

by Daniel Jebaraj

Building 100%

Native Mobile Apps

with ASP.NET MVC

Syncfusion | Contents 2

Contents

Native Mobile Apps with ASP.NET MVC .. 3

Mobile devices are everywhere ... 3

Mobile application development: growth predictions from Gartner ... 3

Line of business mobile applications: the challenge posed by fragmentation 3

Mobile Web applications: the solution for fragmentation? ... 4

Mobile Web applications: additional considerations.. 5

Hybrid applications: the best of Web and native applications ... 5

ASP.NET MVC: an elegant framework for your back end.. 6

Clear separation of responsibilities ... 6

Sharing most code with desktop or tablet Web clients .. 6

Minimal friction with underlying Web development model ... 6

Sample hybrid application .. 6

The ASP.NET MVC back end .. 7

Android wrapper ... 11

Conclusion .. 13

Syncfusion | Native Mobile Apps with ASP.NET MVC 3

Native Mobile Apps with ASP.NET MVC

Mobile devices are everywhere
Over a decade ago, while attending a Microsoft Professional Developers Conference, we were

shown a video on the coming mobile future. The video showcased futuristic-looking, Windows-

powered phones being used for tasks such as locating the closest doctor’s office. In an era when

the Palm VII (http://en.wikipedia.org/wiki/Palm_VII) was the closest thing to a wireless

smartphone, the video showcased an impressive future.

Fast forward to 2012: There is no mistake that we are living this future. Smartphones and other

mobile devices such as tablets are everywhere. They are available at multiple price points and

are increasingly affordable. In fact, for many in the developing world, their only computer is the

powerful smartphone they own.

Mobile application development: growth predictions from

Gartner
Gartner predictsi that by 2016, at least 50 percent of enterprise e-mail users will rely primarily on

a browser, tablet, or mobile client instead of a desktop client. Given the increase in the adoption

of mobile devices, it is also expected that software application development targeting these

devices will also dramatically increase in the coming years. Again, Gartner predicts that by 2015

mobile application development projects targeting smartphones and tablets will outnumber

native PC projects by a ratio of 4 to 1. Gartner further says that smartphones and tablets will

represent more than 90 percent of the new net growth in device adoption in the coming four

years.

The Apple App Store now boasts over 500,000 apps. Android has close to the same number and

the Windows Phone marketplace, a much more recent contender, recently crossed 50,000 and is

growing at a fast pace.

Line of business mobile applications: the challenge posed

by fragmentation
Given this rather exciting backdrop, we can be certain that most line-of-business applications

will be made available on mobile platforms in the immediate future. As with any other

opportunity, mobile application development with all its promises comes with its own set of

challenges.

http://en.wikipedia.org/wiki/Palm_VII

Syncfusion | Native Mobile Apps with ASP.NET MVC 4

One of the primary challenges is the issue of fragmentation. Estimates from the third quarter of

2011 indicated that the mobile operating system market is very fragmented. The variants of

Android accounted for around 50% of devices sold during this quarter. Symbian and iOS

accounted for about 17% each. Research in Motion (RIM/Blackberry) accounted for about 11%

and the Windows Phone platform for around 2%.

Developing a line-of-business application that will function on all these devices involves working

with the following vastly different technologies:

Mobile
platform

Primary
development
platform

Primary
development
language

Primary IDE Development
platforms

Android Java based Java Eclipse Windows, Mac
OSX, Linux

iOS Cocoa Touch
framework

Objective C Xcode Mac OSX

RIM Java ME Java Eclipse Windows, Mac
OSX

Windows
Phone 7

Silverlight on the
.NET platform

C# Visual Studio Windows

The platforms, languages, and tools involved are substantially different, and the effort involved

in producing a solution that will work on every platform is substantial.

It is also worth noting that there is substantial fragmentation even within some of the platforms.

This is especially true with the currently dominant Android platform. Given that Android is open

and vendors are free to make changes, there are literally hundreds of Android-based devices

available on the market today. Many of them work only with specific levels of the Android API.

Some of them even have issues with applications that target certain features within a supported

API level. In summary, there is no shortage of fragmentation in the mobile market. This makes

the implementation of a native solution on multiple platforms quite daunting.

Mobile Web applications: the solution for fragmentation?
Web applications are an alternative to native applications. All the major mobile platforms offer

very capable browsers. In addition, with the exception of the Windows Phone browser, most

other platform browsers are based on the open source WebKit browser platform that powers

the desktop versions of Apple Safari and Google Chrome. There is excellent support for

JavaScript on these browser platforms; jQuery is fully supported on most current mobile devices.

Also, increasing compliance with HTML 5 and related Web standards is making the browsers

even more attractive as a development platform. It is possible to build very functional Web sites

that work very well on mobile devices with technology available today.

Syncfusion | Native Mobile Apps with ASP.NET MVC 5

Mobile Web applications: additional considerations
Building a mobile Web site does not offer the same experience as a native application. Users on

specific hardware platforms are accustomed to the enhanced experience offered by native

applications. Such applications are installed natively and are always available on the launcher

surface of the device. Native applications also obey user interface contracts on the device. For

instance, on Android the left Menu button usually displays a context menu. Users expect this.

Web applications can be installed as shortcuts on the launcher surface for most devices, but

they do not obey specific user-interface expectations on the deployed device. Another

disadvantage Web applications have is that they have no native access to hardware beyond

what is exposed by HTML and related Web standards. For instance, there is no direct access to

contacts, images, or the camera on the device. For many applications, access to key elements of

device hardware is important.

Hybrid applications: the best of Web and native

applications
Hybrid applications are completely native applications that embed a platform-specific Web

browser control. All major mobile platforms including Android, iOS, Windows Phone 7, and

Blackberry/RIM support embedding Web browser controls as implemented on their platform.

Since the wrapper is completely native, users are not often even aware they are interacting with

a Web application. It is quite possible for the native application to provide a seamless navigation

experience.

It is also possible for Web pages displayed in the browser to interact with the native hardware

through a JavaScript bridge, a form of which is available on every major platform. Using such

callbacks to the native platform make it possible to access contacts, capture or select images,

and play media. In fact, anything you can accomplish through native code can be accomplished

through the bridge. The bridge code will of course have to be re-written for every target

platform, but this is usually a small fraction of your total application code.

Also, several JavaScript bridge frameworks exist; the most popular is the open source PhoneGap

platform which provides a substantial part of this plumbing. We will not be using any

frameworks for this purpose. We will instead illustrate the concept with a simple Android

wrapper.

http://phonegap.com/

Syncfusion | Native Mobile Apps with ASP.NET MVC 6

ASP.NET MVC: an elegant framework for your back end
Hybrid applications can of course be built with any Web back end, but we firmly believe that

ASP.NET MVC is ideally suitedii for the implementation of hybrid applications. Below are some

aspects that make ASP.NET MVC a good choice for such applications.

Clear separation of responsibilities

The clear separation of responsibilities afforded by the MVC environment makes it possible to

have very precise control over HTML output. This makes it very easy to generate mobile-friendly

HTML. There is no built-in, self-contained control model that makes it hard to control the

markup that is produced.

Sharing most code with desktop or tablet Web clients

If you have an existing ASP.NET MVC Web application that targets desktop browsers, much of

the code can be shared with your mobile application. The controller and model code can be

shared almost as is. Only the view needs to be changed. It is not difficult to specify a custom

view for mobile clients even with the current version of ASP.NET MVC, but the next version of

ASP.NET MVC makes it even simpler. For additional details on mobile-friendly features in the

upcoming version of ASP.NET MVC, please refer to http://www.asp.net/mvc/tutorials/mvc-

4/aspnet-mvc-4-mobile-features.

Minimal friction with underlying Web development model

ASP.NET MVC does not build several layers of abstraction over stateless Web applications.

Instead it offers a very simple model that works in alignment with the underlying platform. This

makes it very easy to make AJAX calls or use jQuery on the client. There is no complex

abstraction such as ASP.NET Web Forms’ ViewState to worry about.

In addition to the above, it is also worth pointing out that the business and database layers that

already exist in your current .NET applications can be effectively reused with ASP.NET MVC

applications. ASP.NET MVC is completely agnostic about the business and database layers and

can work effectively with any system that is currently in place.

Sample hybrid application
We will now walk through a very simple sample that will illustrate the development of a hybrid

application end-to-end using the ASP.NET MVC platform. The sample displays information on

students attending a fictional university named Contoso University. There are a couple of

general information links as well as access to a student directory where students can be looked

up by name. The sample does not implement any security or error handling in order to keep the

code clear. There is no complex code since the objective of the sample is not to showcase the

http://www.asp.net/mvc/tutorials/mvc-4/aspnet-mvc-4-mobile-features
http://www.asp.net/mvc/tutorials/mvc-4/aspnet-mvc-4-mobile-features

Syncfusion | Native Mobile Apps with ASP.NET MVC 7

power of the ASP.NET MVC platform, but to showcase its suitability as a back-end platform for

the development of hybrid, native mobile applications.

The complete code for this sample is available at http://bit.ly/mvc-native-mobile-apps.

Prerequisites to work with the sample code:

• ASP.NET MVC 3 with Visual Studio 2010 (any version including the Express Edition).

• Functional installation of the Android SDK and the Android Development Tools plugin

for Eclipse.

Detailed instructions and requirements are available here:

http://developer.android.com/sdk/requirements.html

• jQuery and jQuery Mobile. A local copy is not required since the sample code will simply

reference the jQuery CDN.

The ASP.NET MVC back end

In the sample code, the provided _Layout.cshtml contains script references to the jQuery and

jQuery Mobile libraries. They are not required to build an ASP.NET MVC mobile application, but

they do handle much of the grunt work. We use jQuery Mobile in our sample since our purpose

is not to illustrate the nuances of formatting content on mobile devices.

<link rel="stylesheet" href="http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.css" />
<link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />

<script type="text/javascript" src="http://code.jquery.com/jquery-1.6.4.min.js"></script>
<script type="text/javascript" src="http://code.jquery.com/mobile/1.0/jquery.mobile-
1.0.min.js"></script>

Most mobile Web clients assume that a Web page is sized at about 900 pixels and will

automatically scale to display the entire page on the device. With a mobile site that is optimized

for a smaller device, we can provide a hint to the device that it should not scale but should

instead use the width of the device. This is accomplished via the use of the viewport meta tag as

shown below.

<meta name="viewport" content="width=device-width, initial-scale=1.0 ">

The default index action method on the home controller is mapped to the following view

markup.

<nav >
<ul id="menu" data-role="listview">

@Html.ActionLink("About Us", "AboutUs", "Home")
@Html.ActionLink("Contact Us", "ContactUs", "Home")
@Html.ActionLink("Student Directory", "StudentDirectory", "Home")

</nav>

http://bit.ly/mvc-native-mobile-apps
http://developer.android.com/sdk/requirements.html
http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.css
http://code.jquery.com/jquery-1.6.4.min.js
http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.js
http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.js

Syncfusion | Native Mobile Apps with ASP.NET MVC 8

We have a simple unordered list with three action links. We specify that the list should be

automatically formatted as a list view by the jQuery Mobile runtime through the use of the

“data-role=listview” attribute setting. This is all that is required to display the following

initial UI on a mobile device.

Figure 1: Initial screen

The jQuery Mobile runtime takes care of formatting it as a list view. As mentioned previously,

jQuery Mobile is certainly not needed, and indeed it is fairly simple to accomplish this task

without the use of jQuery Mobile. However, jQuery Mobile handles this in a seamless manner

and works on a large number of mobile devices. You can pick the formatting and scripting

approach that suits your needs best.

Syncfusion | Native Mobile Apps with ASP.NET MVC 9

The sample contains views that are displayed when the About Us and Contact Us options are

invoked. These screens are straightforward and do not require any further explanation.

The Student Directory link displays a page with student names grouped by starting letter. The

page also displays the number of students listed under each letter.

Figure 2: Student directory initial screen

Clicking on any option displays a list of students as shown in the following figure.

Syncfusion | Native Mobile Apps with ASP.NET MVC 10

Figure 3: Student directory

The student directory views are also fairly simple. They iterate through and display data in a list.

The view that displays student details is shown below.

@{
ViewBag.Title = "Student Directory";
Layout =
"~/Views/Shared/_Layout.cshtml"; var
random = new Random();

}

<ul data-role="listview">
@foreach (string student in ViewBag.Students)
{

@{var number = random.Next(1000, 9999); }

<h3>@student</h3>
<h4>919-555-@number</h4>

}

Syncfusion | Native Mobile Apps with ASP.NET MVC 11

It is a good idea to run the ASP.NET MVC back end in a desktop browser and test it out before

proceeding to review the Android wrapper that we will work with next.

You can also directly test on a mobile browser provided the test site is accessible from your test

device. If both the development PC and your test device are on the same network, it is possible

to make setting changes to the ASP.NET development browser or IIS Express to allow access to

the Web application from your test device. Such access is blocked by default.

An easier, alternate approach is to use a proxy which simply redirects traffic on an external port

to the internal server. This is the approach we often use. The proxy that we use is available for

download from https://github.com/jocull/SharpProxyiii.

Android wrapper

The code for the Android wrapper that hosts the Web application inside a native Android

application is reproduced below.

package com.syncfusion.contoso;
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.KeyEvent;
import android.view.View;
import android.webkit.WebView;
import android.webkit.WebViewClient;

public class ContosoActivity extends Activity {

 WebView mWebView;

private class ContosoWebViewClient extends WebViewClient {
@Override
public boolean shouldOverrideUrlLoading(WebView view, String url) {

view.loadUrl(url);
return true;

}
}

/** Called when the activity is first created. */
@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mWebView = (WebView) this.findViewById(R.id.webview);

// Disable scrollbars

mWebView.setVerticalScrollBarEnabled(false);
mWebView.setHorizontalScrollBarEnabled(false);

// Scrollbar Overlay Content
mWebView.setScrollBarStyle(View.SCROLLBARS_INSIDE_OVERLAY);

mWebView.getSettings().setJavaScriptEnabled(true);
mWebView.getSettings().setAppCacheEnabled(false);
mWebView.loadUrl("http://your-web-link");
mWebView.setWebViewClient(new ContosoWebViewClient());

https://github.com/jocull/SharpProxy
http://your-web-link/

Syncfusion | Native Mobile Apps with ASP.NET MVC 12

 }

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {

if ((keyCode == KeyEvent.KEYCODE_BACK) && mWebView.canGoBack()) {
mWebView.goBack();
return true;

}
return super.onKeyDown(keyCode, event);

}
}

The code is quite simple to follow.

1. WebView is the Android equivalent of the WebBrowser control. It is a wrapper around the

default WebKit-based Android browser.

2. We obtain access to an instance of the Android WebView control (defined in an XML layout

file and instantiated by the Android runtime at execution).

3. We enable the use of JavaScript on this WebView instance since JavaScript is disabled by

default with the WebView control.

4. We then make a few adjustments to the display of the scrollbar—basically turning it off to

mimic the look and feel of a native application.

5. We then load the actual Web application using a call to the loadUrl API on the WebView

instance. your-web-link should be changed to point to your Web application.

6. The last section of the code handles the invocation of the hardware Back button and causes

the embedded WebView to navigate to the previous page.

As you can see this code is not tied to the Web application in any direct manner and will not

change substantially from application to application. You will only need to add additional code

when you require access to specific hardware functionality on the device. We do not delve

deeper into this topic here but if you are interested in investigating this further, please look up

information on the addJavascriptInterfaceiv method of the WebView.

For simplicity, we have described just the Android wrapper. Similar wrappers and extension

mechanisms exist on all other major mobile platforms.

Syncfusion | Native Mobile Apps with ASP.NET MVC 13

Figure 4: Contact Us page displayed on Android 4.0 Emulator inside a native application shell

Conclusion
Hybrid applications are a very promising solution worth looking into for any line-of-business

mobile application. They are not suited for scenarios where extensive access to native hardware

is required (such as with games) but will work very well in most other scenarios. Any solution

implemented with a Web back end is also more likely to be future-proof. The HTML standard

has evolved slowly over the years and is unlikely to dramatically change as proprietary solutions

often tend to do. It offers a stable base on which applications can be built with the certainty that

they will continue to work for the foreseeable future. Mobile platform vendors are putting an

extraordinary amount of effort into the implementation of HTML 5 and related standards. This

will also serve to make Web applications more powerful and able to accomplish a substantial

subset of what is possible with native applications.

Syncfusion | Native Mobile Apps with ASP.NET MVC 14

You can leverage your existing .NET Web development skills and produce powerful, 100% native

solutions that work on a broad cross section of devices. At Syncfusion, we are excited by the

immense potential offered by hybrid applications. We currently offer a wide set of mobile

controls for use under the ASP.NET MVC platform and have many more exciting offerings on the

way. We hope you too are excited by the potential offered by hybrid mobile applications.

i http://bit.ly/uIkqKR—Gartner Reveals Top Predictions for IT Organizations and Users for 2012 and Beyond.

ii Ignore ASP.NET MVC at Your Own Peril: Lessons Learned from the Trenches available from

http://www.syncfusion.com/downloads/resources/whitepaper/aspnet-mvc.

iii For further details, please refer to http://www.codefromjames.com/wordpress/?p=97.

iv http://developer.android.com/reference/android/webkit/WebView.html#addJavascriptInterface(java.lang.Object, java.lang.String).

http://bit.ly/uIkqKR
http://www.syncfusion.com/downloads/resources/whitepaper/aspnet-mvc
http://www.codefromjames.com/wordpress/?p=97
http://developer.android.com/reference/android/webkit/WebView.html#addJavascriptInterface(java.lang.Object, java.lang.String).

