvirtualInt32CommentId { get; protected set; }

 [ComponentProperty(PropertyName="Details")]

 publicvirtualUserDetailDetails { get; set; }

 [Property(Name= "Timestamp", Column="timestamp",NotNull=true)]

 publicvirtualDateTimeTimestamp { get; set; }

 [Property(Name= "Content", Column="content",NotNull=true,Length=2000,Lazy=true,

 Type="StringClob")]

 publicvirtualStringContent { get; set; }

 [ManyToOne(0,Column="post_id",NotNull=true,Lazy=Laziness.NoProxy,Name="Post")]

 [Key(1)]

 publicvirtualPostPost { get; set; }

 }

 Attachment class:

 	
 [Class(Table="attachment",Lazy=true)]

 publicclassAttachment

 {

 [Id(0,Column="attachment_id",Name="AttachmentId")]

 [Generator(1,Class="hilo")]

 publicvirtualInt32AttachmentId { get; protected set; }

 [Property(Name= "Filename", Column="filename",Length=50,NotNull=true)]

 publicvirtualStringFilename { get; set; }

 [Property(Name= "Contents", Column="contents",NotNull=true,Length=100000,

 Type="BinaryBlob")]

 publicvirtualByte[]Contents { get; set; }

 [Property(Name= "Timestamp", Column="timestamp",NotNull=true)]

 publicvirtualDateTimeTimestamp { get; set; }

 [ManyToOne(0,Column="post_id",NotNull=true,Lazy=Laziness.NoProxy,Name="Post")]

 [Key(1)]

 publicvirtualPostPost { get; set; }

 }

 And, finally, the UserDetail class also needs to be mapped (it is the implementation of the Details component of the User and Comment classes):

 	
 [Component]

 publicclassUserDetail

 {

 [Property(Name= "Url", Column="url",Length=50,NotNull=false)]

 publicStringUrl { get; set; }

 [Property(Name= "Fullname", Column="fullname",Length=50,NotNull=true)]

 publicStringFullname { get; set; }

 [Property(Name= "Email", Column="email",Length=50,NotNull=true)]

 publicStringEmail { get; set; }

 }

 After that, we need to add this kind of mapping to the NHibernate configuration. Here’s how:

 	
 HbmSerializerserializer=newHbmSerializer(){Validate=true};

 using(MemoryStreamstream=serializer.Serialize(typeof(Blog).Assembly))

 {

 cfg.AddInputStream(stream);

 }

 	

 	
 Tip: Add a reference to the System.IO and NHibernate.Mapping.Attributes namespaces.

 For adding parameters to the identifier generator:

 	
 [Class(Table="attachment",Lazy=true)]

 publicclassAttachment

 {

 [Id(0,Column="attachment_id",Name="AttachmentId")]

 [Generator(1,Class="hilo")]

 [Param(Name="sequence",Content="ATTACHMENT_SEQUENCE")]

 publicvirtualInt32AttachmentId { get; protected set; }

 //

 }

 And that’s it. There are two things of which you must be aware when mapping with attributes:

 · For those mappings that need multiple attributes (the collections and the identifiers), you need to set an order on these attributes; that’s what the first number on each attribute declaration is for. See, for example, the Posts collection of the Blog class and its BlogId property.

 · Property attributes need to take the property they are being applied to as their Name.

 [bookmark: _Toc384732455][bookmark: _Toc355385622][bookmark: _Toc354573249]Mapping Inheritances

 Consider the following class hierarchy:

 Figure 18: Inheritance Model

 We have here an abstract concept, a Person, and two concrete representations of it, a NationalCitizen and a ForeignCitizen. Each Person must be one of them. In some countries (like Portugal, for example), there is a National Identity Card, whereas in other countries no such card exists—only a passport and the country of issue.

 In object-oriented languages, we have class inheritance, which is something we don’t have with relational databases. So a question arises: How can we store this in a relational database?

 In his seminal work Patterns of Enterprise Application Architecture, Martin Fowler described three patterns for persisting class hierarchies in relational databases:

 1. Single Table Inheritance or Table Per Class Hierarchy: A single table is used to represent the entire hierarchy. It contains columns for all mapped properties of all classes and, of course, many of these will be NULL because they will only exist for one particular class. One discriminating column will store a value that will tell NHibernate what class a particular record will map to:

 Figure 19: Single Table Inheritance

 2. Class Table Inheritance or Table Per Class: A table will be used for the columns for all mapped-based class properties, and additional tables will exist for all concrete classes. The additional tables will be linked by foreign keys to the base table:

 Figure 20: Class Table Inheritance

 3. Concrete Table Inheritance or Table Per Concrete Class: One table for each concrete class, each with columns for all mapped properties specific or inherited by each class:

 Figure 21: Concrete Table Inheritance

 You can see a more detailed explanation of these patterns in Martin’s website at http://martinfowler.com/eaaCatalog/index.html. For now, I’ll leave you with some general thoughts:

 · Single Table Inheritance: When it comes to querying from a base class, this offers the fastest performance because all of the information is contained in a single table. However, if you have a lot of properties in all of the classes, it will be a difficult read and you will have a lot of nullable columns. In all of the concrete classes, all properties must be optional, not mandatory. Since different entities will be stored in the same class and not all share the same columns, they must allow null values.

 · Class Table Inheritance: This offers a good balance between table tidiness and performance. When querying a base class, a LEFT JOIN will be required to join each table from derived classes to the base class table. A record will exist in the base class table and in exactly one of the derived class tables.

 · Concrete Table Inheritance: This will require several UNIONs, one for each table of each derived class because NHibernate does not know beforehand at which table to look. Consequently, you cannot use as the identifier generation pattern one that might generate identical values for any two tables (such as identity or sequence, with a sequence being used for each individual table) because NHibernate would be confused if it finds two records with the same id. Also, you will have the same columns—those from the base class—duplicated on all tables.

 As far as NHibernate is concerned, there really isn’t any difference: classes are naturally polymorphic. See the section on Inheritance to learn how to perform queries on class hierarchies.

 Let’s start with Single Table Inheritance, by code. First, the base class, Person:

 	
 publicclassPersonMapping:ClassMapping<Person>

 {

 publicPersonMapping()

 {

 this.Table("person");

 this.Lazy(true);

 this.Discriminator(x=>

 {

 x.Column("class");

 x.NotNullable(true);

 });

 this.Id(x=>x.PersonId,x=>

 {

 x.Column("person_id");

 x.Generator(Generators.HighLow);

 });

 this.Property(x=>x.Name,x=>

 {

 x.Column("name");

 x.NotNullable(true);

 x.Length(100);

 });

 this.Property(x=>x.Gender,x=>

 {

 x.Column("gender");

 x.NotNullable(true);

 x.Type<EnumType<Gender>>();

 });

 }

 }

 The only thing that’s new is the Discriminator option, which we use to declare the column that will contain the discriminator value for all subclasses.

 Next, the mapping for the NationalCitizen class:

 	
 publicclassNationalCitizenMappping:SubclassMapping<NationalCitizen>

 {

 publicNationalCitizenMappping()

 {

 this.DiscriminatorValue("national_citizen");

 this.Lazy(true);

 this.Property(x=>x.NationalIdentityCard,x=>

 {

 x.Column("national_identity_card");

 x.Length(20);

 x.NotNullable(true);

 });

 }

 }

 And, finally, the ForeignCitizen:

 	
 publicclassForeignCitizenMapping:SubclassMapping<ForeignCitizen>

 {

 publicForeignCitizenMapping()

 {

 this.DiscriminatorValue("foreign_citizen");

 this.Lazy(true);

 this.Property(x=>x.Country,x=>

 {

 x.Column("country");

 x.Length(20);

 x.NotNullable(true);

 });

 this.Property(x=>x.Passport,x=>

 {

 x.Column("passport");

 x.Length(20);

 x.NotNullable(true);

 });

 }

 }

 If you would like to map this by XML, here’s one possibility:

 	
 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"xmlns="urn:nhibernate-mapping-2.2">

 <classname="Person"lazy="true"table="`person`"abstract="true">

 <idcolumn="`person_id`"name="PersonId"generator="hilo"/>

 <discriminatorcolumn="`class`"/>

 <propertyname="Name"column="`name`"length="100"not-null="true"/>

 <propertyname="Gender"column="gender"/>

 </class>

 </hibernate-mapping>

 	
 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"

 xmlns="urn:nhibernate-mapping-2.2">

 <subclassname="NationalCitizen"lazy="true"extends="Person" discriminator-value="national_citizen">

 <propertyname="NationalIdentityCard"column="`national_identity_card`"length="20"not-null="false"/>

 </subclass>

 </hibernate-mapping>

 	
 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"

 xmlns="urn:nhibernate-mapping-2.2">

 <subclassname="ForeignCitizen" lazy="true"extends="Person"discriminator-value="foreign_citizen">

 <propertyname="Country"column="`country`"length="20"not-null="false"/>

 <propertyname="Passport"column="`passport`"length="20"not-null="false"/>

 </subclass>

 </hibernate-mapping>

 And, finally, if your choice is attributes mapping, here’s how it goes:

 	
 [Class(0,Table="person",Lazy=true,Abstract=true)]

 [Discriminator(1,Column="class")]

 publicabstractclassPerson

 {

 [Id(0,Name="PersonId",Column="person_id")]

 [Generator(1,Class="hilo")]

 publicvirtualInt32PersonId { get; protected set; }

 [Property(Name="Name",Column="name",Length=100,NotNull=true)]

 publicvirtualStringName { get; set; }

 [Property(Name="Gender",Column="gender",TypeType=typeof(EnumType<Gender>),NotNull=true)]

 publicvirtualGenderGender { get; set; }

 }

 	
 [Subclass(DiscriminatorValue="national_citizen",ExtendsType=typeof(Person),Lazy=true)]

 publicclassNationalCitizen:Person

 {

 [Property(Name="NationalIdentityCard",Column="national_identity_card",Length=50,NotNull=false)]

 publicvirtualStringNationalIdentityCard { get; set; }

 }

 	
 [Subclass(DiscriminatorValue="foreign_citizen",ExtendsType=typeof(Person),Lazy=true)]

 publicclassForeignCitizen:Person

 {

 [Property(Name="Passport",Column="passport",Length=50,NotNull=false)]

 publicvirtualStringPassport { get; set; }

 [Property(Name="Country",Column="country",Length=50,NotNull=false)]

 publicvirtualStringCountry { get; set; }

 }

 When it comes to querying, a query on the Person class looks like this:

 	
 IEnumerable<Person>allPeopleFromLinq=session.Query<Person>().ToList();

 Produces this SQL:

 	
 SELECT

 person0_.person_id AS person1_2_,

 person0_.name AS name2_,

 person0_.gender AS gender2_,

 person0_.passport AS passport2_,

 person0_.country AS country2_,

 person0_.national_identity_card AS national7_2_,

 person0_.[class] AS class2_2_

 FROM

 person person0_

 If we want to restrict on a specific type:

 	
 IEnumerable<NationalCitizen>nationalCitizensFromLinq=session.Query<NationalCitizen>().ToList();

 Will produce this SQL:

 	
 SELECT

 nationalci0_.person_id AS person1_2_,

 nationalci0_.name AS name2_,

 nationalci0_.gender AS gender2_,

 nationalci0_.national_identity_card AS national7_2_

 FROM

 person nationalci0_

 WHERE

 nationalci0_.[class] = 'national_citizen'

 Moving on, we have Class Table Inheritance, which is also known in NHibernate jargon as joined subclass because we need to join two tables together to get the class’ values. Here are its loquacious mappings (the mappings for the Person class remain the same, except that we removed the Discriminator call):

 	
 publicclassPersonMapping:ClassMapping<Person>

 {

 publicPersonMapping()

 {

 this.Table("person");

 this.Lazy(true);

 this.Id(x=>x.PersonId,x=>

 {

 x.Column("person_id");

 x.Generator(Generators.HighLow);

 });

 this.Property(x=>x.Name,x=>

 {

 x.Column("name");

 x.NotNullable(true);

 x.Length(100);

 });

 this.Property(x=>x.Gender,x=>

 {

 x.Column("gender");

 x.NotNullable(true);

 x.Type<EnumType<Gender>>();

 });

 }

 }

 	
 publicclassNationalCitizenMappping:JoinedSubclassMapping<NationalCitizen>

 {

 publicNationalCitizenMappping()

 {

 this.Table("national_citizen");

 this.Lazy(true);

 this.Key(x=>

 {

 x.Column("person_id");

 x.NotNullable(true);

 });

 this.Property(x=>x.NationalIdentityCard,x=>

 {

 x.Column("national_identity_card");

 x.Length(20);

 x.NotNullable(true);

 });

 }

 }

 For ForeignCitizen:

 	
 publicclassForeignCitizenMapping:JoinedSubclassMapping<ForeignCitizen>

 {

 publicForeignCitizenMapping()

 {

 this.Table("foreign_citizen");

 this.Lazy(true);

 this.Key(x=>

 {

 x.Column("person_id");

 x.NotNullable(true);

 });

 this.Property(x=>x.Country,x=>

 {

 x.Column("country");

 x.Length(20);

 x.NotNullable(true);

 });

 this.Property(x=>x.Passport,x=>

 {

 x.Column("passport");

 x.Length(20);

 x.NotNullable(true);

 });

 }

 }

 Here, what’s different in the mapping of the subclasses is the introduction of a Key, which we use to tell NHibernate the column to use for joining with the PERSON table.

 The XML equivalent would be:

 	
 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"xmlns="urn:nhibernate-mapping-2.2">

 <classname="Person"lazy="true"table="`PERSON`"abstract="true">

 <idcolumn="`PERSON_ID`"name="PersonId"generator="hilo"/>

 <propertyname="Name"column="`name`"length="100"not-null="true"/>

 <propertyname="Gender"column="gender"/>

 </class>

 </hibernate-mapping>

 	

 	

 	
 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"xmlns="urn:nhibernate-mapping-2.2">

 <joined-subclassname="NationalCitizen"lazy="true"extends="Person"table="`NATIONAL_CITIZEN`">

 <keycolumn="`PERSON_ID`"/>

 <propertyname="NationalIdentityCard"column="`national_identity_card`"length="20"not-null="false"/>

 </joined-subclass>

 </hibernate-mapping>

 	
 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"xmlns="urn:nhibernate-mapping-2.2">

 <joined-subclassname="ForeignCitizen"lazy="true"extends="Person"table="`FOREIGN_CITIZEN`">

 <keycolumn="`PERSON_ID`"/>

 <propertyname="Country"column="`country`"length="20"not-null="false"/>

 <propertyname="Passport"column="`passport`"length="20"not-null="false"/>

 </joined-subclass>

 </hibernate-mapping>

 Finally, the attributes version:

 	
 [Class(0,Table="person",Lazy=true,Abstract=true)]

 publicabstractclassPerson

 {

 //…

 }

 	
 [JoinedSubclass(0,Table="national_citizen",ExtendsType=typeof(Person),Lazy=true)]

 [Key(1,Column="person_id")]

 publicclassNationalCitizen:Person

 {

 //…

 }

 	
 [JoinedSubclass(0,Table="foreign_citizen",ExtendsType=typeof(Person),Lazy=true)]

 [Key(1,Column="person_id")]

 publicclassForeignCitizen:Person

 {

 //…

 }

 A query for the base class produces the following SQL, joining all tables together:

 	
 SELECT

 person0_.person_id AS person1_6_,

 person0_.name AS name6_,

 person0_.gender AS gender6_,

 person0_1_.passport AS passport11_,

 person0_1_.country AS country11_,

 person0_2_.national_identity_card AS national2_12_,

 CASE

 WHEN person0_1_.person_id IS NOT NULL THEN 1

 WHEN person0_2_.person_id IS NOT NULL THEN 2

 WHEN person0_.person_id IS NOT NULL THEN 0

 END AS clazz_

 FROM

 person person0_

 LEFT OUTER JOIN

 foreign_citizen person0_1_

 ON person0_.person_id = person0_1_.person_id

 LEFT OUTER JOIN

 national_citizen person0_2_

 ON person0_.person_id = person0_2_.person_id

 And one for a specific class:

 	
 SELECT

 nationalci0_.person_id AS person1_2_,

 nationalci0_1_.name AS name2_,

 nationalci0_1_.gender AS gender2_,

 nationalci0_.national_identity_card AS national2_8_

 FROM

 national_citizen nationalci0_

 INNER JOIN

 person nationalci0_1_

 ON nationalci0_.person_id = nationalci0_1_.person_id

 Finally, the last mapping strategy, Concrete Table Inheritance or union-subclass. The mappings, using the loquacious API:

 	
 publicclassNationalCitizenMappping:UnionSubclassMapping<NationalCitizen>

 {

 publicNationalCitizenMappping()

 {

 this.Table("national_citizen");

 this.Lazy(true);

 //…

 }

 }

 	
 publicclassForeignCitizenMappping:UnionSubclassMapping<ForeignCitizen>

 {

 publicForeignCitizenMappping()

 {

 this.Table("foreign_citizen");

 this.Lazy(true);

 //…

 }

 }

 	

 	
 Tip: The mapping for Person is exactly the same as for the Class Table Inheritance.

 As you can see, the only difference is that the Key entry is now gone. That’s it.

 Also in XML:

 	
 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"

 xmlns="urn:nhibernate-mapping-2.2">

 <union-subclassname="NationalCitizen"lazy="true"extends="Person"table="`NATIONAL_CITIZEN`">

 <!-- … -->

 </union-subclass>

 </hibernate-mapping>

 	
 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"

 xmlns="urn:nhibernate-mapping-2.2">

 <union-subclassname="ForeignCitizen"lazy="true"extends="Person"table="`FOREIGN_CITIZEN`">

 <!-- … -->

 </union-subclass>

 </hibernate-mapping>

 And in attributes:

 	
 [UnionSubclass(0,Table="national_citizen",ExtendsType=typeof(Person),Lazy=true)]

 publicclassNationalCitizen:Person

 {

 //…

 }

 	
 [UnionSubclass(0,Table="foreign_citizen",ExtendsType=typeof(Person),Lazy=true)]

 publicclassForeignCitizen:Person

 {

 //…

 }

 At the end of this section, let’s see what the SQL for the base Person class looks like when using this strategy:

 	
 SELECT

 person0_.person_id AS person1_6_,

 person0_.name AS name6_,

 person0_.gender AS gender6_,

 person0_.passport AS passport11_,

 person0_.country AS country11_,

 person0_.national_identity_card AS national1_12_,

 person0_.clazz_ AS clazz_

 FROM

 (SELECT

 person_id,

 name,

 gender,

 passport,

 country,

 null AS national_identity_card,

 1 AS clazz_

 FROM

 foreign_citizen

 UNION

 ALL SELECT

 person_id,

 name,

 gender,

 null AS passport,

 null AS country,

 national_identity_card,

 2 AS clazz_

 FROM

 national_citizen

) person0_

 And a query for a particular class, in this case, NationalCitizen will produce the following SQL:

 	
 SELECT

 nationalci0_.person_id AS person1_6_,

 nationalci0_.name AS name6_,

 nationalci0_.gender AS gender6_,

 nationalci0_.national_identity_card AS national1_12_

 FROM

 national_citizen nationalci0_

 [bookmark: _Toc384732456][bookmark: _Toc355385623][bookmark: _Toc354573250]Which One Shall I Choose?

 We have seen a lot of things in this chapter. For mapping APIs, I risk offering my opinion: choose mapping by code. It is more readable and easy to maintain than HBM.XML, and it is strongly typed, meaning that, if you change some property, you will automatically refactor the mapping and won’t need to bother to explicitly compile your project because, since it’s code, Visual Studio will do it whenever necessary. Attributes require a reference to a NHibernate-specific assembly and are more difficult to change than mapping by code.

 In the end, with whatever mapping you choose, here is the resulting database model:

 Figure 22: Database Model for the Blogging System

 For mapping inheritances, it is a decision worth thinking over, as there is no direct answer. But I am in favor of Class Table Inheritance because there is no duplication of columns for each concrete class and because each table only has a few columns.

 [bookmark: _Toc384732457][bookmark: _Toc355385624][bookmark: _Toc354573251]Chapter 5 Querying the Database

 Granted, probably the most typical operation you do involving a database is to query it. NHibernate offers a rich set of APIs to do this, covering different use cases.

 To start querying your model, you need a session. A session is obtained from a session factory which, in turn, is built from the configuration object you learned to create in the chapter on Configuration. You will use something like:

 	
 [bookmark: _Hlk379744239]//the one and only session factory

 using(ISessionFactorysessionFactory=cfg.BuildSessionFactory())

 {

 using(ISessionsession=sessionFactory.OpenSession())

 {

 //one session

 }

 using(ISessionsession=sessionFactory.OpenSession())

 {

 //another session

 }

 }

 	

 	
 Tip: You will need to reference the NHibernate namespace in order to compile this example.

 Do note that both the session factory and the sessions are wrapped in using blocks. This is to ensure that they both are disposed of when no longer needed—at the end of each block.

 A session factory may spawn multiple-session objects. It is a heavy beast and, typically, you only have one of these in your program. You will only need more than one if you wish to target multiple databases at the same time. In that case, there will be multiple Configuration and ISessionFactory instances. It is safe to access a session factory from multiple threads. What’s a session factory used for? Well, it builds up all the metadata from the mappings in the configuration object and tries to match them against actual .NET classes and database tables. It is the session factory that triggers the data model creation/validation that was discussed at the start of the Mappings chapter. And it is its disposal that will trigger its dropping, if so configured. It is read-only.

 	

 	
 Note: Do not make changes to the Configuration instance after creating a session factory.

 Sessions, on the other hand, are lightweight and do not actually represent a connection to a database; one is created when necessary, automatically. A session is where the action actually occurs. It’s the session that is responsible for querying. They are lightweight, so you can create new instances whenever you need them, typically inside a method. Do not keep references to a session in places where it might not be released. Also, do not access sessions from different threads; unexpected behavior may occur.

 	

 	
 Tip: Whenever an exception is thrown by any session operation, the session instance becomes unusable and must be disposed of.

 That being said, there are several APIs that will take a query and return a collection of in-memory objects that map to the objects on your database. Let’s look at them one by one.

 Before we start, this is the domain model that we will be using:

 Figure 23: Orders Class Model

 [bookmark: _Toc384732458][bookmark: _Toc355385625][bookmark: _Toc354573252]By ID

 If you know the identifier of the record you are trying to obtain, you can get it directly by this id:

 	
 //get strongly typedinstancebyid

 varsomeProduct=session.Get<Product>(1);

 //getobjectinstancebyid and type

 varsomeObject=session.Get(typeof(Product),1);

 Get will return null if the record is not found. If it is, it will be loaded from the database and the appropriate class materialized.

 [bookmark: _Toc384732459][bookmark: _Toc355385626][bookmark: _Toc354573253][bookmark: _Ref350892458]LINQ

 Since .NET 3.5 came along, LINQ has become the de facto standard for querying in the .NET world and it is understandable why. It is a unified way of performing strongly typed, object-oriented queries that are independent of the data source. NHibernate, of course, supports LINQ querying. To issue a LINQ query, you must make use of the Query extension method applied to a session:

 	
 //simplest LINQ query containing a filter varproducts=session.Query<Product>().Where(x=>x.Price>1000).ToList();

 	

 	
 Tip: Import the NHibernate, NHibernate.Linq, and System.Linq namespaces.

 Keep in mind that a LINQ query is only executed (sent to the database) when a terminal method is called such as ToList, ToArray, Single, SingleOrDefault, First, FirstOrDefault, Any or Count. If you don’t include such a method call, all you have is a query waiting to be executed, and you can add conditions and ordering to it:

 	
 //a query over all Products

 varallProductsQuery=session.Query<Product>();

 if(someCondition==true)

 {

 //a filter

 allProductsQuery=allProductsQuery.Where(x=>x.Price>1000);

 }

 else

 {

 //a filter

 allProductsQuery=allProductsQuery.Where(x=>x.Price<=1000);

 }

 if(sortByName==true)

 {

 //ordering

 allProductsQuery=allProductsQuery.OrderBy(x=>x.Name);

 }

 else

 {

 //ordering

 allProductsQuery=allProductsQuery.OrderByDescending(x=>x.Price);

 }

 //run the query

 varallProducts=allProductsQuery.ToList();

 LINQ supports most operations available on SQL, for example:

 	
 [bookmark: _Hlk379747730]//checkingifarecordexists

 varproductsWithoutOrders=session.Query<Product>().Where(x=>x.OrderDetails.Any()==false).ToList();

 //filteroncollection

 varordersOfIphones=session.Query<OrderDetail>().Where(x=>x.Product.Name=="iPhone")

 .Select(x=>x.Order).ToList();

 //twooptionalconditions

 varprocessedOrReceivedOrders=session.Query<Order>()

 .Where(x=>x.State==OrderState.Processed||x.State==OrderState.Received).ToList();

 //groupingandcounting

 varcountByProduct=(fromodinsession.Query<OrderDetail>()

 groupodbyod.Product.Nameintop

 selectnew{Product=p.Key,Count=p.Count()})

 .ToList();

 //customerswithtwoorders

 varcustomersWithTwoOrders=session.Query<Customer>().Where(x=>x.Orders.Count()==2)

 .ToList();

 //nestingqueries

 varcustomersWithOrders=session.Query<Customer>().Where(x=>x.Orders.Any());

 varordersFromCustomers=session.Query<Order>().Where(x=>customersWithOrders

 .Contains(x.Customer))

 .ToList();

 //paging

 varproductsFrom20to30=session.Query<Product>().Skip(19).Take(10).ToList();

 //multipleconditions

 varproductsWithPriceBetween10And20=session.Query<Product>()

 .Where(x=>x.Price>=10&&x.Price<20)

 .ToList();

 //firstrecordthatmatchesacondition

 varcustomerWithMoreOrders=session.Query<Customer>().OrderBy(x=>x.Orders.Count())

 .FirstOrDefault();

 //projection

 varproductsAndOrderCount=session.Query<Product>()

 .Select(x=>new{x.Name,Count=x.OrderDetails.Count()}).ToList();

 //thetajoinwithprojection

 varproductsAndCustomers=(frompinsession.Query<Product>()

 joinodinsession.Query<OrderDetail>()onpequalsod.Product

 selectnew{ProductName=p.Name,CustomerName=od.Order.Customer.Name})

 .ToList().Distinct();

 //propertynavigation and sorting

 varfirstCustomer=session.Query<OrderDetail>().OrderBy(x=>x.Order.Date)

 .Select(x=>x.Order.Customer.Name).FirstOrDefault();

 //setofvalues

 varorders=session.Query<Order>()

 .Where(x=>newOrderState[]{OrderState.Processed,OrderState.Sent}.Contains(x.State))

 .ToList();

 //parameters

 varrecentOrders=session.Query<Order>()

 .Where(x=>x.Date<=DateTime.Today&&x.Date>DateTime.Today.AddDays(-7)).ToList();

 One notable exception that NHibernate LINQ cannot handle is OUTER JOINs (LEFT, RIGHT, FULL). In the current version of NHibernate, OUTER JOINs between unrelated entities are not supported.

 	

 	
 Note: Do not be alarmed by the presence of constants; all constants will be translated to parameters so as to reuse the execution plan for the query. This also prevents SQL injection.

 Most users of NHibernate will use LINQ as its primary query API, but there are alternatives as we will see next.

 [bookmark: _Toc384732460][bookmark: _Toc355385627][bookmark: _Toc354573254][bookmark: _Ref350892478]HQL

 Hibernate Query Language (HQL) is a database-independent, object-oriented, SQL-like language that can be used for general-purpose querying over entities. Its syntax is very similar to SQL as you can see for yourself:

 	

 	
 Tip: To try these examples, import the NHibernate namespace.

 	
 //checkingifarecordexists

 varproductsWithoutOrders=session.CreateQuery(

 "fromProductxwherenotexistselements(x.OrderDetails)").List<Product>();

 //filteroncollection

 varordersOfIphones=session.CreateQuery(

 "selectofromOrderojoino.Detailsodwhereod.Product.Name=:name").SetParameter("name","iPhone")

 .List<Order>();

 //twooptionalconditions

 varprocessedOrReceivedOrders=session.CreateQuery(

 "fromOrder o where o.State = :processed or o.State = :received")

 .SetParameter("processed",OrderState.Processed).SetParameter("received",OrderState.Received)

 .List<Order>();

 //groupingandcounting

 varcountByProduct=session.CreateQuery(

 "selectod.Product.Name,count(od)fromOrderDetailodgroupbyod.Product.Name").List<Object[]>();

 //customerswithtwoorders

 varcustomersWithTwoOrders=session.CreateQuery("fromCustomercwherec.Orders.size=2")

 .List<Customer>();

 //nestingqueries

 varordersFromCustomers=session.CreateQuery(

 "fromOrderowhereo.Customerin(selectcfromCustomercwhereexistselements(c.Orders))")

 .List<Order>();

 //paging

 varproductsFrom20to30=session.CreateQuery("fromProductskip19take10").List<Product>();

 //this is identical

 varproductsFrom20to30=session.CreateQuery("fromProduct").SetMaxResults(10)

 .SetFirstResult(20)

 .List<Product>();

 //thetajoinswithprojection

 varproductCustomer=session.CreateQuery(

 "selectdistinctp.Name,od.Order.Customer.NamefromProductp,OrderDetailodwhereod.Product=p")

 .List<Object[]>();

 //propertynavigation and sorting

 varfirstCustomerWith=session.CreateQuery(

 "selectx.Order.Customer.NamefromOrderDetailxorderbyx.Order.Datetake1")

 .UniqueResult<String>();

 //setofvalues

 varorders=session.CreateQuery("fromOrderowhereo.Statein(:states)")

 .SetParameterList("states",newOrderState[]{OrderState.Processed,OrderState.Sent}).List<Order>();

 //parameters

 varrecentOrders=session

 .CreateQuery("fromOrderowhereo.Datebetween:todayand:a_week_ago")

 .SetParameter("today",DateTime.Today).SetParameter("a_week_ago",DateTime.Today.AddDays(-7))

 .List<Order>();

 But beware! While HQL itself is case-insensitive (“select” is equal to “SELECT” is equal to “Select”) the class’ names and properties are not.

 Similar to LINQ, you can take the IQuery object and add paging (SetFirstResult, SetMaxResults) or parameters (SetParameter, SetParameterList, SetEntity) before actually executing the query, which will only happen when you call List, List<T>, UniqueResult or UniqueResult<T>. You will probably want to use the generic version of these methods when your query returns entities. In this case, because the HQL query is not strongly typed, you need to set the generic parameter type yourself.

 A parameter in HQL is always specified with the ‘:’ character as a prefix to its name, regardless of the character that the database uses (‘@’ in Oracle, ‘:’ in SQL Server, etc). Its position does not matter, only its name. If the parameter is a single value, you should use SetParameter to set its value; if it is a collection (array, ArrayList or List<T>), use SetParameterList instead. If you are passing an entity, use SetEntity.

 One advantage that HQL offers is that it has access to standard SQL functions, although probably with a nonstandard name. Here are some of them, available for all database engines:

 	
 Category

 	
 Function

 	
 Description

 	
 Aggregations

 	
 count(…)

 count(distinct …)

 max(…)

 min(…)

 sum(…)

 avg(…)

 	
 Count of items

 Count of distinct items

 Maximum value

 Minimum value

 Sum of all values

 Average of all values

 	
 Date and Time

 	
 day(…)

 month(…)

 year(…)

 hour(…)

 minute(…)

 second(…)

 extract(… from …)

 current_timestamp

 	
 Day part of a date

 Month part of a date

 Year part of a date

 Hours part of a date/time

 Minutes part of a date/time

 Seconds part of a date/time

 Extracts a part from a date/time

 Current database date and time

 	
 General Purpose

 	
 cast(…)

 coalesce(…)

 nullif(…)

 id

 size

 class

 	
 Casts an expression into another .NET type

 Returns the first non-null value

 If two values are equal, returns null

 Entity identifier

 Collection size

 Returns the actual class of an abstract entity

 	
 Mathematics

 	
 sqrt(…)

 log(…)

 tan(…)

 sin(…)

 cos(…)

 mod(…)

 rand()

 abs(…)

 	
 Square root

 Natural logarithm

 Tangent

 Sine

 Cosine

 Modulus, the remaining of an integer division

 Random value

 Absolute value

 	
 String

 	
 concat(…)

 substring(…)

 locate(…)

 replace(…)

 trim(…)

 upper(…)

 lower(…)

 length(…)

 bit_length(…)

 str(…)

 	
 Concatenates several strings together

 Returns a substring

 Returns the index of a substring

 Replaces the first occurrence of a string

 Removes leading or trailing blank characters

 Uppercase

 Lowercase

 Length in characters

 Length in bits (length() * 8)

 Converts an expression to a string

 Some things are different from SQL:

 · Outer joins (LEFT, RIGHT, FULL) between two arbitrary, non-related entities are not supported; HQL can only perform joins between entities having properties that link them.

 · No “*” selection; the default is to select all of the mapped entities’ properties.

 · No need to explicitly join two entities whose relation is mapped, just navigate from one to the other through its navigation property.

 · All selects must come from some entity, although they might not reference it (for example, “SELECT GETDATE()” is not supported, but “select current_timestamp from Product” is.

 · The “select” part is optional; if not present, it means “select all of the mapped entity’s properties”.

 · HQL is polymorphic; it understands base classes, which means that the query “from System.Object” will return all records from the database, so beware!

 · You don’t have to explicitly escape entities and properties with reserved names (such as Order); NHibernate will do it for you.

 · If you explicitly join several associations or collections causing a Cartesian product, you may receive a response that is not what you expect: NHibernate will be confused and you will have to tell it to distinguish the distinct root entity that you want, by using a result transformer:

 	
 //multiple joins

 varorderDetailsWithProductsAndOrders=session

 .CreateQuery("fromOrderDetailodjoinod.Orderjoinod.Product join od.Order.Customer")

 .SetResultTransformer(Transformers.DistinctRootEntity).List<OrderDetail>();

 	

 	
 Tip: Import namespace NHibernate.Transform.

 These other things also apply to HQL:

 · You should limit the number of records to return, and even use projections, for performance’s sake.

 · You should use parameters instead of constants, to allow for execution plan reusing.

 · HQL is case-insensitive.

 · You must use the syntax “is null” instead of “= null”.

 [bookmark: _Toc384732461][bookmark: _Toc355385628][bookmark: _Toc354573255]Criteria

 Another querying API is Criteria. It is interesting because it offers a more conceptual, explicit, step-by-step approach, which is good for multi-step dynamic generation of queries. For example:

 	

 	
 Tip: Import the namespaces NHibernate and NHibernate.Criterion.

 	
 //mixing SQL

 varproductsByNameLike=session.CreateCriteria(typeof(Product))

 .Add(Expression.Sql("Name LIKE ?", "%Phone", NHibernateUtil.String)).List<Product>();

 //checkingifarecordexists

 varproductsWithoutOrders=session.CreateCriteria("Product","p")

 .Add(Restrictions.IsEmpty("p.OrderDetails")).List<Product>();

 //filteroncollection

 varordersOfIphones=session.CreateCriteria(typeof(Order))

 .CreateCriteria("Details").CreateCriteria("Product")

 .Add(Restrictions.Eq(Projections.Property("Name"),"iPhone")).List<Order>();

 //twooptionalconditions

 varprocessedOrReceivedOrders=session.CreateCriteria(typeof(Order))

 .Add(Restrictions.Or(Restrictions.Eq(Projections.Property("State"),OrderState.Processed),

 Restrictions.Eq(Projections.Property("State"),OrderState.Received))).List<Order>();

 //groupingandcounting

 varprojection= Projections.ProjectionList()

 .Add(Projections.GroupProperty("p.Name")).Add(Projections.Count("Product"));

 varcountByProduct=session.CreateCriteria(typeof(OrderDetail),"od")

 .CreateAlias("od.Product","p").SetProjection(projection).List();

 //customerswithtwoorders

 varinnerQuery=DetachedCriteria.For(typeof(Customer))

 .CreateAlias("Orders","o").SetProjection(Projections.ProjectionList()

 .Add(Projections.RowCount()));

 varcustomersWithTwoOrders=session.CreateCriteria(typeof(Customer),"c")

 .Add(Subqueries.Eq(2,innerQuery)).List<Customer>();

 //nestingqueries

 varinnerQuery=DetachedCriteria.For(typeof(Customer),"ic")

 .Add(Restrictions.IsNotEmpty("Orders")).SetProjection(Projections.ProjectionList()

 .Add(Projections.Constant(1)));

 varordersFromCustomers=session.CreateCriteria(typeof(Order),"o")

 .Add(Subqueries.Exists(innerQuery))

 .List<Order>();

 //paging

 varproductsFrom20to30=session.CreateCriteria(typeof(Product)).SetMaxResults(10)

 .SetFirstResult(20)

 .List<Product>();

 //thetajoinsare notsupportedbyCriteria

 //propertynavigationandsorting

 varfirstCustomer=session.CreateCriteria(typeof(OrderDetail),"od")

 .CreateAlias("Order","o")

 .CreateAlias("o.Customer","c").SetProjection(Projections.Property("c.Name"))

 .AddOrder(Order.Asc("o.Date")).SetMaxResults(1).UniqueResult<String>();

 //setofvalues

 varorders=session.CreateCriteria(typeof(Order))

 .Add(Restrictions.In(Projections.Property("State"),newObject[]{OrderState.Processed,

 OrderState.Sent})).List<Order>();

 //parameters

 varrecentOrders=session.CreateCriteria(typeof(Order),"o")

 .Add(Restrictions.Between(Projections.Property("Date"),DateTime.Today.AddDays(7),

 DateTime.Today))

 .List<Order>();

 As you can see, querying with Criteria can be less intuitive than using HQL and LINQ. It requires careful consideration of what to do and may require doing things in several steps, perhaps resorting to additional DetachedCriteria objects. The resulting code is normally longer and harder to follow.

 Paging works the exact same way by means of SetMaxResults and SetFirstResult.

 You can work exclusively with DetachedCriterias, which you can pass around different layers of your application, or even serialize, because they are not tied to any session. In fact, they are a good implementation of the Query Object pattern. One example would be:

 	
 //checkingifarecordexists

 varproductsWithoutOrdersWithDetached=DetachedCriteria.For(typeof(Product),"p")

 .Add(Restrictions.IsEmpty("p.OrderDetails"));

 varproductsWithoutOrders=productsWithoutOrdersWithDetached.GetExecutableCriteria(session)

 .List<Product>();

 If you issue several joins, causing a Cartesian product, you have the same problem that you have with HQL in that you have to tell NHibernate to distinguish the root entity. Here’s how to do it with Criteria:

 	
 //multiplejoins

 varorderDetailsWithProductsAndOrders=session.CreateCriteria(typeof(OrderDetail),"od")

 .CreateAlias("od.Order","o").CreateAlias("od.Product","p").CreateAlias("o.Customer","c")

 .SetResultTransformer(Transformers.DistinctRootEntity).List<OrderDetail>();

 Criteria also offers an interesting query possibility, one that does not exist in any of the previous APIs: querying by example. Let’s see how this works:

 	
 //byexample

 varproductsWithSamePrice=session.CreateCriteria(typeof(Product))

 .Add(Example.Create(newProduct(){Price=1000})).List<Product>();

 Querying by example will take an object and check all of its properties that have non-default values (the id property and collections are not considered) to see what to query for. It will then try to find all objects that match the given values.

 [bookmark: _Toc384732462][bookmark: _Toc355385629][bookmark: _Toc354573256]Query Over

 Next in line is Query Over. It is something of a mix between LINQ and Criteria, meaning it has the same advantages (strong typing, easy to build dynamic queries) and disadvantages (verbosity, complex syntax, need to explicitly perform JOINs). Here are the same queries, now written with Query Over:

 	

 	
 Tip: Import the NHibernate.Criterion namespace.

 	
 //checkingifarecordexists

 varproductsWithoutOrders=session.QueryOver<Product>()

 .WithSubquery.WhereExists(QueryOver.Of<OrderDetail>().Select(x=>x.Product)).List();

 //filteroncollection

 OrderDetailorderDetailAlias=null;

 ProductproductAlias=null;

 varordersOfIphones=session.QueryOver<Order>().JoinQueryOver(x=>x.Details,

 ()=>orderDetailAlias)

 .JoinQueryOver(x=>x.Product,()=>productAlias).Where(x=>x.Name=="iPhone").List();

 //twooptionalconditions

 varprocessedOrReceivedOrders=session.QueryOver<Order>()

 .Where(x=>x.State==OrderState.Processed||x.State==OrderState.Received).List();

 //groupingandcounting

 ProductproductAlias=null;

 varprojection=session.QueryOver<OrderDetail>().JoinAlias(x=>x.Product,

 ()=>productAlias)

 .SelectList(list=>list.SelectGroup(x=>productAlias.Name).SelectCount(x=>x.OrderDetailId))

 .List<Object[]>();

 //customerswithtwoorders

 varinnerQuery=QueryOver.Of<Customer>().JoinQueryOver(x=>x.Orders).ToRowCountQuery();

 varcustomersWithTwoOrders=session.QueryOver<Customer>().WithSubquery.WhereValue(2)

 .Eq(innerQuery)

 .List();

 //nestingqueries

 varinnerQuery=QueryOver.Of<Customer>().WhereRestrictionOn(x=>x.Orders).Not.IsEmpty

 .Select(x=>1);

 varordersFromCustomers=session.QueryOver<Order>().WithSubquery.WhereExists(innerQuery)

 .List();

 //paging

 varproductsFrom20to30=session.QueryOver<Product>().Skip(20).Take(10).List();

 //thetajoinsare notsupportedbyCriteria

 //propertynavigationandsorting

 OrderorderAlias=null;

 CustomercustomerAlias=null;

 varfirstCustomer=session.QueryOver<OrderDetail>().JoinAlias(x=>x.Order,()=>orderAlias)

 .JoinAlias(x=>x.Order.Customer,()=>customerAlias).OrderBy(x=>orderAlias.Date).Desc

 .Select(x=>customerAlias.Name).Take(1).SingleOrDefault<String>();

 //setofvalues

 varorders=session.QueryOver<Order>().WhereRestrictionOn(x=>x.State)

 .IsIn(newObject[]{OrderState.Processed,OrderState.Sent}).List();

 //parameters

 varrecentOrders=session.QueryOver<Order>()

 .Where(Restrictions.Between(Projections.Property<Order>(x=>x.Date),

 DateTime.Today.AddDays(-7),DateTime.Today)).List();

 As you can see, Query Over is similar to Criteria but with strongly typed, LINQ-style expressions. Some of these expressions are also entirely compatible with LINQ. Since most are strongly typed, so are aliases and hence the need for helper variables for representing these aliases.

 Criteria does not support all of the query possibilities that HQL does, namely, theta joins, which are arbitrary joins between two unrelated tables.

 If you ever need to mix Criteria with Query Over, it is possible by means of the RootCriteria property:

 	
 //filteronassociationbyusingCriteria

 varordersOfSomeCustomer=session.QueryOver<Order>()

 .JoinQueryOver(x=>x.Details,()=>orderDetailAlias).RootCriteria

 .CreateAlias("Customer","c")

 .Add(Restrictions.Eq(Projections.Property("c.Name"),"SomeName")).List();

 Querying by example is also supported:

 	
 //byexample

 varproductsWithSamePrice=session.QueryOver<Product>()

 .Where(Example.Create(newProduct(){Price=1000})).List();

 Finally, the problem with Cartesian products is also pertinent. Here is the workaround:

 	
 [bookmark: _Hlk379757347]//multiplejoins

 OrderDetailorderDetailAlias=null;

 OrderorderAlias=null;

 ProductproductAlias=null;

 CustomercustomerAlias=null;

 varorderDetailsWithProductsAndOrders=session.QueryOver<OrderDetail>(()=>orderDetailAlias)

 .JoinAlias(x=>x.Order,()=>orderAlias).JoinAlias(x=>x.Product,()=>productAlias)

 .JoinAlias(x=>x.Order.Customer,()=>customerAlias)

 .TransformUsing(Transformers.DistinctRootEntity)

 .List();

 [bookmark: _Toc384732463][bookmark: _Toc355385630][bookmark: _Toc354573257]SQL

 The previous querying APIs can be powerful but they are obviously no match for SQL. SQL is the native language of the relational database and is the one that unleashes its full power. Of course, NHibernate also supports SQL querying!

 The previous examples should be fairly simple to implement with SQL. Let’s look at some examples:

 	
 varproductsNameAndPrice=session.CreateSQLQuery("SELECTp.Name,p.PriceFROMProductp").List();

 varlastWeekOrderDates=session.CreateSQLQuery(

 "SELECTo.DateFROMOrderoWHEREo.Date>DATEADD(DAY,-7,GETDATE())").List();

 You might have noticed that, on the second query, we are using the DATEADD and GETDATE functions, which are specific to SQL Server. NHibernate lets you do this; it just passes whatever query you give it to the database.

 In general, when you use SQL, you might be bringing columns that do not correspond to the ones that your entities are using. So there is no immediate conversion: you are bringing columns, not entities. This is possible, however, by using a special syntax:

 	
 //mappingcolumnstoentities

 varproducts=session.CreateSQLQuery("SELECT{p.*}FROMProductp").AddEntity("p",typeof(Product))

 .List<Product>();

 You need to wrap the table or alias containing the entity columns that you wish to materialize inside {} and you need to declare the entity that its results should map to. As simple as that.

 Paging works the exact same way, in database-independent fashion by means of SetMaxResults and SetFirstResult:

 	
 //paging

 varproductsFrom10To20=session.CreateSQLQuery("SELECT*FROMProduct").SetFirstResult(10)

 .SetMaxResults(10).List();

 	

 	
 Note: NHibernate will properly make changes to your query such as wrapping it inside another query that does the paging.

 Parameters are also used the same way (be sure to use them); however, always use ‘:’ as the parameter prefix regardless of the database you are targeting:

 	
 //parameters

 varproductsWithPriceLowerThan100=session.CreateSQLQuery(

 "SELECT{p.*}FROMProductpWHEREp.price<:price").AddEntity("p",typeof(Product))

 .SetParameter("price",100).List<Product>();

 [bookmark: _Toc384732464][bookmark: _Toc355385631][bookmark: _Toc354573259]Multi Queries and Futures

 For some databases that support it, such as SQL Server and Oracle, NHibernate offers a way to send multiple queries at the same time, thus avoiding multiple roundtrips. It is called multi queries and a simplified version is called futures. Let’s see what they look like.

 Multi queries can be used for the Criteria, Query Over, and HQL APIs. All of their usual options are supported including paging and parameters:

 	
 //HQL

 IMultiQuerymq=session.CreateMultiQuery();

 mq=mq.Add("fromProductpwherep.Price<:price").SetParameter("price",10000);

 mq=mq.Add("fromCustomerc");

 mq=mq.Add("selectdistincto.DatefromOrdero");

 //queries are only sent to the database here

 IListresults=mq.List();

 IEnumerable<Product>products=(results[0]asIList).OfType<Product>();

 IEnumerable<Customer>customers=(results[1]asIList).OfType<Customer>();

 IEnumerable<DateTime>dates=(results[2]asIList).OfType<DateTime>();

 //Criteria

 IMultiCriteriamc=session.CreateMultiCriteria();

 mc=mc.Add(DetachedCriteria.For(typeof(Product)).Add(Restrictions.Lt(

 Projections.Property("Price"),10000)));

 mc=mc.Add(session.QueryOver<Customer>());

 mc=mc.Add(DetachedCriteria.For(typeof(Order)).SetProjection(Projections.Distinct(

 Projections.Property("Date"))));

 IListresults=mc.List();

 IEnumerable<Product>products=(results[0]asIList).OfType<Product>();

 IEnumerable<Customer>customers=(results[1]asIList).OfType<Customer>();

 IEnumerable<DateTime>dates=(results[2]asIList).OfType<DateTime>();

 	

 	
 Tip: Beware! If you try to create a multi query on a database server that does not support it, NHibernate will throw an exception.

 Future queries and future values are similar to multi queries but operate on LINQ, Criteria, and Query Over queries:

 	
 //futurequeries

 varfutureProductsFromLinq=session.Query<Product>().ToFuture();

 varfutureFirstOrderFromHql=session.CreateQuery("fromOrderoorderbyo.Datedesctake1")

 .Future<Order>();

 varfutureCustomersFromQueryOver=session.QueryOver<Customer>().Future();

 //futuresingle values

 varfutureProductsPriceSumFromCriteria=session.CreateCriteria(typeof(Product))

 .SetProjection(Projections.Sum(Projections.Property("Price"))).FutureValue<Decimal>();

 varfuturePostsCountFromQueryOver=session.QueryOver<Post>().ToRowCountQuery()

 .FutureValue<Int32>();

 //query results – future queries are only sent to the database here

 varproducts=futureProductsFromLinq.ToList();

 varfirstOrder=futureFirstOrderFromHql.Single();

 varcustomers=futureCustomersFromQueryOver.ToList();

 //single value results – future values are only sent to the database here

 varpostsCount=futurePostsCountFromQueryOver.Value;

 varproductsPriceSum=futureProductsPriceSumFromCriteria.Value;

 	

 	
 Tip: If a given database engine does not support futures, it will silently ignore the future call and, instead, execute the query immediately. This is a big advantage of future queries.

 [bookmark: _Toc384732465][bookmark: _Toc355385632][bookmark: _Toc354573260][bookmark: _Ref354412117]Lazy Loading

 Because entities have references and collections of other entities, if NHibernate followed all these references, it could potentially load the entire database into memory! Just think about this for a moment:

 1. You load a single Blog.

 2. The Blog references a User and has a collection of Posts.

 3. Each Post is associated with both a collection of Comments and Attachments.

 As you can imagine, if NHibernate was to follow all of these associations, it would have to perform a lot of queries to retrieve all of the associated records from database and into memory. Depending on the use case, this may or may not be what you want. To help solve this problem, NHibernate offers lazy loading for both properties, references, and collections.

 Lazy loading defers loading of records and columns until the properties that represent them are actually used by your code. For example:

 · You have an Order with a lazy loaded Customer; this Customer won’t be loaded at the time you load the Order but only when (and if) its Customer property is accessed.

 · Your Product has a lazy loaded Picture property that represents it, and you don’t always want the image loaded because it might potentially be very big.

 · Your Customer has a lazy collection of Orders, and you seldom need to go through all of them.

 	

 	
 Tip: For lazy loading to work, both its containing entity and its property definition must be declared as lazy—which, by the way, is the default—and must be implemented as auto (meaning, no backing field) virtual properties. The containing classes cannot be sealed.

 Remember the mappings from the other section? You can see there that for the Blog class, the class itself, the Owner property, and the Posts collections are all marked as lazy. In the Post class, it is also marked as lazy as are its Attachments and Comments collections.

 Not all laziness is the same:

 · An entity itself can be lazy loaded, which means that none of its columns are retrieved from the database. Instead, NHibernate returns a proxy object for representing the record, which will load it when any of its properties is accessed.

 · For properties, you can only say that they are lazy or not.

 · For associations, if you use the default Proxy/proxy setting, NHibernate will generate a proxy that inherits from the class declared in the property type. There will be a problem if this property type is the root class of a hierarchy because .NET does not have multiple inheritance. This is also because the proxy already inherits directly from the property’s class; it won’t be able to also inherit from the actual class that the association relates to. To avoid this problem, always specify the NoProxy/no-proxy setting; it will work for both class hierarchies as well as single classes. In this case, NHibernate will only assign a value to the property once it knows what class to create, so inheritance will be respected.

 · As for collections, there are options for indexed and non-indexed ones. For non-indexed collections, including collections of values, sets, and bags, the only option we have for them is to either be lazy (meaning, load all of the collection entities only when the collection is accessed) or not lazy (load all collection entities when its root entity is loaded). But, for indexed collections (lists, maps), we have a third option: ExtraLazy/extra. This tells NHibernate to only load each collection item as it is accessed, not all at the same time. Finally, array collections cannot be lazy loaded.

 	

 	
 Note: A lazy property, association or collection will only be fetched from the database one time, when it is accessed. After that, it will be stored in memory. If an entity has several lazy properties—not associations or collections—all of them will be loaded at the same time. This is different from what happens for associations and collections.

 So, to sum it all up:

 Table 6: Laziness Options

 	
 Member Type

 	
 Member Subtype

 	
 Laziness Options

 	
 Properties (including components)

 	
 N/A

 	
 True, False

 	
 References

 	
 N/A

 	
 Proxy, NoProxy, NoLazy

 	
 Collections

 	
 Indexed (list, map)

 	
 Lazy, NoLazy, Extra

 	
 Non-indexed (set, bag)

 	
 Lazy, NoLazy

 	
 Arrays (array, primitive array)

 	
 N/A

 When will you use lazy loading? Probably most of the time—at least for references and collections. You won’t need it when you are certain that after you load an entity you will go through some of its references and collections. When this happens, you might as well specify the Join/join fetch strategy; this will bring everything in a single SELECT instead of a SELECT for the root entity and one SELECT for each association or collection (the default strategy). Here’s how it is declared in XML:

 	
 <?xmlversion="1.0"encoding="utf-8"?>

 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"

 xmlns="urn:nhibernate-mapping-2.2">

 <classname="Post"lazy="true"table="`POST`">

 <!--...-->

 <many-to-onename="Blog"column="`BLOG_ID`"not-null="true"lazy="false"fetch="join"/>

 </class>

 </hibernate-mapping>

 An in-mapping by code:

 	
 mapper.Class<Blog>(ca=>

 {

 //...

 ca.ManyToOne(c=>c.Owner,a=>

 {

 //...

 a.Fetch(FetchKind.Join);

 a.Lazy(LazyRelation.NoLazy);

 });

 ca.List(x=>x.Posts,x=>

 {

 //...

 x.Fetch(CollectionFetchMode.Join);

 x.Lazy(CollectionLazy.NoLazy);

 },c=>c.OneToMany());

 });

 	

 	
 Tip: Specifying the fetch strategy as Join only has meaning if lazy loading is not used. Also, disabling lazy loading and using Select for fetching is pointless, too.

 Lazy loading by id is achieved by calling the Load method on a lazy-loadable entity:

 	
 //get strongly typed(possibly) proxybyid

 varsomeBlogProxy=session.Load<Blog>(1);

 //get object(possibly)proxybyid and type

 varsomeObjectProxy=session.Load(typeof(Blog),1);

 What this does is:

 · If the referenced entity was already loaded by the current session, no proxy will be returned but the entity itself.

 · If the entity isn’t known by the current session, a proxy will be returned. The database won’t be touched until code accesses some property of this entity (except the id property).

 · If no record exists for the given primary key, a proxy will still be returned. Remember, it doesn’t access the database. In this case, when a property is accessed, it will throw an exception because, at that point, it will try to fetch the record from the database but it doesn’t exist.

 · If a record does exist for the given identifier, when some property is touched, the entity will be populated from the record’s columns.

 	

 	
 Note: If an instance pointing to the same record is already present in the session’s cache, it will be returned instead of a proxy.

 LINQ and HQL queries always treat associations and collections as lazy so, if you want them to come at the same time as their containers, you have to fetch them explicitly. This can even be done for multiple levels:

 	
 [bookmark: _Hlk379925256]//fetchingmultiplelevels in HQL

 varblogs=session.CreateQuery("fromBlogbjoinfetchb.Postspjoinfetchp.Comments")

 .List<Blog>();

 //fetchingmultiplelevels in LINQ

 varblogs=session.Query<Blog>().FetchMany(x=>x.Posts).ThenFetch(x=>x.Comments).ToList();

 //fetchinga singlelevel in Criteria

 varblogs=session.CreateCriteria(typeof(Blog)).SetFetchMode("Posts",FetchMode.Eager)

 .List<Blog>();

 //fetchinga singlelevel in Query Over

 varblogs=session.QueryOver<Blog>().Fetch(x=>x.Posts).Eager.List();

 You can check if a property, reference or collection is already loaded without actually loading it:

 	
 //load anentity

 Blogo=session.Get<Blog>(1);

 BooleanisCustomerInitialized=NHibernateUtil.IsPropertyInitialized(o,"Owner");

 Finally, a word of caution: Lazy loading requires the originating session to be available so that NHibernate can go to the database when necessary. If you have disposed of the session, you will get a runtime exception. This is particularly relevant if you have entity instances that span multiple NHibernate sessions. Think of entities stored in an ASP.NET session, for instance. In this case, make sure you explicitly load everything you need before the session goes away.

 	
 [bookmark: _Toc354573262][bookmark: _Ref354423563]

 	
 Note: If you won’t be using lazy loading, you don’t need to mark properties and methods as virtual, and you can have sealed classes.

 [bookmark: _Toc384732466][bookmark: _Toc355385633]Inheritance

 We saw in the chapter on Entity Inheritance the ways by which we can store our inheritance model in the database. For querying, we can also both look explicitly for entities of a concrete type or for all entities of a base class, using any of the querying APIs regardless of the actual inheritance strategy. Some examples follow:

 	
 //query from a base class

 varpersonById=session.Get<Person>(1);

 varpersonById=session.Get(typeof(Person),1);

 varallPeopleFromLinq=session.Query<Person>().ToList();

 varallPeopleFromHql=session.CreateQuery("fromPerson").List<Person>();

 varallPeopleFromCriteria=session.CreateCriteria(typeof(Person)).List<Person>();

 varallPeopleFromQueryOver=session.QueryOver<Person>().List<Person>();

 //query a derived class

 varnationalCitizensFromLinq=session.Query<NationalCitizen>().ToList();

 varforeignCitizensFromLinq=session.Query<Person>().Where(x=>xisForeignCitizen)

 .Cast<ForeignCitizen>().ToList();

 varnationalCitizenFromCriteria=session.CreateCriteria(typeof(Person),"p")

 .Add(Property.ForName("p.class").Eq(typeof(NationalCitizen))).List<NationalCitizen>();

 varnationalCitizenFromQueryOver=session.QueryOver<Person>()

 .Where(x=>x.GetType()==typeof(NationalCitizen)).List<NationalCitizen>();

 varnationalCitizensFromHql=session

 .CreateQuery("fromPersonpwherep.class=Succinctly.Model.NationalCitizen")

 .List<NationalCitizen>();

 varforeignCitizensFromHql=session.CreateQuery("fromForeignCitizen")

 .List<ForeignCitizen>();

 	

 	
 Tip: The class pseudo-property can only be used when we are querying a class hierarchy; otherwise, it is useless and will cause an error.

 [bookmark: _Toc384732467][bookmark: _Toc355385634][bookmark: _Toc354573263]Refreshing

 After an entity is loaded, it is stored in the first-level cache of the session. This means that whenever the same record is loaded by some query, NHibernate doesn’t need to create a new instance for it; instead it can return the existing entity. This raises a question: What if the record was changed after it was first loaded? To get the most recent values, we use the Refresh method of the ISession:

 	
 Blogb=session.Get<Blog>(1);

 //…

 session.Refresh(b);

 This will issue a SELECT statement and the entity instance will have its properties loaded once again.

 [bookmark: _Toc384732468][bookmark: _Toc355385635][bookmark: _Toc354573264]Which One Shall I Choose?

 The one you choose depends on what you want to do. A few tips:

 · LINQ is great due to its SQL-like syntax and because it is now ubiquitous in .NET as a generic, data source-independent querying API.

 · LINQ and Query Over are good because they are both strongly typed, and therefore refactor-friendly.

 · Criteria and HQL are good for dynamic query construction and because they can be used to query even non-public properties.

 · Criteria, Query Over, and HQL can be used to express functions and expressions (think of LIKE, for example) that cannot be expressed in LINQ.

 · SQL offers all the power of the database.

 	

 	
 Tip: As you should know by now, you need not be tied to any specific API and are free to use whatever you like, whenever it best suits your needs.

 [bookmark: _Toc384732469][bookmark: _Toc355385636][bookmark: _Toc354573265]Chapter 6 Making Changes

 [bookmark: _Toc384732470][bookmark: _Toc355385637][bookmark: _Toc354573266]Inserting, Updating, and Deleting

 Besides querying, you will also want to make changes. Because NHibernate uses POCOs to represent records in a database, when you need to insert a new record, you start by creating a new instance of a mapped class:

 	
 Productp=newProduct(){Name="NHibernateSuccinctly",Price=0};

 Then, you tell NHibernate to persist it:

 	
 session.Save(p);

 If you have associations that you wish to store along with the root aggregate, you must get a reference to them first:

 	
 Postpost=new Post();

 post.Blog=session.Get<Post>(1);

 In this type of association, what really matters is the foreign key; you might as well load a proxy instead, which has the advantage of not actually going to the database:

 	
 //or get a proxy, no need to go to the database if we only need the foreign key

 post.Blog=session.Load<Post>(1);

 In this case, however, if the referenced entity does not exist, an exception will be thrown when NHibernate attempts to save the root aggregate.

 In the case of bidirectional associations, it is recommended that you fill both sides of the relationship if you are going to work with the entities immediately, for coherence:

 	
 [bookmark: _Hlk379927551]Postpost=new Post();

 post.Blog=session.Get<Blog>(1);

 post.Blog.Posts.Add(post);

 For your convenience, you can add a simple method to the Blog class for hooking the two endpoints:

 	
 publicvoidAddPost(Postpost)

 {

 post.Blog=this;

 this.Posts.Add(post);

 }

 Depending on your session configuration, this may or not be all that it takes. (More on this in the next section, Flushing Changes.)

 NHibernate implements something called first-level cache in its ISession. What this means is, all of the entities that it loads or are marked for saving are stored in a memory cache. For each of these entities, when it is loaded, NHibernate takes a snapshot of its initial state and stores it internally. When it is time for persisting changes to the database, NHibernate will check all of the entities present in its first-level cache for the current values of their properties and will detect those entities whose properties have changed. This is called change tracking, and such entities are said to be dirty. A dirty session contains at least one dirty entity.

 Because change tracking is automatic, there is normally no need to explicitly update an entity. However, the ISession has an Update method that you can call to force an update:

 	
 session.Update(p);

 And, if you need to delete an entity from the database, you call the session’s Delete method upon this entity:

 	
 session.Delete(p);

 Finally, when you have an entity with a loaded collection (a one-to-many or many-to-many) and you want to remove all of its elements, instead of iterating one by one and calling Delete, you can just call Clear on the collection property:

 	
 Blogblog=session.Get<Blog>(1);

 blog.Posts.Clear();

 NHibernate will then issue a single DELETE statement for all of the child records.

 Pay attention: You can only call Delete on a tracked entity; that is, one that was either loaded from the database or explicitly added to it, by calling Save. After you do it, you should no longer access this entity instance because nothing you can do with it will prevent it from being deleted.

 NHibernate will store, update or delete each entity in the database by issuing appropriate SQL commands whenever the session is flushed. In a nutshell, what this means is:

 · New entities need to be marked explicitly for saving, by calling Save.

 · Existing tracked entities will detect changes made upon them automatically. There is no need to explicitly mark them for updating; that is, no need to call any method.

 · If you are not sure if an entity was already saved, you can call SaveOrUpdate.

 · You delete a tracked entity by calling Delete explicitly on it.

 [bookmark: _Toc384732471][bookmark: _Toc355385638][bookmark: _Toc354573267][bookmark: _Ref351119390]Flushing Changes

 When does NHibernate know that it is time to persist all changes from the first-level cache to the database (in other words, flush)? It depends on the flush mode (the FlushMode property) of the current ISession. It is the FlushMode that controls when it happens. The possible options are:

 · Always: NHibernate will persist dirty entities before issuing any query and immediately after the Save or Delete methods are called.

 · Auto: NHibernate will send changes to the database if a query is being issued for some entity and there are dirty entities of the same type.

 · Commit: Flushing will only occur when the current transaction is committed.

 · Never: You need to call Flush explicitly on the current ISession.

 · Unspecified: The default, identical to Auto.

 Some notes:

 · You should generally avoid Always as it may slow down NHibernate because it will need to check the first-level cache before issuing any query.

 · Never is also something to avoid because it is possible that you could forget to call Flush and all changes will be lost.

 · Commit and Auto are okay. Commit is even better because it forces you to use transactions (which is a best practice).

 [bookmark: _Toc384732472][bookmark: _Toc355385639][bookmark: _Toc354573268]Updating Disconnected Entities

 What happens if you have an entity that was loaded in a different session and you want to be able to change or delete it in another session? This other session does not know anything about this entity; it is not in its first-level cache and so, from its point of view, it is an untracked or disconnected entity.

 You have two options:

 1. Update the memory entity with the current values for its associated record in the database and then apply changes:

 	
 Productproduct;

 using(ISessionsession=sessionFactory.OpenSession())

 {

 //load some entity and store it somewhere with a greater scope than this session

 product=session.Query<Product>().First();

 }

 using(ISessionsession=sessionFactory.OpenSession())

 {

 //retrieve current values from the database before making changes

 product=session.Merge<Product>(product);

 product.Price=10;

 session.Flush();

 }

 2. Force the current values of the entity to be persisted, ignoring the current values in the database:

 	
 using(ISessionsession=sessionFactory.OpenSession())

 {

 //save current entity properties to the database without an additional select

 product.Price=10;

 session.SaveOrUpdateCopy(product);

 session.Flush();

 }

 [bookmark: _Toc384732473][bookmark: _Toc355385640][bookmark: _Toc354573269]Removing from the First-Level Cache

 Long-lived NHibernate sessions will typically end up with many entities to track—those loaded from queries. This may eventually cause performance problems because, when the time comes for flushing, the session has a lot of instances and values to check for dirtiness.

 When you no longer need to track an entity, you can call ISession.Evict to remove it from cache:

 	
 session.Evict(product);

 Or, you can clear the entire session:

 	
 session.Clear();

 	

 	
 Tip: This will lose all tracked entities as well as any changes they might have, so use with caution.

 [bookmark: _Toc354573270][bookmark: _Ref354408338]Another option would be to mark the entity as read-only, which means its state won’t be looked at when the session is flushed:

 	
 session.SetReadOnly(product,true);

 	

 	
 Note: At any later stage, if the entity is still being tracked, you can always revert it by calling SetReadOnly again with a false parameter.

 [bookmark: _Toc384732474][bookmark: _Toc355385641]Executable HQL

 NHibernate also supports bulk DML operations by using the HQL API. This is called executable HQL and inserts, updates, and deletes are supported:

 	
 //unconditionalupdate

 Int32updatedRecords=session.CreateQuery("updateProductpsetp.Price=p.Price*2")

 .ExecuteUpdate();

 //deletewithparameter

 Int32deletedRecords=session.CreateQuery("deletefromProductpwherep.Price=:price")

 .SetParameter("price",0).ExecuteUpdate();

 //deletefromquery

 Int32deletedRecords=session.Delete("fromProductpwherep.Price=0");

 //insertbasedonexistingrecords

 Int32insertedRecords=session.CreateQuery(

 "insertintoProduct(ProductId,Name,Price,Specification)selectp.ProductId*10,p.Name+'copy',p.Price*2,p.SpecificationfromProductp").ExecuteUpdate();

 NHibernate will not make changes to entities that exist in the first-level cache; that is, if you have loaded an entity and then either modify or delete it by using HQL. This entity will not know anything about it. If you have deleted it with HQL and you try to save it later, an error will occur because there is no record to update.

 Pay attention to this: You normally don’t have to think about identifier generation patterns. But, if you are going to insert records by using HQL and you don’t use the IDENTITY generation pattern, you need to generate the ids yourself. In this example, we are creating them from entries that already exist because you can only insert in HQL from records returned from a select.

 [bookmark: _Toc384732475][bookmark: _Toc355385642][bookmark: _Toc354573271]Detecting Changes

 The IsDirty property of the ISession will tell you if there are either new entities marked for saving, entities marked for deletion, or loaded entities that have changed values for some of their properties—as compared to the ones they had when loaded from the database.

 You can examine entities in the first-level cache yourself by using the NHibernate API:

 	
 //enumerateallentitiesinthefirstlevelcache

 publicstaticIEnumerable<T>Local<T>(thisISessionsession,Statusstatus=Status.Loaded)

 {

 varimpl=session.GetSessionImplementation();

 varpc=impl.PersistenceContext;

 foreach(T keyinpc.EntityEntries.Keys.OfType<T>())

 {

 varentry=pc.EntityEntries[key]asEntityEntry;

 if(entry.Status==status)

 {

 yieldreturn(key);

 }

 }

 }

 This extension method may come in handy if you have loaded a lot of entities and you need to find a particular one. You can look it up in the first-level cache first before going to the database. Or you can find entities with a particular state such as Deleted, for instance.

 Because NHibernate stores the original values for all mapped properties of an entity, you can look at them to see what has changed:

 	
 //find dirty properties for a loaded entity publicstaticDictionary<String,Object>GetDirtyProperties<T>(thisISessionsession,Tentity)

 {

 varsessionImpl=session.GetSessionImplementation();

 varcontext=sessionImpl.PersistenceContext;

 varentry=context.GetEntry(context.Unproxy(entity));

 if((entry==null)|| (entry.RequiresDirtyCheck(entity)==false)||(entry.ExistsInDatabase==false)

 ||(entry.LoadedState==null))

 {

 //entity does not exist inthefirstlevelcache

 return(null);

 }

 varpersister=entry.Persister;

 varpropertyNames=persister.PropertyNames;

 varcurrentState=persister.GetPropertyValues(entity,sessionImpl.EntityMode);

 varloadedState=entry.LoadedState;

 vardp=(persister.EntityMetamodel.Properties

 .Where((property,i)=>(LazyPropertyInitializer.UnfetchedProperty.Equals(loadedState[i])==

 false)&&(property.Type.IsDirty(loadedState[i],currentState[i],sessionImpl)==true)))

 .ToArray();

 return

 (dp.ToDictionary(x=>x.Name,x=>currentState[Array.IndexOf(propertyNames,x.Name)]));

 }

 [bookmark: _Toc384732476][bookmark: _Toc355385643][bookmark: _Toc354573272]Cascading Changes

 Entities with references to other entities, either direct references (a property of the type of another entity) or collections can propagate changes made to themselves to these references. The most obvious cases are:

 · When a root entity is saved, save all of its references if they are not already saved (insert records in the corresponding tables).

 · When a parent entity is deleted, delete all of its child entities (delete records from the child tables that referenced the parent record).

 · When an entity that is referenced by other entities is deleted, remove its reference from all of these entities (set the foreign key to the main record to NULL).

 In NHibernate’s terms, this is called cascading. Cascade supports the following options which may be specified either in mapping by code, XML or attributes:

 · Detach/evict: The child entity is removed (evicted) from the session when its parent is also evicted, usually by calling ISession.Evict.

 · Merge/merge: When a parent entity is merged into the current session, usually by ISession.Merge, children are also merged.

 · Persist/save-update: When a root entity is about to be saved or updated, its children are also saved or updated.

 · ReAttach/lock: When a parent entity is locked, also lock its children.

 · Refresh/refresh: When a parent entity is refreshed, also refresh its children.

 · Remove/delete: Deletes the child entity when its parent is deleted.

 · None/none: Do nothing, this is the default.

 · All/all: The same as Persist and Remove; all child entities that are not saved are saved, and if the parent is deleted, they are also deleted.

 · DeleteOrphans/delete-orphan: if a child entity of a one-to-many relation no longer references the original parent entity, or any other, remove it from the database.

 · All and DeleteOrphans/all-delete-orphan: the combined behavior of All and DeleteOrphans.

 Cascading can be tricky. Some general guidelines:

 · For entities that depend on the existence of another entity, use DeleteOrphans because, if the relation is broken (you set the property to null), the entity cannot exist by itself and must be removed.

 · For collections, you normally would use All (possibly together with DeleteOrphans). If you want all of the entities in the collection to be saved and deleted whenever their parent is, or use Persist if you don’t want them to be deleted with their parent but want them to be saved automatically.

 · For many-to-one references you normally won’t want Delete because usually the referenced entity should live longer than the entities that reference it; use Persist instead.

 To apply cascading by code, use this example (same mapping as in section Mapping by Code):

 	
 publicclassBlogMapping:ClassMapping<Blog>

 {

 publicBlogMapping()

 {

 //…

 this.ManyToOne(x=>x.Owner,x=>

 {

 x.Cascade(Cascade.Persist);

 //…

 });

 this.List(x=>x.Posts,x=>

 {

 //…

 x.Cascade(Cascade.All|Cascade.DeleteOrphans);

 },x=>

 {

 //…

 });

 }

 }

 publicclassPostMapping:ClassMapping<Post>

 {

 //…

 this.Set(x=>x.Tags,x=>

 {

 //…

 x.Cascade(Cascade.All);

 },x=>

 {

 //…

 });

 this.Set(x=>x.Attachments,x=>

 {

 //…

 x.Cascade(Cascade.All|Cascade.DeleteOrphans);

 },x=>

 {

 //…

 });

 this.Bag(x=>x.Comments,x=>

 {

 //…

 x.Cascade(Cascade.All|Cascade.DeleteOrphans);

 },x=>

 {

 //…

 });

 }

 With XML, it would look like this (again, same mapping as in XML Mappings):

 	
 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"

 xmlns="urn:nhibernate-mapping-2.2">

 <classname="Blog"lazy="true"table="`BLOG`">

 <!-- … ->

 <many-to-onename="Owner"column="`USER_ID`"not-null="true"lazy="no-proxy"

 cascade="save-update"/>

 <listcascade="all-delete-orphan"inverse="true"lazy="true"name="Posts">

 <!-- … ->

 </list>

 </class>

 </hibernate-mapping>

 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"

 xmlns="urn:nhibernate-mapping-2.2">

 <classname="Post"lazy="true"table="`POST`">

 <!-- … ->

 <setcascade="all"lazy="false"name="Tags"table="`TAG`"order-by="`TAG`">

 <!-- … ->

 </set>

 <setcascade="all-delete-orphan"inverse="true"lazy="true"name="Attachments">

 <!-- … ->

 </set>

 <bagcascade="all-delete-orphan"inverse="true"lazy="true"name="Comments">

 <!-- … ->

 </bag>

 </class>

 </hibernate-mapping>

 And finally, with attributes (see Attribute Mappings for the full mapping):

 	
 publicclassBlog

 {

 //…

 [ManyToOne(0,Column="user_id",NotNull=true,Lazy=Laziness.NoProxy,Name="Owner",

 Cascade="save-update")]

 publicvirtualUserOwner { get; set; }

 //…

 [List(0,Cascade="all-delete-orphan",Lazy= CollectionLazy.True,Inverse=true,Generic=true)]

 publicvirtualIList<Post>Posts { get; protectedset; }

 }

 publicclassPost

 {

 [Set(0,Name="Tags",Table="tag",OrderBy="tag",Lazy=CollectionLazy.False,Cascade="all"

 ,Generic=true)]

 publicvirtualIesi.Collections.Generic.ISet<String>Tags { get; protectedset; }

 [Set(0,Name="Attachments",Inverse=true,Lazy=CollectionLazy.True,

 Cascade="all-delete-orphan",Generic=true)]

 publicvirtualIesi.Collections.Generic.ISet<Attachment>Attachments { get; protectedset; }

 [Bag(0,Name="Comments",Inverse=true,Lazy=CollectionLazy.True,Generic=true,

 Cascade="all-delete-orphan")]

 publicvirtualIList<Comment>Comments { get; protectedset; }

 }

 An example is in order. Imagine that your entities are not using cascade and you have to save everything by hand:

 	
 [bookmark: _Hlk380013211]Blogb=newBlog(){Creation=newDateTime(2008,8,13),Name="DevelopmentWithADot" };

 b.Owner=newUser(){Birthday=newDateTime(1975,8,19),Username="ricardoperes"};

 b.Posts.Add(newPost(){Blog=b,Content="SomePost",Title="SomeTitle",Timestamp=DateTime.Now});

 session.Save(b.Owner);

 session.Save(b);

 session.Save(b.Posts.First());

 session.Flush();

 Whereas, if you have cascading set for the Owner and Posts properties of the Blog class, you only need to call Save once, for the root Blog instance, because all of the other entities are accessible (and cascaded) from it:

 	
 session.Save(b);

 session.Flush();

 Should you ever need to delete a Blog instance, all of its Posts, related Comments and Attachments will be deleted at the same time but not its Owner.

 	
 session.Delete(b);

 session.Flush();

 [bookmark: _Toc384732477][bookmark: _Toc355385644][bookmark: _Toc354573273]Transactions

 As you know, when changing multiple records at the same time, especially if one change depends on the other, we need to use transactions. All relational databases support transactions, and so does NHibernate.

 Transactions in NHibernate come in two flavors:

 · NHibernate-specific transactions, which are useful when they are clearly delimited; that is, we know when they should start and terminate and should only affect NHibernate operations.

 · .NET ambient transactions, for when we have to coordinate access to multiple databases simultaneously or enlist in existing transactions that may even be distributed.

 With NHibernate, you really should have a transaction whenever you may be making changes to a database. Remember that not all changes are explicit. For example, a change in a loaded entity may cause it to be updated on the database. If you use transactions, you won’t have any bad experiences. Whenever you use transactions, set the flush mode of the session to the appropriate value:

 	
 session.FlushMode=FlushMode.Commit;

 This will cause NHibernate to only send changes to the database when (and only if) the current transaction is committed.

 The transaction API can be used like this:

 	
 using(ISessionsession=sessionFactory.OpenSession())

 using(ITransactiontx=session.BeginTransaction())

 {

 session.FlushMode=FlushMode.Commit;

 //makechanges

 if(/* ifeverythingisOK,commit */)

 {

 tx.Commit();

 }

 else

 {

 //otherwise,rollback(whichisalso doneautomatically if Commit is not called)

 tx.Rollback();

 }

 }

 All operations performed on an ISession instance that is running under a transaction are automatically enlisted in it; this includes explicit saves, updates and deletes, automatic updates due to dirty properties, custom SQL commands, and executable HQL queries.

 You can check the current state of a transaction and even check if one was started:

 	
 [bookmark: _Hlk380013370]//the Transaction property of the ISession holds the current transaction

 BooleantransactionActive=session.Transaction.IsActive;

 Booleancommitted=tx.WasCommitted;

 Booleanrolledback=session.Transaction.WasRolledBack;

 The alternative to this API is System.Transactions, .NET’s standard transaction API:

 	
 using(TransactionScopetx=newTransactionScope())

 {

 using(ISessionsession1=sessionFactory1.OpenSession())

 {

 session1.FlushMode=FlushMode.Commit;

 Productp=newProduct(){Name="A Name",Price=5,Specification=XDocument.Parse("<data/>")};

 session1.Save(p);

 }

 using(ISessionsession2=sessionFactory2.OpenSession())

 {

 session2.FlushMode=FlushMode.Commit;

 Productp=session2.Query<Product>().Where(x=>x.Name=="Another Name").Single();

 session2.Delete(p);

 }

 //there is no Rollback method, if Complete is not called, the transaction is rolled back

 tx.Complete();

 }

 Both NHibernate and System transactions allow specifying the isolation level:

 	
 ITransactiontx=session.BeginTransaction(System.Data.IsolationLevel.Serializable);

 newTransactionScope(TransactionScopeOption.Required,newTransactionOptions(){

 IsolationLevel=System.Transactions.IsolationLevel.Serializable});

 Just remember this:

 · Use them at all times!

 · Either with NHibernate or System transactions, always create them in a using block so that they are automatically disposed.

 · Set the session’s flush mode to Commit to avoid unnecessary trips to the database.

 · Make sure you call Commit (on NHibernate transactions) or Complete (on System ones) when you are done with the changes and you want to make them permanent.

 · If you are going to access multiple databases simultaneously in a System transaction, you must start the Distributed Transaction Coordinator service or else you may get unexpected exceptions when you access the second database:

 Figure 24: Distributed Transaction Coordinator Service

 [bookmark: _Toc384732478][bookmark: _Toc355385645][bookmark: _Toc354573274]Pessimistic Locking

 At times, there may be a need to lock one or more records in a table so that nobody else can make modifications to them behind our back. This is called concurrency control. Different databases use different mechanisms for this but NHibernate offers an independent API. Locking involves a lock mode, for which the following values exist:

 	
 Mode

 	
 Description

 	
 Force

 	
 Similar to Upgrade but causes a version increment, if the entity is versioned

 	
 None

 	
 Not used

 	
 Read

 	
 When an entity is read without specifying a LockMode

 	
 Upgrade

 	
 Switch from not locked to locked; if the record is already locked, will wait for the other lock to be released

 	
 UpgradeNoWait

 	
 Same as Upgrade but, in case the record is already locked, will return immediately instead of waiting for the other lock to be released (but the lock mode will remain the same)

 	
 Write

 	
 When an entity was inserted from the current session

 Locking must always be called in the context of a transaction. NHibernate always synchronizes the lock mode of a record in the database with its in-memory (first-level cache) representation.

 For locking a single record upon loading, we can pass an additional parameter to the Get method:

 	
 [bookmark: _Hlk380013995]Productp=session.Get<Product>(1,LockMode.Upgrade);

 Which will result in the following SQL in SQL Server:

 	
 SELECT

 product0_.product_id,

 product0_.name,

 product0_.specification,

 product0_.price

 FROM

 product product0_

 WITH (UPDLOCK, ROWLOCK)

 WHERE

 product0_.product_id = 1

 But we can also lock a record after loading:

 	
 session.Lock(p,LockMode.Upgrade);

 And it will result in this SQL being sent (notice that it is not bringing the columns):

 	
 SELECT

 product0_.product_id,

 FROM

 product product0_

 WITH (UPDLOCK, ROWLOCK)

 WHERE

 product0_.product_id = 1

 And locking the results of a query (HQL, Criteria, and Query Over) is possible, too:

 	
 //hql

 session.CreateQuery("fromProductp").SetLockMode("p",LockMode.Upgrade);

 //criteria

 session.CreateCriteria(typeof(Product)).SetLockMode(LockMode.Upgrade).List<Product>();

 //query over

 session.QueryOver<Product>().Lock().Upgrade.List();

 For getting the lock state of a record:

 	
 LockModemode=session.GetCurrentLockMode(p);

 Whenever the lock mode is Upgrade, UpgradeNoWait, Write or Force, you know the record is being locked by the current session.

 	

 	
 Tip: Generally speaking, locking at the record level is not scalable and is not very useful in the context of web applications which are, by nature, disconnected and stateless. So you should generally avoid it in favor of optimistic locking (coming up next). At the very least, do limit the number of records you lock to the very minimum amount possible.

 [bookmark: _Toc384732479][bookmark: _Toc355385646][bookmark: _Toc354573275][bookmark: _Ref353873452]Optimistic Concurrency

 Optimistic concurrency is a process for handling concurrency which doesn’t involve locking. With optimistic locking, we assume that no one is locking the record and we can compare all or some of the previously loaded record’s values with the values currently in the database to see if something has changed (when an UPDATE is issued). If the UPDATE affects no records, we know that something indeed has changed.

 NHibernate offers several optimistic concurrency possibilities:

 · None: No optimistic locking will be processed, usually known as “last one wins.” This is the default.

 · Dirty: All dirty (meaning, changed) mapped properties are compared with their current values in the database.

 · All: All mutable mapped properties are compared with the current values.

 · Versioned: One column of the table is used for comparison.

 When we use versioning, we also have several strategies for obtaining and updating the version column:

 · Using a database-specific mechanism such as SQL Server’s TIMESTAMP/ROWVERSION (http://msdn.microsoft.com/en-us/library/ms182776.aspx) or Oracle’s ORA_ROWSCN (http://docs.oracle.com/cd/B19306_01/server.102/b14200/pseudocolumns007.htm); this requires no work from NHibernate other than loading the current value.

 · Using an integer number for the version which NHibernate must update explicitly.

 · Using a date and time which can either be obtained from the database or from .NET which NHibernate is also responsible for updating.

 No strategy is the default. If we want to have Dirty or All, we need to configure it on an entity-by-entity basis.

 In XML:

 	
 <hibernate-mappingnamespace="Succinctly.Model"assembly="Succinctly.Model"

 xmlns="urn:nhibernate-mapping-2.2">

 <classname="Blog"lazy="true"table="`BLOG`"optimistic-lock="dirty" dynamic-update="true">

 <!-- … -->

 </class>

 </hibernate-mapping>

 And attributes:

 	
 [Class(Table="blog",Lazy=true,OptimisticLock=OptimisticLockMode.Dirty,DynamicUpdate=true)]

 publicclassBlog

 {

 //…

 }

 Unfortunately, as of now, mapping by code does not allow setting the optimistic lock mode. But you can still achieve it by code on the Configuration instance:

 	
 cfg.GetClassMapping(typeof(Blog)).OptimisticLockMode=Versioning.OptimisticLock.Dirty;

 cfg.GetClassMapping(typeof(Blog)).DynamicUpdate=true;

 In this case, a change to a property in a Product instance would lead to the following SQL being issued (in real life, with parameters instead of numbers):

 	
 UPDATE product

 SET price = 10

 WHERE product_id = 1

 AND price = 5

 As you can see, the “price = 5” condition is not strictly required but NHibernate is sending it because of the optimistic lock mode of Dirty and because the Price property was changed.

 Like I said, instead of Dirty, you can use All. In either case, you must also add the dynamic-update attribute; it is a requirement. And what it means is, instead of issuing a SET for each of the mapped columns, it will only issue one for the columns whose values have changed. You need not worry about it; no additional columns in the database or properties in the model need to be added.

 For the same updated Product instance, when using All as the optimistic lock mode, the SQL would be:

 	
 UPDATE product

 SET price = 10

 WHERE product_id = 1

 AND price = 5

 AND specification = /* ... */

 AND picture = /* ... */

 As you can see, in this case all columns are compared, which may be slightly slower.

 As for versioned columns, we need to add a new property to our entity for storing the original version. Its type depends on what mechanism we want to use. For example, if we want to use SQL Server’s ROWVERSION, we would have a property defined like this:

 	
 publicvirtualByte[]Version { get; protectedset; }

 And we would map it by code, like this (in a ClassMapping<T> or ModelMapper class):

 	
 this.Version(x=>x.Version,x=>

 {

 x.Column(y=>

 {

 y.NotNullable(true);

 y.Name("version");

 y.SqlType("ROWVERSION");

 });

 x.Insert(false);

 x.Generated(VersionGeneration.Always);

 x.Type(NHibernateUtil.BinaryBlobasIVersionType);

 });

 We have to tell NHibernate to always have the database generate the version for us, to not insert the value when it is inserting a record for our entity, to use the SQL type ROWVERSION when creating a table for the entity, and to use the NHibernate BinaryBlobType, a type that allows versioning, for handling data for this column.

 With attributes, this is how it would look:

 	
 [Version(0,Name = "Version",Column="version",Generated=VersionGeneration.Always,Insert=false,

 TypeType=typeof(BinaryBlobType))]

 [Column(1,SqlType="ROWVERSION")]

 publicvirtualByte[]Version { get; protectedset; }

 And finally, in XML:

 	
 <classname="Product"lazy="true"table="`product`">

 <!-- ... --><versionname="Version"column="version"generated="always"insert="false"type="BinaryBlob"/>

 <!-- ... -->

 </class>

 Whereas, for Oracle’s ORA_ROWSCN, the property declaration would be instead:

 	
 publicvirtualInt64[]Version { get; protectedset; }

 And its fluent mappings:

 	
 this.Version(x=>x.Version,x=>

 {

 x.Column(y=>

 {

 y.NotNullable(true);

 y.Name("ora_rowscn");

 });

 x.Insert(false);

 x.Generated(VersionGeneration.Always);

 });

 Attribute mappings:

 	
 [Version(Name = "Version",Column="ora_rowscn",Generated=VersionGeneration.Always,Insert=false)]

 publicvirtualInt64[]Version { get; protectedset; }

 And, finally, XML:

 	
 <classname="Product"lazy="true"table="`product`">

 <!-- ... -->

 <versionname="Version"column="ora_rowscn"generated="always"insert="false" />

 <!-- ... -->

 </class>

 Database-specific strategies are great because they leverage each database’s optimized mechanisms, and version columns are automatically updated. But they render our code less portable and require an additional SELECT after each UPDATE in order to find out what value the record has.

 For database-independent strategies, we can choose either a number or a date/time as the version column. For a number (the default versioning strategy), we add an integer property to our class:

 	
 publicvirtualInt32[]Version { get; protectedset; }

 And we map it by code:

 	
 this.Version(x=>x.Version,x=>

 {

 x.Column(y=>

 {

 y.NotNullable(true);

 y.Name("version");

 });

 });

 By XML:

 	
 <classname="Product"lazy="true"table="`product`">

 <!-- ... -->

 <versionname="Version"column="version" />

 <!-- ... -->

 </class>

 Or by attributes:

 	
 [Version(Name = "Version",Column="version")]

 publicvirtualInt32[]Version { get; protectedset; }

 If we instead want to use a date/time, we need to add a type attribute and change the property’s type:

 	
 publicvirtualDateTime[]Version { get; protectedset; }

 And we need to update the mapping to use a TimestampType:

 	
 this.Version(x=>x.Version,x=>

 {

 x.Column(y=>

 {

 y.NotNullable(true);

 y.Name("version");

 });

 x.Type(NHibernateUtil.TimestampasIVersionType);

 });

 By XML:

 	
 <classname="Product"lazy="true"table="`product`">

 <!-- ... -->

 <versionname="Version"column="version" type="timestamp"/>

 <!-- ... -->

 </class>

 And attributes:

 	
 [Version(Name = "Version",Column="version",TypeType=typeof(TimestampType))]

 publicvirtualDateTime[]Version { get; protectedset; }

 Once you update an optimistic locking strategy, your UPDATE SQL will look like this (with parameters instead of literals, of course):

 	
 UPDATE product

 SET price = 10, version = 2

 WHERE product_id = 1

 AND version = 1

 Generally speaking, whenever we update an entity, its version will increase, or in the case of date and time properties, will be set as the current timestamp. But we can specify on a property-by-property basis if changes made upon them should be considered when incrementing the version of the entity. This is achieved by the property’s optimistic lock attribute as you can see in XML:

 	
 <propertyname="Timestamp"column="`TIMESTAMP`"not-null="true"optimistic-lock="false"/>

 Code:

 	
 this.Property(x=>x.Timestamp,x=>

 {

 x.Column("timestamp");

 x.NotNullable(true);

 x.OptimisticLock(false);

 });

 And attributes mapping:

 	
 [Property(Name="Timestamp",Column="timestamp",NotNull=true,OptimisticLock=false)]

 publicvirtualDateTimeTimestamp { get; set; }

 Whenever the number of updated records is not what NHibernate expects, due to optimistic concurrency checks, NHibernate will throw a StaleStateException. When this happens, you have no alternative but to refresh the entity and try again.

 Optimistic locking is very important when we may have multiple, simultaneous accesses to database tables and when explicit locking is impractical. For example, with web applications. After you map some entity using optimistic locking, its usage is transparent. If, however, you run into a situation in which the data on the database does not correspond to the data that was loaded for some entity, NHibernate will throw an exception when NHibernate flushes it.

 As for its many options, I leave you with some tips:

 · In general, avoid database-specific strategies, as they are less portable and have worse performance.

 · Use Dirty or All optimistic locking modes when you do not need a column that stores the actual version.

 · Use date/time versions when knowing the time of the record’s last UPDATE is important to you and you don’t mind adding an additional column to a table.

 · Finally, choose numeric versioning as the most standard case.

 When using Executable HQL for updating records, you can use the following syntax for updating version columns automatically, regardless of the actual strategy:

 	
 Int32updatedRecords=session

 .CreateQuery("update versionedProductpsetp.Price=p.Price*2").ExecuteUpdate();

 	

 	
 Tip: Never update a version column by hand. Use protected setters to ensure this.

 [bookmark: _Toc384732480][bookmark: _Toc355385647][bookmark: _Toc354573276]Batch Insertions

 NHibernate is no ETL tool, which means it wasn’t designed for bulk loading of data. Having said that, this doesn’t mean it is impossible to do. However, the performance may not be comparable to other solutions. Still, there are some things we can do to help.

 First, in modern databases, there is no need to insert one record at a time. Typically, these engines allow batching, which means that several records are inserted at the same time, thus minimizing the number of roundtrips. As you can guess, NHibernate supports insert batching; you just have to tell it to use it. Using loquacious configuration, we set the BatchSize and Batcher properties:

 	
 Configurationcfg=BuildConfiguration()

 .DataBaseIntegration(db=>

 {

 //...

 db.Batcher<SqlClientBatchingBatcherFactory>();

 db.BatchSize=100;

 })

 	

 	
 Tip: You need to add a reference to the NHibernate.AdoNet namespace for the SqlClientBatchingBatcherFactory class.

 Or, if you prefer to use XML configuration, add the following properties to your App/Web.config:

 	
 <session-factory>

 <!-- ... -->

 <propertyname="adonet.factory_class">

 NHibernate.AdoNet.SqlClientBatchingBatcherFactory,NHibernate</property>

 <propertyname="adonet.batch_size">100</property>

 </session-factory>

 Batcher factories exist for SQL Server and Oracle; the one for the latter is called OracleDataClientBatchingBatcherFactory. It is certainly possible to implement them for other engines and some people, in fact, have. It is a matter of implementing IBatcherFactory and IBatcher. Granted, it’s not simple but it’s still possible.

 What the BatchSize/batch-size property means is, when inserting records, NHibernate should insert records 100 at a time instead of one by one.

 For example, try the following example with and without batching enabled (set BatchSize to 0 and remove the Batcher declaration in the configuration):

 	
 Stopwatchwatch=newStopwatch();

 watch.Start();

 using(ISessionsession=sessionFactory.OpenSession())

 using(session.BeginTransaction())

 {

 for(Int32i=0;i<1000;++i)

 {

 session.Save(newProduct(){Name=String.Format("Product{0}",i),Price=(i+1)*10,

 Specification=XDocument.Parse("<data/>")});

 if((i%100)==0)

 {

 session.Flush();

 session.Clear();

 }

 }

 session.Transaction.Commit();

 }

 Int64time=watch.ElapsedMilliseconds;

 NHibernate has a lightweight alternative to the regular sessions called stateless sessions. Stateless sessions are built from a session factory and have some drawbacks:

 · No first-level cache, which means stateless sessions do not know what changed.

 · No cascading support.

 · No lazy loading support.

 · Fine-grained control over inserts and updates.

 · No flushing; commands are sent immediately.

 · No events are raised.

 The same example with stateless sessions would look like this:

 	
 [bookmark: _Hlk380016640]using(IStatelessSessionsession=sessionFactory.OpenStatelessSession())

 using(session.BeginTransaction())

 {

 for(Int32i=0;i<1000;++i)

 {

 session.Insert(newProduct(){Name=String.Format("Product{0}",i),Price=(i+1)*10,

 Specification=XDocument.Parse("<data/>")});

 }

 session.Transaction.Commit();

 }

 [bookmark: _Toc384732481][bookmark: _Toc355385648][bookmark: _Toc354573277]Chapter 7 Restrictions and Filters

 [bookmark: _Toc384732482][bookmark: _Toc355385649][bookmark: _Toc354573278][bookmark: _Ref354412092][bookmark: _Ref354412002]Restrictions

 It is possible to specify additional restraining conditions to entities, which NHibernate always respects when performing SELECTs. These conditions come in two flavors: restrictions and filters. Let’s first focus on restrictions.

 A restriction is a static WHERE clause that can be added at class and collection levels (sets, lists, bags, maps, id bags, arrays, and primitive arrays) in order to filter its elements. A typical example would be soft deletes where records are not actually deleted from the database but, instead, are marked with a column value that represents deletion. Here’s how we define this as XML, for classes and collections:

 	
 <classname="Blog"lazy="true"table="`POST`"where="deleted=0">

 <!--...-->

 <listcascade="all-delete-orphan"inverse="true"lazy="true"name="Posts" where="deleted=0">

 <!--...-->

 </list>

 </class>

 Here is the equivalent code in mapping by code:

 	
 mapper.Class<Blog>(ca=>

 {

 ca.Where("deleted=0");

 //...

 ca.List(c=>c.Posts,c=>

 {

 c.Where("deleted=0");

 //...

 });

 }

 And in attributes:

 	
 [Class(Table="blog",Lazy=true,Where="deleted = 0")]

 publicclassBlog

 {

 //...

 [List(0,Inverse=true,Lazy=CollectionLazy.True,Generic=true, Where="deleted=0", Cascade="all-delete-orphan")]

 publicvirtualIList<Post>Posts { get; protectedset; }

 }

 [bookmark: _Toc354573279]Whenever you query for the Blog entity, the “deleted = 0” restriction will be added automatically, even if you include other conditions:

 	
 IEnumerable<Blog>nonDeletedBlogs=session.Query<Blog>();

 Blogb=session.Get<Blog>(1);

 See the resulting SQL for the two queries:

 	
 SELECT

 blog0_.blog_id AS blog1_11_,

 blog0_.picture AS picture11_,

 blog0_.user_id AS user3_11_,

 blog0_.name AS name11_,

 blog0_.creation AS creation11_,

 (SELECT

 COUNT(1)

 FROM

 post

 WHERE

 post.blog_id = blog0_.blog_id) AS formula2_

 FROM

 blog blog0_

 WHERE

 (

 blog0_.deleted = 0

)

 SELECT

 blog0_.blog_id AS blog1_11_0_,

 blog0_.picture AS picture11_0_,

 blog0_.user_id AS user3_11_0_,

 blog0_.name AS name11_0_,

 blog0_.creation AS creation11_0_,

 (SELECT

 COUNT(1)

 FROM

 post

 WHERE

 post.blog_id = blog0_.blog_id) AS formula2_0_

 FROM

 blog blog0_

 WHERE

 blog0_.blog_id = 1

 AND

 (

 blog0_.deleted = 0

)

 [bookmark: _Toc355385650]

 [bookmark: _Toc384732483]Filters

 A filter is similar to a restriction but it is dynamic. This means it can be enabled or disabled and can have parameters. One example might be a model in which you have translations of terms to multiple languages:

 Figure 25: Translations Class Model

 What we have is:

 · A Language

 · A Term with a collection of Translations

 · A Translation of a Term for a given Language

 This introduces a new concept: a class that maps a composite key. In this case, it is the LanguageTerm that contains a reference to both a Term and a Language.

 Typically, you would use a model like this if you only want to load the translations for the current language, not for all of them. Its mappings might look like this:

 	
 [bookmark: _Hlk380097938]publicclassLanguageMapping:ClassMapping<Language>

 {

 publicLanguageMapping()

 {

 this.Table("language");

 this.Lazy(true);

 this.Id(x=>x.LanguageId,x=>

 {

 x.Column("language_id");

 x.Generator(Generators.Assigned);

 });

 this.Property(x=>x.Name,x=>

 {

 x.Column("name");

 x.NotNullable(true);

 x.Length(100);

 });

 }

 }

 	
 publicclassTermMapping:ClassMapping<Term>

 {

 publicTermMapping()

 {

 this.Table("term");

 this.Lazy(true);

 this.Id(x=>x.TermId,x=>

 {

 x.Column("term_id");

 x.Generator(Generators.HighLow);

 });

 this.Property(x=>x.Description,x=>

 {

 x.Column("description");

 x.NotNullable(true);

 x.Length(50);

 });

 this.Set(x=>x.Translations,x=>

 {

 x.Key(y=>

 {

 y.Column("term_id");

 y.NotNullable(true);

 });

 x.Filter("CurrentLanguage",z=>

 {

 z.Condition("language_id=:code");

 });

 x.Inverse(true);

 x.Cascade(Cascade.All|Cascade.DeleteOrphans);

 x.Lazy(CollectionLazy.Lazy);

 },x=>

 {

 x.OneToMany();

 });

 }

 }

 	
 [bookmark: _Hlk380098072]publicclassTranslationMapping:ClassMapping<Translation>

 {

 publicTranslationMapping()

 {

 this.Table("translation");

 this.Lazy(true);

 this.Filter("CurrentLanguage",x=>

 {

 x.Condition("language_id=:code");

 });

 this.ComponentAsId(x=>x.TranslationId,x=>

 {

 x.ManyToOne(y=>y.Language,y=>

 {

 y.Column("language_id");

 });

 x.ManyToOne(y=>y.Term,y=>

 {

 y.Column("term_id");

 });

 });

 this.Property(x=>x.Text,x=>

 {

 x.Column("text");

 x.Length(100);

 x.NotNullable(true);

 });

 }

 }

 And, last but not least, a filter declaration, which must go on the Configuration instance before a session factory is built:

 	
 cfg.AddFilterDefinition(newFilterDefinition("CurrentLanguage","language_id=:code",

 newDictionary<String,IType>(){{"code",NHibernateUtil.String}},false));

 	

 	
 Tip: Import namespaces NHibernate.Type and NHibernate.Engine.

 Notice this:

 · The CurrentLanguage filter is basically a restriction on a language_id column and it uses a code parameter.

 · The primary key of the Language class, LanguageId, is a String and uses the Assigned pattern. We will use it for storing meaningful culture names like “en-us” or “pt-pt” which must always be unique.

 · The Translations collection of the Term class has the CurrentLanguage filter applied to it.

 · The Translation class has a composite key (ComponentAsId) implemented by the LanguageTerm class which references both a Term and a Language.

 · The Translation class also uses the CurrentLanguage filter.

 We need to assign a value to the code parameter of the filter and enable it before actually querying:

 	
 //set the filter value from the current thread’s culture name

 session.EnableFilter("CurrentLanguage").SetParameter("code",Thread.CurrentThread.CurrentCulture.Name);

 varterm=session.Query<Term>().First();

 //the translations will be filtered

 vartranslations=term.Translations.ToList();

 The filter will be included in the SQL as a parameter:

 	
 SELECT

 TOP (1) term0_.term_id AS term1_8_,

 term0_.description AS descript2_8_

 FROM

 term term0_

 SELECT

 translatio0_.term_id AS term2_1_,

 translatio0_.language_id AS language1_1_,

 translatio0_.language_id AS language1_9_0_,

 translatio0_.term_id AS term2_9_0_,

 translatio0_.text AS text9_0_

 FROM

 [translation] translatio0_

 WHERE

 translatio0_.language_id = 'en-us'

 AND translatio0_.term_id = 1

 When you no longer need the filter, you just disable it:

 	
 //disable the filter

 session.DisableFilter("CurrentLanguage");

 Final notes:

 · Each entity and collection may have several filters and more than one can be enabled at the same time.

 · A filter may or may not have parameters and these can have default values.

 · A filter may be enabled or disabled.

 · A filter’s SQL can only reference columns directly accessible by the class where it is applied.

 [bookmark: _Toc384732484][bookmark: _Toc355385651][bookmark: _Toc354573280]Chapter 8 Interceptors and Listeners

 [bookmark: _Toc384732485][bookmark: _Toc355385652][bookmark: _Toc354573281]Interceptors

 In this chapter, we will look at what NHibernate has to offer when it comes to changing some of its default behavior and getting notified when some events occur.

 NHibernate offers a mechanism by which we can intercept, among others:

 · The creation of the SQL queries that will be sent to the database.

 · The instantiation of entity classes.

 · The indication if an entity should be persisted.

 · The detection of the dirty properties.

 Interceptors are a complex mechanism. Let’s look at two simple examples—one for changing the SQL and the other for injecting behavior dynamically into entity classes loaded from records.

 An interceptor is injected on the Configuration instance; only one can be applied at a time and that must be before building the session factory.

 A typical implementation of a custom interceptor might inherit from the NHibernate.EmptyInterceptor class which is a do-nothing implementation of the NHibernate.IInterceptor interface:

 	
 [bookmark: _Hlk380099539]publicclassSendSqlInterceptor:EmptyInterceptor

 {

 privatereadonlyFunc<String>sqlBefore=null;

 privatereadonlyFunc<String>sqlAfter=null;

 publicSendSqlInterceptor(Func<String>sqlBefore,Func<String>sqlAfter=null)

 {

 this.sqlBefore=sqlBefore;

 this.sqlAfter=sqlAfter;

 }

 publicoverrideSqlStringOnPrepareStatement(SqlStringsql)

 {

 sql=sql.Insert(0,String.Format("{0};",this.sqlBefore()));

 if(this.sqlAfter!=null)

 {

 sql=sql.Append(String.Format(";{0}",this.sqlAfter()));

 }

 return(base.OnPrepareStatement(sql));

 }

 }

 	

 	
 Tip: You need to reference the NHibernate.SqlCommand namespace for the SqlString class.

 This simple example allows you to send SQL commands before and, optionally, after any other:

 	
 cfg.SetInterceptor(newSendSqlInterceptor(()=>"SETTRANSACTIONISOLATIONLEVELREADUNCOMMITTED",

 ()=>"DECLARE@msgNVARCHAR(100)='Queryrunat'+CAST(GETDATE()ASVARCHAR)+'with'+@@ROWCOUNT+'records';EXECxp_logevent60000,@msg,0"));

 For more complex scenarios, you would have to parse the SqlString parameter and either insert, remove or replace any contents on your own.

 A more interesting example is making use of NHibernate’s built-in proxy generator—the one it uses to build lazy loading proxies. This is a way to automatically add a proper implementation of INotifyPropertyChanged. You might be familiar with this interface, which is used, for example, in WPF data binding where a control needs to be notified of any changes that occur to its data source’s properties so that it can redraw itself. Implementing INotifyPropertyChanged has absolutely no complexity but it is a lot of work if we have many properties. Besides that, it forces us to use backing fields for properties. Here is the code for an interceptor that makes all loaded entities implement INotifyPropertyChanged:

 	
 publicsealedclassNotifyPropertyChangedInterceptor:EmptyInterceptor

 {

 class_NotifyPropertyChangedInterceptor:NHibernate.Proxy.DynamicProxy.IInterceptor

 {

 privatePropertyChangedEventHandlerchanged=delegate{};

 privatereadonlyObjecttarget=null;

 public_NotifyPropertyChangedInterceptor(Objecttarget)

 {

 this.target=target;

 }

 #regionIInterceptorMembers

 publicObjectIntercept(InvocationInfoinfo)

 {

 Objectresult=null;

 if(info.TargetMethod.Name=="add_PropertyChanged")

 {

 PropertyChangedEventHandlerpropertyChangedEventHandler=info.Arguments[0]

 asPropertyChangedEventHandler;

 this.changed+=propertyChangedEventHandler;

 }

 elseif(info.TargetMethod.Name=="remove_PropertyChanged")

 {

 PropertyChangedEventHandlerpropertyChangedEventHandler=info.Arguments[0]

 asPropertyChangedEventHandler;

 this.changed-=propertyChangedEventHandler;

 }

 else

 {

 result=info.TargetMethod.Invoke(this.target,info.Arguments);

 }

 if(info.TargetMethod.Name.StartsWith("set_")==true)

 {

 StringpropertyName=info.TargetMethod.Name.Substring("set_".Length);

 this.changed(info.Target,newPropertyChangedEventArgs(propertyName));

 }

 return(result);

 }

 #endregion

 }

 privateISessionsession=null;

 privatestaticreadonlyProxyFactoryfactory=newProxyFactory();

 publicoverridevoidSetSession(ISessionsession)

 {

 this.session=session;

 base.SetSession(session);

 }

 publicoverrideObjectInstantiate(Stringclazz,EntityModeentityMode,Objectid)

 {

 TypeentityType=this.session.SessionFactory.GetClassMetadata(clazz).GetMappedClass(

 entityMode);

 Objecttarget=this.session.SessionFactory.GetClassMetadata(entityType).Instantiate(id,

 entityMode);

 Objectproxy=factory.CreateProxy(entityType,new_NotifyPropertyChangedInterceptor(target),

 typeof(INotifyPropertyChanged));

 this.session.SessionFactory.GetClassMetadata(entityType).SetIdentifier(proxy,id,entityMode);

 return(proxy);

 }

 }

 	

 	
 Tip: You need to reference the NHibernate, NHibernate.Type, System.ComponentModel, and System.Reflection namespaces.

 Its registration is as simple as:

 	
 cfg.SetInterceptor(newNotifyPropertyChangedInterceptor());

 And a sample usage:

 	
 Productp=session.Query<Product>().First();

 INotifyPropertyChangednpc=pasINotifyPropertyChanged;

 npc.PropertyChanged+=delegate(Objectsender,PropertyChangedEventArgsargs)

 {

 //…

 };

 p.Price*=10; //raises the NotifyPropertyChanged event

 Granted, this code is a bit complex. Nevertheless, it isn’t hard to understand:

 · The Instantiate method is called when NHibernate is going to create an object instance for a record obtained from the database. In the base EmptyInterceptor class it just returns null by default so NHibernate knows it must create it by itself.

 · In our own implementation, we ask NHibernate to create an instance the way it would normally do, by calling IClassMetadata.Instantiate.

 · NHibernate’s ProxyFactory will then create a new proxy for the desired class, have it implement INotifyPropertyChanged, and pass it an implementation of a proxy interceptor, _NotifyPropertyChangedInterceptor, which will handle all requests for virtual or abstract methods and properties and, in the event of a setter call (identified by the prefix “set_” or an event registration – “add_”) will execute some custom code.

 · Because the generated proxy will be of a class that inherits from an entity’s class, it must not be marked as sealed and all of its properties and methods must be virtual.

 [bookmark: _Toc355385653][bookmark: _Toc354573282]

 [bookmark: _Toc384732486]Listeners

 Listeners are NHibernate’s events; they allow us to be notified when something occurs. It turns out that NHibernate offers a very rich set of events that cover just about anything you might expect—from entity loading, deletion and saving, to session flushing and more.

 Multiple listeners can be registered for the same event; they will be called synchronously at specific moments which are described in the following table. The table lists both the code name as well as the XML name of each event. I have also included the name of the property in the Configuration.EventListeners property where the listeners can be added by code.

 The full list of events is:

 Table 7: NHibernate Events

 	
 Event

 	
 Description and Registration Property

 	
 Autoflush/auto-flush

 	
 Called when the session is flushed automatically (AutoFlushEventListeners property)

 	
 Create/create

 	
 Called when an instance is saved (PersistEventListeners)

 	
 CreateOnFlush/

 create-onflush

 	
 Called when an instance is saved automatically by a Flush operation (PersistOnFlushEventListeners)

 	
 Delete/delete

 	
 Called when an entity is deleted by a call to Delete (DeleteEventListeners)

 	
 DirtyCheck/dirty-check

 	
 Called when a session is being checked for dirty entities (DirtyCheckEventListeners)

 	
 Evict/evict

 	
 Called when an entity is being evicted from a session (EvictEventListeners)

 	
 Flush/flush

 	
 Called when a Flush call occurs or a transaction commits, after FlushEntity is called for each entity in the session (FlushEventListeners)

 	
 FlushEntity/flush-entity

 	
 Called for each entity present in a session when it is flushed (FlushEntityEventListeners)

 	
 Load/load

 	
 Called when a session is loaded either by the Get/Load method or by a query, after events PreLoad and PostLoad (LoadEventListeners)

 	
 LoadCollection/

 load-collection

 	
 Called when an entity’s collection is being populated (InitializeCollectionEventListeners)

 	
 Lock/lock

 	
 Called when an entity and its associated record are being locked explicitly, either by an explicit call to the Lock method or by passing a LockMode in a query (LockEventListeners)

 	
 Merge/merge

 	
 Called when an existing entity is being merged with a disconnected one, usually by a call to Merge (MergeEventListeners)

 	
 {Pre/Post}CollectionRecreate/{pre/post}-collection-recreate

 	
 Called before/after a bag is being repopulated, after its elements have changed ({Pre/Post}CollectionRecreateEventListeners)

 	
 {Pre/Post}CollectionRemove/{pre/post}-collection-remove

 	
 Called before/after an entity is removed from a collection ({Pre/Post}CollectionRemoveEventListeners)

 	
 {Pre/Post}CollectionUpdate/{pre/post}-collection-update

 	
 Called before/after a collection was changed ({Pre/Post}CollectionUpdateEventListeners)

 	
 PostCommitDelete/

 post-commit-delete

 	
 Called after a delete operation was committed (PostCommitDeleteEventListeners)

 	
 PostCommitInsert/

 post-commit-insert

 	
 Called after an insert operation was committed (PostCommitInsertEventListeners)

 	
 PostCommitUpdate/

 post-commit-update

 	
 Called after an update operation was committed (PostCommitUpdateEventListeners)

 	
 {Pre/Post}Delete/

 {pre/post}-delete

 	
 Called before/after a delete operation ({Pre/Post}DeleteEventListeners)

 	
 {Pre/Post}Insert/{pre/post}-insert

 	
 Called before/after an insert operation ({Pre/Post}InsertEventListeners)

 	
 {Pre/Post}Load/{pre/post}-load

 	
 Called before/after a record is loaded and an entity instance is created ({Pre/Post}LoadEventListeners)

 	
 {Pre/Post}Update/{pre/post}-update

 	
 Called before/after an instance is updated ({Pre/Post}UpdateEventListeners)

 	
 Refresh/refresh

 	
 Called when an instance is refreshed (RefreshEventListeners)

 	
 Replicate/replicate

 	
 Called when an instance is being replicated (ReplicateEventListeners)

 	
 Save/save

 	
 Called when an instance is being saved, normally by a call to Save or SaveOrUpdate but after PostInsert/PostUpdate (SaveEventListeners)

 	
 SaveUpdate/save-update

 	
 Called when an instance is being saved, normally by a call to SaveOrUpdate but after PostUpdate (SaveOrUpdateEventListeners)

 	
 Update/update

 	
 Called when an instance is being updated explicitly, by a call to Update (UpdateEventListeners)

 An event listener needs to be registered in the Configuration instance prior to creating a session factory from it:

 	
 //register a listener for the FlushEntity event

 cfg.AppendListeners(ListenerType.FlushEntity,newIFlushEntityEventListener[]{

 newProductCreatedListener()});

 It is also possible to register event handlers by XML configuration; make sure you add an assembly qualified type name:

 	
 <session-factory>

 <!-- … -->

 <listenertype="flush-entity"class="Succinctly.Console.ProductCreatedListener,Succinctly.Console"/>

 </session-factory>

 Let’s look at two examples, one for firing a domain event whenever a new product is added and the other for adding auditing information to an entity.

 Here’s the first listener:

 	
 publicclassProductCreatedListener:IFlushEntityEventListener

 {

 publicstaticeventAction<Product>ProductCreated;

 #regionIFlushEntityEventListenerMembers

 publicvoidOnFlushEntity(FlushEntityEvent@event)

 {

 if(@event.EntityisProduct)

 {

 if(ProductCreated!=null)

 {

 ProductCreated(@event.EntityasProduct);

 }

 }

 }

 #endregion

 }

 	

 	
 Tip: Add a using declaration for namespace NHibernate.Event.

 An an example usage:

 	
 //register a handler for the ProductCreated event

 ProductCreatedListener.ProductCreated+=delegate(Productp)

 {

 Console.WriteLine("A new product was saved");

 };

 //register a listener for the FlushEntity event

 cfg.AppendListeners(ListenerType.FlushEntity,newIFlushEntityEventListener[]{

 newProductCreatedListener()});

 //a sample product

 Productproduct=newProduct(){Name="SomeProduct",Price=100,Specification=

 XDocument.Parse("<data/>")};

 //save the new product

 session.Save(product);

 session.Flush(); //the ProductCreatedListener.ProductCreated event will be raised here

 As for the auditing, let’s start by defining a common interface:

 	
 publicinterfaceIAuditable

 {

 StringCreatedBy { get; set; }

 DateTimeCreatedAt { get; set; }

 StringUpdatedBy { get; set; }

 DateTimeUpdatedAt { get; set; }

 }

 The IAuditable interface defines properties for storing the name of the user who created and last updated a record, as well as the date and time of its creation and last modification. The concept should be familiar to you. Feel free to add this interface to any of your entity classes.

 Next, the listener that will handle NHibernate events and fill in the auditing information:

 	
 publicclassAuditableListener:IFlushEntityEventListener,ISaveOrUpdateEventListener,

 IMergeEventListener

 {

 publicAuditableListener()

 {

 this.CurrentDateTimeProvider=()=>DateTime.UtcNow;

 this.CurrentIdentityProvider=()=>WindowsIdentity.GetCurrent().Name;

 }

 publicFunc<DateTime>CurrentDateTimeProvider { get; set; }

 publicFunc<String>CurrentIdentityProvider { get; set; }

 protectedvoidExplicitUpdateCall(IAuditabletrackable)

 {

 if(trackable==null)

 {

 return;

 }

 trackable.UpdatedAt=this.CurrentDateTimeProvider();

 trackable.UpdatedBy=this.CurrentIdentityProvider();

 if(trackable.CreatedAt==DateTime.MinValue)

 {

 trackable.CreatedAt=trackable.UpdatedAt;

 trackable.CreatedBy=trackable.UpdatedBy;

 }

 }

 protectedBooleanHasDirtyProperties(FlushEntityEvent@event)

 {

 if((@event.EntityEntry.RequiresDirtyCheck(@event.Entity)==false)

 ||(@event.EntityEntry.ExistsInDatabase==false)||(@event.EntityEntry.LoadedState==null))

 {

 return(false);

 }

 Object[]currentState=@event.EntityEntry.Persister

 .GetPropertyValues(@event.Entity,@event.Session.EntityMode);

 Object[]loadedState=@event.EntityEntry.LoadedState;

 return(@event.EntityEntry.Persister.EntityMetamodel.Properties.Where((property,i)=>

 (LazyPropertyInitializer.UnfetchedProperty.Equals(currentState[i])==false)

 &&(property.Type.IsDirty(loadedState[i],currentState[i],@event.Session)==true))

 .Any());

 }

 publicvoidOnFlushEntity(FlushEntityEvent@event)

 {

 if((@event.EntityEntry.Status==Status.Deleted)||(@event.EntityEntry.Status==Status.ReadOnly))

 {

 return;

 }

 IAuditabletrackable=@event.EntityasIAuditable;

 if(trackable==null)

 {

 return;

 }

 if(this.HasDirtyProperties(@event)==true)

 {

 this.ExplicitUpdateCall(trackable);

 }

 }

 publicvoidOnSaveOrUpdate(SaveOrUpdateEvent@event)

 {

 IAuditableauditable=@event.EntityasIAuditable;

 if((auditable != null) && (auditable.CreatedAt==DateTime.MinValue))

 {

 this.ExplicitUpdateCall(auditable);

 }

 }

 publicvoidOnMerge(MergeEvent@event)

 {

 this.ExplicitUpdateCall(@event.EntityasIAuditable);

 }

 publicvoidOnMerge(MergeEvent@event,IDictionarycopiedAlready)

 {

 this.ExplicitUpdateCall(@event.EntityasIAuditable);

 }

 }

 As for the registration code, it is a little more complex than the previous example:

 	
 [bookmark: _Hlk380100882]AuditableListener listener = new AuditableListener();

 cfg.AppendListeners(ListenerType.Save,newISaveOrUpdateEventListener[]{listener}); cfg.AppendListeners(ListenerType.SaveUpdate,newISaveOrUpdateEventListener[]{listener});

 cfg.AppendListeners(ListenerType.Update,newISaveOrUpdateEventListener[]{listener});

 cfg.AppendListeners(ListenerType.FlushEntity, newIFlushEntityEventListener[]{listener});

 cfg.AppendListeners(ListenerType.Merge,newIMergeEventListener[]{listener});

 In XML:

 	
 <listenertype="save"class="Succinctly.Common.AuditableListener,Succinctly.Common"/>

 <listenertype="save-update"class="Succinctly.Common.AuditableListener,Succinctly.Common"/>

 <listenertype="update"class="Succinctly.Common.AuditableListener,Succinctly.Common"/>

 <listenertype="flush-entity"class="Succinctly.Common.AuditableListener,Succinctly.Common"/>

 <listenertype="merge"class="Succinctly.Common.AuditableListener,Succinctly.Common"/>

 The AuditableListener class allows you to specify a delegate property for obtaining the current date and time (CurrentDateTimeProvider) and the name of the current user (CurrentIdentityProvider). It must be registered as a listener for several events (Save, SaveOrUpdate, Update, FlushEntity, and Merge) because several things can happen:

 · An entity can be marked for saving (Save).

 · An entity can be marked for saving or updating (SaveOrUpdate).

 · An entity can be updated explicitly (Update).

 · A disconnected entity may be merged with an existing one, thus possibly changing it (Merge).

 · An entity that is dirty may reach a session flush (FlushEntity).

 [bookmark: _Toc384732487][bookmark: _Toc355385654][bookmark: _Toc354573283]Chapter 9 Validation

 [bookmark: _Toc384732488][bookmark: _Toc355385655]NHibernate Validator

 A proper data framework allows you to validate entities against business rules and invalid values. NHibernate Validator can be used precisely for that. It is a general purpose validation framework that integrates tightly with NHibernate.

 The best way to get it is through NuGet as NHibernate.Validator:

 Another way to get it is by downloading it from SourceForge: http://sourceforge.net/projects/nhcontrib/files/NHibernate.Validator.

 You can also get the source code from GitHub: https://github.com/darioquintana/NHibernate-Validator.

 Once you have set it up, you must decide how you want to apply validation. NHibernate Validator supports configuring validation:

 · By attributes.

 · By XML.

 · By code.

 You see, some things in the NHibernate world never change!

 To use NHibernate Validator, we need to set up the framework to work together with NHibernate. This is achieved through a listener that performs validation on entities when they are about to be saved or updated. If any validation error occurs, an InvalidStateException is thrown. You can call its GetInvalidValues() to find out exactly what is wrong and fix it.

 We integrate NHibernate Validator with the NHibernate Configuration instance before building any session factory. The following shows how to do it with loquacious configuration:

 	
 FluentConfigurationvalidatorConfiguration=newFluentConfiguration();

 validatorConfiguration.SetDefaultValidatorMode(ValidatorMode.UseExternal)

 .IntegrateWithNHibernate.ApplyingDDLConstraints().RegisteringListeners();

 NHibernate.Validator.Cfg.Environment.SharedEngineProvider=newNHibernateSharedEngineProvider();

 ValidatorEnginevalidatorEngine=NHibernate.Validator.Cfg.Environment.SharedEngineProvider.GetEngine();

 validatorEngine.Configure(validatorConfiguration);

 cfg.Initialize(validatorEngine);

 	

 	
 Tip: Add using statements for the NHibernate.Validator.Cfg.Loquacious, NHibernate.Validator, and NHibernate.Validator.Engine namespaces.

 But it is also possible to do it with XML configuration; just make sure you add the following content to your App/Web.config file:

 	
 <configuration>

 <configSections>

 <!-- … -->

 <sectionname="nhv-configuration"type="NHibernate.Validator.Cfg.ConfigurationSectionHandler,NHibernate.Validator"/>

 </configSections>

 <nhv-configurationxmlns="urn:nhv-configuration-1.0">

 <propertyname="apply_to_ddl">true</property>

 <propertyname="autoregister_listeners">true</property>

 <propertyname="default_validator_mode">UseExternal</property>

 <mappingassembly="Succinctly.Model"/>

 </nhv-configuration>

 <!-- … -->

 </configuration>

 And include the following code:

 	
 XmlConfigurationxmlConfiguration=newXmlConfiguration();

 ValidatorEnginevalidatorEngine=NHibernate.Validator.Cfg.Environment.SharedEngineProvider.GetEngine();

 validatorEngine.Configure(validatorConfiguration);

 cfg.Initialize(validatorEngine);

 If you want, you can also have IntelliSense for the NHibernate Validator XML. If you added NHibernate Validator from NuGet, just copy the nhv-configuration.xsd and nhv-mapping.xsd files from the packages\NHibernate.Validator.1.3.2.4000\lib\Net35 folder to the C:\Program Files (x86)\Microsoft Visual Studio 10.0\Xml\Schemas or C:\Program Files (x86)\Microsoft Visual Studio 11.0\Xml\Schemas, depending on your Visual Studio version. See XML Configuration for more information on this. If you haven’t used NuGet, you will have to extract these files from the distribution .zip file or the source GitHub repository.

 Next, we need to configure validations for our entities. First, using code:

 	
 FluentConfigurationvalidatorConfiguration=newFluentConfiguration();

 validatorConfiguration.Register(newCustomerValidation()).SetDefaultValidatorMode(ValidatorMode.UseAttribute)

 .IntegrateWithNHibernate.ApplyingDDLConstraints().RegisteringListeners();

 The CustomerValidation class inherits from NHibernate.Validator.ValidationDef<T> and is defined as follows:

 	
 [bookmark: _Hlk380101499]publicclassCustomerValidation:ValidationDef<Customer>

 {

 publicCustomerValidation()

 {

 this.ValidateInstance.By((customer,context)=>customer.Address != null&& /* something else */)

 .WithMessage("The customer addressismandatory");

 this.Define(x=>x.Name).NotNullableAndNotEmpty().WithMessage("Thecustomernameismandatory");

 this.Define(x=>x.Name).MaxLength(50).WithMessage("Thecustomernamecanonlyhave50characters");

 this.Define(x=>x.Email).NotNullableAndNotEmpty().WithMessage("Thecustomeremailismandatory");

 this.Define(x=>x.Email).MaxLength(50).WithMessage("Thecustomeremailcanonlyhave50characters");

 this.Define(x=>x.Email).IsEmail().WithMessage("Thecustomeremailmustbeavalidemailadddress");

 }

 }

 And the same rules, except the ValidateInstanceBy custom validation can be defined in attributes like this:

 	
 publicclassCustomer

 {

 [NotNullNotEmpty(Message="Thecustomernameismandatory")]

 [Length(Max=50,Message="Thecustomernamecanonlyhave50characters")]

 publicvirtualStringName { get; set; }

 [NotNullNotEmpty(Message="Thecustomeremailismandatory")]

 [Email(Message="Thecustomeremailmustbeavalidemailadddress")]

 [Length(Max=50,Message="Thecustomeremailcanonlyhave50characters")]

 publicvirtualStringEmail { get; set; }

 [NotNull(Message="The customer addressismandatory")]

 publicvirtualAddressAddress { get; set; }

 }

 	

 	
 Tip: You need to reference the namespace NHibernate.Validator.Constraints.

 You have to change the Validator configuration to use attributes:

 	
 FluentConfigurationvalidatorConfiguration=newFluentConfiguration();

 validatorConfiguration.SetDefaultValidatorMode(ValidatorMode.UseAttribute)

 .IntegrateWithNHibernate.ApplyingDDLConstraints().RegisteringListeners();

 Finally, to use XML, you need to add a file named Customer.nhv.xml, place it in the same location as the Customer class, and mark it as an embedded resource, just as we saw on XML Mappings:

 	
 <?xmlversion="1.0"encoding="utf-8"?>

 <nhv-mapping namespace="Succinctly.Model"assembly="Succinctly.Model"

 xmlns="urn:nhibernate-validator-1.0">

 <classname="Customer">

 <propertyname="Name">

 <lengthmax="50"message="Thecustomernamecanonlyhave50characters"/>

 <notnull-notemptymessage="Thecustomernameismandatory"/>

 </property>

 <propertyname="Email">

 <lengthmax="50"message="Thecustomeremailcanonlyhave50characters"/>

 <notnull-notemptymessage="Thecustomeremailismandatory"/>

 <emailmessage="Thecustomeremailmustbeavalidemailadddress"/>

 </property>

 <propertyname="Address">

 <not-nullmessage="Thecustomeraddressismandatory"/>

 </property>

 </class>

 </nhv-mapping>

 You also have to tell NHibernate Validator to look for embedded resources explicitly:

 	
 FluentConfigurationvalidatorConfiguration=newFluentConfiguration();

 validatorConfiguration.Register(new[] { typeof(Customer) })

 .SetDefaultValidatorMode(ValidatorMode.UseExternal)

 .IntegrateWithNHibernate.ApplyingDDLConstraints().RegisteringListeners();

 For some properties, we are using the built-in validation mechanisms such as NotNullableAndNotEmpty and IsEmail whereas, in other cases, we are performing a custom check (the Address reference). Out-of-the-box validators include:

 Table 8: Included Validators

 	
 Validator

 	
 Type

 	
 Description

 	
 Digits/digits/decimalmax/

 Decimalmin

 	
 Numbers, Strings

 	
 Validates the maximum number of digits/digits and fractional digits

 	
 FilePathExists/fileexists

 	
 Strings

 	
 Checks if a file path exists

 	
 GreaterThanOrEqualTo/min

 	
 Numbers

 	
 Checks if a number is greater or equal to a given value

 	
 HasValidElements/isvalid

 	
 Collections

 	
 Checks if all of the collections’ elements are valid recursively

 	
 IncludedBetween/range

 	
 Numbers

 	
 Checks if a number is included within a range (inclusive)

 	
 IsCreditCardNumber/

 Creditcardnumber

 	
 Strings

 	
 Checks if a string matches a credit card number

 	
 IsEAN/ean

 	
 Numbers, Strings

 	
 Checks if a string or number matches an EAN

 	
 IsEmail/email

 	
 Strings

 	
 Checks if a string is a valid e-mail address

 	
 IsFalse/assertfalse

 	
 Booleans

 	
 Checks that a boolean is false

 	
 IsIBAN/iban

 	
 Strings

 	
 Checks that a string is a valid IBAN

 	
 IsInTheFuture/future

 	
 Dates and Times

 	
 Checks that a date is in the future

 	
 IsInThePast/past

 	
 Dates and Times

 	
 Checks that a date is in the past

 	
 IsIP/ipaddress

 	
 Strings

 	
 Checks that a string is a valid IP address

 	
 IsNumeric/digits

 	
 Strings

 	
 Checks that a string is a valid number

 	
 IsTrue/asserttrue

 	
 Booleans

 	
 Checks that a boolean is true

 	
 IsValid/valid

 	
 Entities

 	
 Checks that an entity is valid recursively

 	
 LengthBetween/length

 	
 Strings

 	
 Checks that the length of a string is contained within given limits

 	
 LessThanOrEqualTo/max

 	
 Numbers

 	
 Checks that a number is less or equal to a given value

 	
 MatchWith/pattern

 	
 Strings

 	
 Check that a string matches a regular expression

 	
 MaxLength/length

 	
 Strings

 	
 Checks the maximum length of a string

 	
 MaxSize/size

 	
 Collections

 	
 Checks the maximum size of a collection

 	
 MinLength/length

 	
 Strings

 	
 Checks the minimum length of a string

 	
 MinSize/size

 	
 Collections

 	
 Checks the minimum size of a collection

 	
 NotEmpty/not-empty

 	
 String, Collections, GUIDs

 	
 Checks if a string/collection/GUID is not empty

 	
 NotNullable/not-null

 	
 Any

 	
 Checks that a value is not null

 	
 NotNullableAndNotEmpty/

 notnull-notempty

 	
 String, Collections

 	
 Checks that a string/collection is not null and contains values

 	
 Satisfy

 	
 Any

 	
 A custom rule, as a lambda expression

 	
 SizeBetween/size

 	
 Collections

 	
 Checks that a collection’s size is contained within given limits

 	
 Whitih/range

 	
 Numbers

 	
 Checks if a number is included within a range (exclusive)

 Some of these validations can be implemented on the database in the form of the maximum length for a string and as check constraints. In this case, if NHibernate Validator is integrated with NHibernate using the ApplyingDDLConstraints/apply_to_ddl option, when the model is generated, it will include these checks.

 Finally, you can implement your own attributes by inheriting from EmbeddedRuleArgsAttribute and implementing a couple of interfaces:

 	
 [AttributeUsage(AttributeTargets.Property,AllowMultiple=false,Inherited=true)]

 publicsealedclassIsEvenAttribute:EmbeddedRuleArgsAttribute,IRuleArgs,IValidator,

 IPropertyConstraint

 {

 publicIsEvenAttribute()

 {

 this.Message = "Number is odd";

 }

 publicStringMessage { get; set; }

 publicBooleanIsValid(Objectvalue,IConstraintValidatorContextconstraintValidatorContext)

 {

 Int32number=Convert.ToInt32(value);

 return((number%2)==0);

 }

 publicvoidApply(Propertyproperty)

 {

 Columncolumn=property.ColumnIterator.OfType<Column>().First();

 column.CheckConstraint=String.Format("({0}%2=0)",column.Name);

 }

 }

 This validator checks that a number is even, and can even change the property to which it is applied in order to add this check at the database level. That is what the IPropertyConstraint is for and you don’t have to implement it because, sometimes, a validation cannot be expressed easily in database terms.

 To add the attribute by XML, add a <rule> tag to Customer.nhv.xml that references your custom attribute:

 	
 <propertyname="SomeIntegerProperty">

 <ruleattribute="IsEvenAttribute">

 <param name="Message" value="Number is odd"/>

 </rule>

 </property>

 Finally, let me just say this: Validation occurs when NHibernate tries to save an entity with validations attached but you can also validate explicitly:

 	
 InvalidValue[]invalidValuesObtainedExplicitly=validatorEngine.Validate(entity);

 And that’s just about it. Happy validating!

 [bookmark: _Toc384732489][bookmark: _Toc355385656][bookmark: _Toc354573284]Chapter 10 Using NHibernate in Web Contexts

 [bookmark: _Toc384732490][bookmark: _Toc355385657]ASP.NET Web Forms

 NHibernate is a general purpose persistence framework. It can be used in almost any .NET environment you can think of (but probably excluding Silverlight). However, in the case of ASP.NET web applications, there are some things that you might want to know to help your development process.

 First, keep in mind that you will only ever need one session factory per application. Feel free to store it in a static variable; for example, in the Global class.

 Second, one pattern that is common in web development is Open Session In View, which basically states that we should open a single session for each request, store it in an easy-to-find location, and keep it for the duration of the request, after which we can dispose of it. It is advisable that you follow this pattern. Let’s see exactly how to do this.

 NHibernate has the concept of the current session context. We are responsible for creating a session and binding it to this session context so that we can retrieve it later—even from different contexts (classes and methods). The session context implementation is specified by configuration, XML, or loquacious, and NHibernate includes the following implementations:

 Table 9: NHibernate Session Context Storage

 	
 Name

 	
 Purpose

 	
 CallSessionContext/call

 	
 The session is stored in the .NET Remoting CallContext class

 	
 ThreadStaticSessionContext/thread_static

 	
 The session is stored in a ThreadStatic variable

 	
 WcfOperationSessionContext/wcf_operation

 	
 The session is stored in the WCF OperationContext instance

 	
 WebSessionContext/web

 	
 The session is stored in the current HttpContext

 Of course, for web applications, you would normally use the WebSessionContext. Here’s how to set it up in XML and loquacious configuration:

 	
 <hibernate-configurationxmlns="urn:nhibernate-configuration-2.2">

 <session-factory>

 <!-- … -->

 <propertyname="current_session_context_class">web</property>

 </session-factory>

 </hibernate-configuration>

 	
 Configurationcfg=BuildConfiguration()

 .DataBaseIntegration(db=>

 {

 //…

 })

 .CurrentSessionContext<WebSessionContext>();

 To properly implement the Open Session In View pattern, we need to hook up the BeginRequest, EndRequest, and Error HttpApplication events. This can be done in a module (IHttpModule) or in the Global class. Here’s how it should look:

 	
 public CurrentSessionContext SessionFactory { get; set; }

 protectedvoidOnBeginRequest(Objectsender,EventArgse)

 {

 ISessionsession=this.SessionFactory.OpenSession();

 session.BeginTransaction();

 CurrentSessionContext.Bind(session);

 }

 protectedvoidOnEndRequest(Objectsender,EventArgse)

 {

 this.DisposeOfSession(true);

 }

 protectedvoidOnError(Objectsender,EventArgse)

 {

 this.DisposeOfSession(false);

 }

 protectedvoidDisposeOfSession(Booleancommit)

 {

 ISessionsession=CurrentSessionContext.Unbind(this.SessionFactory);

 if(session!=null)

 {

 if((session.Transaction.IsActive==true)&&(session.Transaction.WasCommitted==false)

 &&(session.Transaction.WasRolledBack==false))

 {

 if(commit==true)

 {

 session.Transaction.Commit();

 }

 else

 {

 session.Transaction.Rollback();

 }

 session.Transaction.Dispose();

 }

 session.Dispose();

 }

 }

 	

 	
 Tip: Add a reference to the NHibernate.Context namespace.

 Here’s what it does:

 1. When the BeginRequest event is raised, a session is created and stored in the current session context (CurrentSessionContext.Bind()), and a transaction is started.

 2. When the EndRequest is raised, the session is retrieved (CurrentSessionContext.Unbind()) and disposed of, and the transaction is committed if it wasn’t already.

 3. If an Error occurs, the session is also disposed of and the active transaction is rolled back.

 At any point, you can get the current session from the ISessionFactory.GetCurrentContext() method, but you need to have a pointer to the session factory for that:

 	
 ISessionsession=sessionFactory.GetCurrentSession();

 If at any point in your code you need to cause the current transaction to roll back, just call the Rollback method of the ITransaction instance:

 	
 sessionFactory.GetCurrentSession().Rollback();

 The code in the EndRequest handler will detect that the session was already rolled back and it won’t do it again.

 [bookmark: _Toc384732491][bookmark: _Toc355385658]ASP.NET MVC

 ASP.NET MVC uses an attribute-based approach for injecting cross-cutting behavior before and after action methods execute. This is generally referred to as Aspect-Oriented Programming (AOP) and, in MVC, it is called a filter. With this mechanism, you can easily start a session for the request and wrap each method in a transaction.

 The following is the code for a simple filter that starts an NHibernate session (if it wasn’t already started) and a transaction at the beginning of an action method and, after it finishes, commits the transaction and disposes of the session:

 	
 publicclassTransactionAttribute:ActionFilterAttribute,IExceptionFilter

 {

 publicoverridevoidOnActionExecuting(ActionExecutingContextfilterContext)

 {

 ISessionFactory sessionFactory=DependencyResolver.Current.GetService<ISessionFactory>();

 if(CurrentSessionContext.HasBind(sessionFactory)==false)

 {

 CurrentSessionContext.Bind(sessionFactory.OpenSession());

 }

 if((sessionFactory.GetCurrentSession().Transaction.IsActive==false))

 {

 sessionFactory.GetCurrentSession().BeginTransaction();

 }

 }

 publicoverridevoidOnActionExecuted(ActionExecutedContextfilterContext)

 {

 ISessionFactory sessionFactory=DependencyResolver.Current.GetService<ISessionFactory>();

 if((sessionFactory.GetCurrentSession().Transaction.IsActive==true)

 &&(sessionFactory.GetCurrentSession().Transaction.WasCommitted==false)

 &&(sessionFactory.GetCurrentSession().Transaction.WasRolledBack==false))

 {

 sessionFactory.GetCurrentSession().Transaction.Commit();

 }

 CurrentSessionContext.Unbind(sessionFactory).Dispose();

 }

 publicvoidOnException(ExceptionContextfilterContext)

 {

 ISessionFactorysessionFactory=DependencyResolver.Current.GetService<ISessionFactory>();

 if((sessionFactory.GetCurrentSession().Transaction.IsActive==true)

 &&(sessionFactory.GetCurrentSession().Transaction.WasCommitted==false)

 &&(sessionFactory.GetCurrentSession().Transaction.WasRolledBack==false))

 {

 sessionFactory.GetCurrentSection().Transaction.Rollback();

 }

 CurrentSessionContext.Unbind(sessionFactory).Dispose();

 }

 }

 	

 	
 Tip: This example assumes that you have registered the ISessionFactory with the DependencyResolver.

 [bookmark: _Toc355385659]

 [bookmark: _Toc384732492]WCF Web Services

 When you use NHibernate to retrieve data in a web service, you must be aware of the following: If you use lazy loading for some property, reference or collection, and you leave the web method without explicitly loading everything, when your entity is serialized it will most likely not have access to the session from which it came. This is because it should have been disposed and so an exception will occur. Take the following code as an example of a bad implementation:

 	
 [OperationContract]

 publicIEnumerable<Product>GetProducts()

 {

 using(ISessionsession=this.sessionFactory.OpenSession())

 {

 return(session.Query<Product>().ToList());

 }

 }

 If the Product entity is configured with any lazy properties, it will crash as soon as it is serialized because, by then, its originating session is closed.

 A better implementation relies on a Data Transfer Object (DTO) that represents the data that we need to send, which typically is a subset or a transformation of the data exposed by the entity class:

 	
 [OperationContract]

 publicIEnumerable<Product>GetProducts()

 {

 using(ISessionsession=this.sessionFactory.OpenSession())

 {

 return(session.Query<Product>().Select(x => newProductDTO

 { Name = x.Name, Price = x.Price, Orders = x.OrderCount }).ToList());

 }

 }

 You can also use the same session context as you would normally use in a web application (the WCF session context is complex to set up and really doesn’t introduce anything special), and also stick with the Open Session In View; you just have to make sure your WCF service is in ASP.NET Compatibility Mode (see http://msdn.microsoft.com/en-us/library/ms752234.aspx).

 [bookmark: _Toc384732493][bookmark: _Toc355385660][bookmark: _Toc354573287]Chapter 11 Extending NHibernate

 [bookmark: _Toc384732494][bookmark: _Toc355385661][bookmark: _Toc354573288]Extending LINQ

 One common request is for the ability to have strongly typed LINQ expressions that take functions and have these functions run on the database. This is indeed possible with NHibernate. Let’s take a look at how this is possible.

 First, let’s define a function prototype for something that we would like to call. In this example, I chose the SQL Server SOUNDEX function, for which you may find more information at http://msdn.microsoft.com/en-us/library/ms187384.aspx. Basically, this function returns a hash based on the sound that a string makes, thus allowing the successful comparison of badly written words. As far as the SOUNDEX algorithm is concerned, the following strings are the same:

 · Ricardo.

 · Riicardo.

 · Ryicardo.

 You can see it for yourself:

 	
 SELECT SOUNDEX('Ricardo') --R263

 SELECT SOUNDEX('Riicardo') --R263

 SELECT SOUNDEX('Rycardo') --R263

 If we wanted to call SOUNDEX in a LINQ query, we might define the following extension method on the String class:

 	
 publicstaticclassStringExtensions

 {

 [LinqExtensionMethod]

 publicstaticStringSoundex(thisStringinput)

 {

 thrownewNotImplementedException();

 }

 }

 	

 	
 Tip: Add a reference to the NHibernate.Linq namespace.

 All we need to do to make it callable by NHibernate is to decorate it with the [LinqExtensionMethod] attribute from the NHibernate.Linq namespace. We can now write code like this and have NHibernate translate it to the appropriate SQL:

 	
 StringsoundexName=session.Query<Customer>().Select(x=>x.Name.Soundex()).First();

 Because the SOUNDEX method has no .NET implementation, we know that it is running in the database.

 NHibernate already includes a useful extension for performing LIKE comparisons:

 	
 IEnumerable<Product>products=session.Query<Product>().Where(x=>SqlMethods.Like(x.Name,"%phone%"))

 .ToList();

 So, to clarify, we can apply the [LinqExtensionMethod] to any .NET method for which there is a corresponding SQL function with the same name and parameter signatures. There is no need to implement this method in .NET but, if you are curious, there is a possible implementation of the SOUNDEX algorithm in this book’s companion code. You can also find plenty of information about it on the Internet.

 [bookmark: _Toc384732495][bookmark: _Toc355385662][bookmark: _Toc354573289]Extending HQL

 Like LINQ, we can also extend HQL so that it knows any database-specific functions that we would like to use. It is normally done by extending a Dialect class and registering those functions there, but it is also very easy to achieve by reflection:

 	
 [bookmark: _Hlk380103185]publicstaticclassSessionFactoryExtensions

 {

 publicstaticISQLFunctionRegisterFunction<T>(thisISessionFactoryfactory,Stringname,Stringsql)

 {

 MethodInforegisterFunctionMethod=typeof(Dialect)

 .GetMethod("RegisterFunction",BindingFlags.Instance|BindingFlags.NonPublic);

 Dialectdialect=(factoryasSessionFactoryImpl).Dialect;

 ITypetype=NHibernateUtil.GuessType(typeof(T));

 ISQLFunctionfunction=newSQLFunctionTemplate(type,sql);

 registerFunctionMethod.Invoke(dialect,newObject[]{name,function});

 return(function);

 }

 }

 	

 	
 Tip: Reference namespaces System.Reflection, NHibernate, NHibernate.Dialect, NHibernate.Dialect.Function, NHibernate.Impl, and NHibernate.Dialect.

 One reason why you would follow this approach instead of subclassing Dialect is, if you need to support multiple databases, you would have to subclass all of their dialects’ classes.

 As an example, using SQL Server’s DATEADD and GETDATE functions:

 	
 sessionFactory.RegisterFunction<DateTime>("last_week","DATEADD(DAY,-7,GETDATE())");

 using(ISessionsession=sessionFactory.OpenSession())

 {

 IEnumerable<Order>recentOrders=session

 .CreateQuery("fromOrderowhereo.Date>=last_week()")

 .List<Order>();

 }

 [bookmark: _Toc384732496][bookmark: _Toc355385663][bookmark: _Toc354573290]Chapter 12 Monitoring NHibernate

 [bookmark: _Toc384732497][bookmark: _Toc355385664]log4net Integration

 NHibernate has out-of-the-box integration with log4net, a general purpose and widely used logging framework. If you added the NHibernate support from NuGet, you already have log4net because it is a required dependency. If not, do add a reference to it, preferably with NuGet:

 Otherwise, navigate to http://logging.apache.org/log4net and download the latest binaries.

 Either way, configure your NHibernate environment to use log4net instead of its own logging facility, which you should disable. The configuration file Web/App.config should have a section like this:

 	
 <configSections>

 <sectionname="log4net"type="log4net.Config.Log4NetConfigurationSectionHandler,log4net"/>

 <sectionname="hibernate-configuration"

 type="NHibernate.Cfg.ConfigurationSectionHandler,NHibernate"/>

 </configSections>

 <log4netdebug="false">

 <appendername="trace"type="log4net.Appender.ConsoleAppender,log4net">

 <layouttype="log4net.Layout.PatternLayout,log4net">

 <paramname="ConversionPattern"value="%d{ABSOLUTE}%-5p%c{1}:%L-%m%n"/>

 </layout>

 </appender>

 <loggername="NHibernate.SQL">

 <levelvalue="DEBUG"/>

 <priorityvalue="DEBUG"/>

 <appender-refref="trace"/>

 </logger>

 </log4net>

 <hibernate-configurationxmlns="urn:nhibernate-configuration-2.2">

 <session-factory>

 <propertyname="format_sql">true</property>

 <propertyname="show_sql">false</property>

 </session-factory>

 </hibernate-configuration>

 For web applications, replace the ConsoleAppender with the TraceAppender to use the trace window instead of the console for the log output:

 	
 <appendername="trace"type="log4net.Appender.TraceAppender,log4net">

 Now we just have to tell log4net to read its configuration and start producing output:

 	
 log4net.Config.XmlConfigurator.Configure();

 NHibernate will output nicely formatted SQL for every query it sends to the database, including all parameters’ types and values.

 [bookmark: _Toc384732498][bookmark: _Toc355385665]Statistics

 Another nice feature is statistics. NHibernate keeps a count of virtually anything it does, at the session factory level. This means that for all sessions spawning from it, this information is available as the ISessionFactory.Statistics property. Some of the data available is:

 · Creation timestamp of the session factory.

 · Number of connections opened and closed.

 · Number of entities loaded, deleted, updated, and inserted.

 · Number of flush operations.

 · Number of optimistic concurrency failures.

 · Number of queries executed.

 · Maximum query execution time.

 · Number of total and successful transactions.

 · Last queries executed.

 Normally, statistics are enabled unless we disable them explicitly by configuration:

 	
 <propertyname="generate_statistics">false</property>

 Or by code:

 	
 cfg.SetProperty(NHibernate.Cfg.Environment.GenerateStatistics,Boolean.FalseString);

 At any point, we can also reset all statistics to their initial values:

 	
 sessionFactory.Statistics.Clear();

 [bookmark: _Toc384732499][bookmark: _Toc355385666][bookmark: _Toc354573291]Chapter 13 Performance Optimizations

 [bookmark: _Toc384732500][bookmark: _Toc355385667][bookmark: _Toc354573292]Optimizing Queries

 Here are some general tips for optimizing queries with NHibernate:

 · Select only the properties you need; that is, avoid selecting the full entity when you don’t need it.

 · Avoid loading an entity when you only need its key (use ISession.Load<T> instead of ISession.Get<T>).

 · Use paging instead of retrieving all records at the same time; all querying APIs support it.

 · Fetch at query time all the references and collections that you will need.

 · Choose lazy and eager loading carefully, and choose an appropriate fetch mode. If you are certain that you need a child collection’s items each time you load a specific entity, mark this collection as not lazy and with fetch mode JOIN.

 · Resort to SQL queries when performance is crucial.

 [bookmark: _Toc384732501][bookmark: _Toc355385668][bookmark: _Toc354573293]Optimizing Making Changes

 Consider this:

 · Always use explicit transactions.

 · Use executable HQL for bulk updates and deletes.

 · Use batching and stateless sessions for insertions.

 · Evict unneeded entities from the session.

 · Mark entities that you never want to change as immutable so that the session does not waste time with them when tracking changes.

 · Use explicit flushing and, when flushing, also clear the session or evict unneeded entities.

 · In production, disable logging and statistics.

 [bookmark: _Toc384732502][bookmark: _Toc355385669][bookmark: _Toc354573294]Chapter 14 Putting It All Together

 Our journey with NHibernate has come to an end. I hope you have enjoyed reading this book as much as I have enjoyed writing it. By now, you should have a fairly good idea of NHibernate’s potential as well as its limitations.

 I think the most important subjects we talked about were:

 · The various mapping techniques, collection alternatives, and querying APIs.

 · The extensibility mechanisms, of which we barely scratched the surface.

 · The listeners and interceptors, on which we can totally change the way NHibernate operates.

 · The Validation API, which is very rich and extensible.

 We barely scratched the surface, though. There is no better way to learn NHibernate than to actually work with it. So do your own experimentations, look at the source code, and tweak the various configuration settings.

 With that said, I wish you a good experience. Remember to share your findings with others!

 [bookmark: _Toc384732503][bookmark: _Toc355385670][bookmark: _Toc354573295]Chapter 15 Additional References

 [bookmark: _Toc384732504][bookmark: _Toc355385671][bookmark: _Toc354573296]NHibernate Forge

 NHibernate Forge can be found at http://nhforge.org; it is the central point of information on all things related to NHibernate. Here you will find announcements for new versions, blog and wiki posts, and links to official API reference documentation. Unfortunately, it’s not always up to date but it’s still a valuable source of information.

 [bookmark: _Toc384732505][bookmark: _Toc355385672][bookmark: _Toc354573297]NHibernate Reference

 NHibernate Reference is the ultimate source of information on the NHibernate usage and configuration. You can find it at http://nhforge.org/doc/nh/en.

 [bookmark: _Toc354573298][bookmark: _Toc384732506][bookmark: _Toc355385673][bookmark: _Toc355022594]NHibernate Validator Documentation

 Find the reference documentation for NHibernate Validator at: http://nhforge.org/wikis/validator/nhibernate-validator-1-0-0-documentation.aspx.

 [bookmark: _Toc384732507][bookmark: _Toc355385674]NHibernate Users

 It may well happen that you’ll face problems when using NHibernate or that you just won’t know the best way to do something. In this case, one place you can turn to is the NHibernate Users community, which is available as a mailing list that’s hosted at Google Groups (which offers a web interface: https://groups.google.com/forum/?fromgroups#!forum/nhusers). Here, you will find many users who work with NHibernate on a daily basis and who may be able to help you.

 [bookmark: _Toc384732508][bookmark: _Toc355385675][bookmark: _Toc354573299]NHibernate Development

 If you ever need to contact the NHibernate authors to discuss the implementation of NHibernate, there is the NHibernate Development community, also hosted at Google Groups: https://groups.google.com/forum/?fromgroups#!forum/nhibernate-development. You won’t typically find solutions to your immediate problems here but, instead, you may learn from the conversations between the developers or you can discuss features with the people who actually built them.

 [bookmark: _Toc384732509][bookmark: _Toc355385676][bookmark: _Toc354573300]NHibernate JIRA

 NHibernate JIRA at https://nhibernate.jira.com is the place to go for filling bug reports, suggesting improvements, or looking up existing issues. If you are going to submit a bug report, please include the maximum amount of detail possible and make sure you carefully fill in all fields with appropriate values.

 Figure 26: JIRA Interface

 Even better, include a simple unit test that demonstrates the problem you are facing. You will find guidelines on writing good unit tests on this wiki post: http://nhforge.org/blogs/nhibernate/archive/2008/10/04/the-best-way-to-solve-nhibernate-bugs-submit-good-unit-test.aspx. A test project is available at http://nhforge.org/media/p/70.aspx.

 [bookmark: _Toc384732510][bookmark: _Toc355385677][bookmark: _Toc354573301]NHibernate Source Code

 NHibernate source code is available on GitHub at https://github.com/nhibernate/nhibernate-core.

 [bookmark: _Toc384732511][bookmark: _Toc355385678][bookmark: _Toc354573302]NHibernate Validator Source Code

 NHibernate Validator source code is also available on GitHub and maintained by Dario Quintana (@darioquintana) at https://github.com/darioquintana/NHibernate-Validator.

 [bookmark: _Toc384732512][bookmark: _Toc355385679][bookmark: _Toc354573303]NHibernate Pitfalls Index

 I keep my own list of common NHibernate pitfalls and recommendations on my blog at http://weblogs.asp.net/ricardoperes. Have a look and share your thoughts, questions, and corrections.

 [bookmark: _Toc384732513][bookmark: _Toc355385680][bookmark: _Toc354573304]Contributing to NHibernate

 Once you get familiar with NHibernate, including its source code, you may feel that you can bring something new to NHibernate, either by fixing existing bugs or by implementing new functionality. That is good because NHibernate is the product of a community of people who think that way. You are free to try and contribute to it. To do so, you must follow these steps:

 1. Create an account on NHibernate JIRA if you don’t already have one.

 2. Create an issue for what you are trying fix or improve, if one does not already exist (including a unit test that illustrates the situation).

 3. Read the Contributor Guide available at https://github.com/nhibernate/nhibernate-core/blob/master/Contributor%20Guide.html.

 4. Fork the nhibernate-core repository from the GitHub web interface:

 Figure 27: Creating a Pull Request

 5. Clone the forked source code to your development machine from the command line:

 Figure 28: Cloning a Repository

 6. Run ShowBuildMenu.bat and select option A for setting up the development environment:

 Figure 29: Setting Up Initial NHibernate Development Environment

 7. Make changes to the code and make sure you don’t break anything.

 8. Commit your changes from the command line:

 Figure 30: Committing Changes

 9. Create a pull request from the web interface and fill in all required values:

 Figure 31: Creating a Pull Request

 10. Go to the JIRA issue and add a comment to it where you mention your proposed solution and the location of the pull request:

 Figure 32: Mentioning the Pull Request on a JIRA Issue

 11. Wait for someone on the NHibernate team to pick it up, test it, and merge your changes with the trunk.

 [bookmark: _Toc355596572][bookmark: _Toc384732423]Detailed Table of Contents

 Table of Contents

 About the Author

 About the Reviewers

 Introduction

 What is NHibernate and Why Should You Care?

 Chapter 1 Installation

 Before We Start

 Getting NHibernate

 NuGet

 Downloadable Packages

 Source Code

 What’s Inside

 Which One Shall I Choose?

 Chapter 2 Configuration

 XML Configuration

 Loquacious Configuration

 Which One Shall I Choose?

 Chapter 3 Domain Model

 Scenario

 Entities

 Before We Start

 Chapter 4 Mappings

 Concepts

 Entities

 Properties

 Custom Types

 Identifiers

 References

 Collections

 XML Mappings

 Mapping by Code

 Mapping by Attributes

 Mapping Inheritances

 Which One Shall I Choose?

 Chapter 5 Querying the Database

 By ID

 LINQ

 HQL

 Criteria

 Query Over

 SQL

 Multi Queries and Futures

 Lazy Loading

 Inheritance

 Refreshing

 Which One Shall I Choose?

 Chapter 6 Making Changes

 Inserting, Updating, and Deleting

 Flushing Changes

 Updating Disconnected Entities

 Removing from the First-Level Cache

 Executable HQL

 Detecting Changes

 Cascading Changes

 Transactions

 Pessimistic Locking

 Optimistic Concurrency

 Batch Insertions

 Chapter 7 Restrictions and Filters

 Restrictions

 Filters

 Chapter 8 Interceptors and Listeners

 Interceptors

 Listeners

 Chapter 9 Validation

 NHibernate Validator

 Chapter 10 Using NHibernate in Web Contexts

 ASP.NET Web Forms

 ASP.NET MVC

 WCF Web Services

 Chapter 11 Extending NHibernate

 Extending LINQ

 Extending HQL

 Chapter 12 Monitoring NHibernate

 log4net Integration

 Statistics

 Chapter 13 Performance Optimizations

 Optimizing Queries

 Optimizing Making Changes

 Chapter 14 Putting It All Together

 Chapter 15 Additional References

 NHibernate Forge

 NHibernate Reference

 NHibernate Validator Documentation

 NHibernate Users

 NHibernate Development

 NHibernate JIRA

 NHibernate Source Code

 NHibernate Validator Source Code

 NHibernate Pitfalls Index

 Contributing to NHibernate

